
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

1

MODULE – 3: ANDROID UI DESIGN AND LOCATION
BASED SERVICES

Syllabus: Views and View Groups – Basic Views – Fragments – Displaying Maps – Getting
Location Data – Preparing for Publishing – Deploying APK Files

3.1 VIEWS
A view is a widget that has an appearance on screen. It is derived from the base class
android.view.View. There are three types viz.

 Basic views
 Picker views
 List views

Each of these are discussed in the following sections.

3.1.1 Basic Views
Some of the basic views that can be used to design UI of Android application are:

 TextView
 EditText
 Button
 ImageButton
 CheckBox
 ToggleButton
 RadioButton
 RadioGroup

These basic views enable you to display text information, as well as perform some basic
selection.

 TextView View: The TextView view is used to display text to the user. When we create

a new Android project, Eclipse always creates one <TextView> element in
activity_main.xml file, to display Hello World as shown below –

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
>
<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello”
/>

</LinearLayout>

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

2

 Button — Represents a push-button widget
 ImageButton — Similar to the Button view, but it also displays an image
 EditText — A subclass of the TextView view, but it allows users to edit its text content
 CheckBox — A special type of button that has two states: checked or unchecked
 RadioGroup and RadioButton — The RadioButton has two states: either checked or

unchecked. Once a RadioButton is checked, it cannot be unchecked. A RadioGroup is
used to group together one or more RadioButton views, thereby allowing only one
RadioButton to be checked within the RadioGroup.

 ToggleButton — Displays checked/unchecked states using a light indicator

To understand the behavior of these views, create a new android project and place the
following code in activity_main.xml file, without disturbing existing code.

<Button android:id=”@+id/btnSave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Save” />

<Button android:id=”@+id/btnOpen”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Open” />

<ImageButton android:id=”@+id/btnImg1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:src=”@drawable/icon” />

<EditText android:id=”@+id/txtName”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content” />

<CheckBox android:id=”@+id/chkAutosave”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Autosave” />

<CheckBox android:id=”@+id/star”
style=”?android:attr/starStyle”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

<RadioGroup android:id=”@+id/rdbGp1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:orientation=”vertical” >

<RadioButton android:id=”@+id/rdb1”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Option 1” />

<RadioButton android:id=”@+id/rdb2”
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Option 2” />

</RadioGroup>

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

3

<ToggleButton android:id=”@+id/toggle1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

After running the application, the output will be displayed as shown in the following
diagram. Click on each of these views, to observe their default behavior.

3.1.2 Picker Views
Selecting the date and time is one of the common tasks you need to perform in a mobile
application. Android supports this functionality through the TimePicker and DatePicker
views. The TimePicker view enables users to select a time of the day, in either 24-hour
mode or AM/PM mode. Using the DatePicker, you can enable users to select a particular
date on the activity.

To add TimePicker in the android application, use the following code:

<TimePicker android:id=”@+id/timePicker”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

To add DatePicker in the android application, use the following code:

<DatePicker android:id=”@+id/datePicker”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content” />

NOTE: A complete program to demonstrate TimePicker view is Lab Program 10.

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

4

3.1.3 List Views
List views are views that enable you to display a long list of items. In Android, there are two
types of list views: ListView and SpinnerView. Both are useful for displaying long lists
of items. The ListView displays a list of items in a vertically scrolling list.

To add SpinnerView in the android application, use the following code:

<Spinner android:id=”@+id/spinner1”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:drawSelectorOnTop=”true” />

NOTE: Example for ListView view is Lab Program 1.

3.2 VIEW GROUPS
One or more views can be grouped together into a ViewGroup. A ViewGroup (which is
itself a special type of view) provides the layout in which you can order the appearance and
sequence of views. Examples of ViewGroups include LinearLayout and FrameLayout.
A ViewGroup derives from the base class android.view.ViewGroup.

Each View and ViewGroup has a set of common attributes as shown in the following table.

Some of these attributes are applicable only when a View is in a specific ViewGroup. For
example, the layout_weight and layout_gravity attributes are applicable only when
a View is in either a LinearLayout or a TableLayout.

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

5

Android supports the following ViewGroups:
 LinearLayout
 AbsoluteLayout
 TableLayout
 RelativeLayout
 FrameLayout
 ScrollView

Each of these ViewGroups are explained hereunder.

3.2.1 LinerLayout

 The LinearLayout arranges views in a single column or a single row.
 Child views can be arranged either vertically or horizontally.
 To see how LinearLayout works, consider the following elements typically contained

in the activity_main.xml file:
<?xml version=“1.0” encoding=“Utf-8”?>
<LinearLayout
 xmlns:android=“http://schemas.android.com/apk/res/android”

android:layout_width=“fill_parent”
android:layout_height=“fill_parent”
android:orientation=“Vertical” >

 <TextView
android:layout_width=“fill_parent”
android:layout_height=“wrap_content”
android:text=“string/hello” />

</LinearLayout>
 In the main.xml file, observe that the root element is <LinearLayout> and
 It has a <TextView> element contained within it.
 The <LinearLayout> element controls the order in which the views contained within it

appear.
 Observe the following diagram.

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

6

3.2.2 AbsoluteLayout
The AbsoluteLayout enables you to specify the exact location of its children. Consider
the following UI defined in main.xml:

<?xml version=”1.0” encoding=”utf-8”?>
<AbsoluteLayout

android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=http://schemas.android.com/apk/res/android>

 <Button
android:layout_width=”188dp”
android:layout_height=”wrap_content”
android:text=”Button”
android:layout_x=”126px”
android:layout_y=”361px”/>

 <Button
android:layout_width=”113dp”
android:layout_height=”wrap_content”
android:text=”Button”
android:layout_x=”12px”
android:layout_y=”361px”/>

</AbsoluteLayout>

The above code will result into:

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

7

There is a problem with absolute layout when the activity is viewed on a high resolution
screen. For this reason the AbslouteLayout has been deprecated since Android 1.5. It is
not guaranteed to be supported in future version of android.

3.2.3 TableLayout

 The TableLayout groups views into rows and columns.
 <TableRow> element to designate a row in the table. Each row can contain one or

more views.
 Each view placed within a row forms a cell.
 The width of each column is determined by the largest width of each cell in that

column.

Consider the content of main.xml shown here:

<TableLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
android:layout_height=”fill_parent”
android:layout_width=”fill_parent”>

 <TableRow>
<TextView

android:text=”User Name:”
android:width =”120px” />

<EditText
android:id=”@+id/txtUserName”
android:width=”200px” />

</TableRow>
<TableRow>
<TextView

android:text=”Password:” />
<EditText

android:id=”@+id/txtPassword”
android:password=”true” />

</TableRow>
<TableRow>
<TextView />
<CheckBox android:id=”@+id/chkRememberPassword”

android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”Remember Password”/>

</TableRow>
<TableRow>
<Button

android:id=”@+id/buttonSignIn”
android:text=”Log In” />

</TableRow>
</TableLayout>

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

8

The above code result into following GUI:

3.2.4 RelativeLayout
The RelativeLayout enables you to specify how child views are positioned relative to each
other. Consider the following main.xml file:

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout
android:id=”@+id/RLayout”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
<TextView
android:id=”@+id/lblComments”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”Comments”
android:layout_alignParentTop=”true”
android:layout_alignParentLeft=”true”
/>
<EditText
android:id=”@+id/txtComments”
android:layout_width=”fill_parent”

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

9

android:layout_height=”170px”
android:textSize=”18sp”
android:layout_alignLeft=”@+id/lblComments”
android:layout_below=”@+id/lblComments”
android:layout_centerHorizontal=”true”
/>
<Button
android:id=”@+id/btnSave”
android:layout_width=”125px”
android:layout_height=”wrap_content”
android:text=”Save”
android:layout_below=”@+id/txtComments”
android:layout_alignRight=”@+id/txtComments”
/>
<Button
android:id=”@+id/btnCancel”
android:layout_width=”124px”
android:layout_height=”wrap_content”
android:text=”Cancel”
android:layout_below=”@+id/txtComments”
android:layout_alignLeft=”@+id/txtComments”
/>
</RelativeLayout>

The UI of the above code would look like –

 Each view is embedded within the relative layout has attributes that enable it to align
with another view.

 The value for each of these attributes is the ID for the view that you are referencing.
 These attributes are as follows:

o layout_alignParentTop
o layout_alignParentLeft
o layout_alignLeft

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

10

o layout_alignRight
o layout_below
o layout_centerHorizontal

3.2.5 FrameLayout
The FrameLayout is a placeholder on screen that you can use to display a single view.
Views that you add to a FrameLayout are always anchored to the top left of the layout.

<RelativeLayout
android:id=”@+id/RLayout”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
<TextView
android:id=”@+id/lblComments”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:text=”This is my lovely dog, Ookii”
android:layout_alignParentTop=”true”
android:layout_alignParentLeft=”true”
/>
<FrameLayout
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
android:layout_alignLeft=”@+id/lblComments”
android:layout_below=”@+id/lblComments”
android:layout_centerHorizontal=”true”
>
<ImageView
android:src = “@drawable/ookii”
android:layout_width=”wrap_content”
android:layout_height=”wrap_content”
/>
</FrameLayout>
</RelativeLayout>

Here, you have a FrameLayout within a RelativeLayout. Within the FrameLayout, you
embed an ImageView. If you add another view (such as a Button view) within the
FrameLayout, the view will overlap the previous view.

3.2.6 ScrollView
A ScrollView is a special type of FrameLayout in that it enables users to scroll through a list
of views that occupy more space than the physical display. The ScrollView can contain only
one child view or ViewGroup, which normally is a LinearLayout.

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

11

NOTE:
 Do not use a ListView together with the ScrollView.
 The ListView is designed for showing a list of related information and is optimized for

dealing with large lists

<ScrollView
android:layout_width=“fill_parent”
android:layout_height=“fill_parent”
xmlns:android=“http://schemas.android.com/apk/res/android” >

<LinearLayout
android:layout_width=“fill_parent”
android:layout_height=“wrap_content”
android:orientation=“Vertical”>

</LinearLayout>
</ScrollView>

3.3 LOCATION BASED SERVICES
We have all seen the explosive growth of mobile apps in recent years. One category of
apps that is very popular is location-based services, commonly known as LBS. LBS apps
track your location, and may offer additional services such as locating amenities nearby, as
well as offering suggestions for route planning, and so on. Of course, one of the key
ingredients in a LBS app is maps, which present a visual representation of your location.

Here, will learn how to make use of the Google Maps in your Android application, and how
to manipulate it programmatically. In addition, you will learn how to obtain your
geographical location using the LocationManager class available in the Android SDK.

3.3.1 Displaying Maps
Google Maps is one of the many applications bundled with the Android platform. In addition
to simply using the Maps application, you can also embed it into your own applications and
make it do some very cool things. This section describes how to use Google Maps in your
Android applications and programmatically perform the following:

 Change the views of Google Maps.
 Obtain the latitude and longitude of locations in Google Maps.
 Perform geocoding and reverse geocoding (translating an address to latitude and

longitude and vice versa).
 Add markers to Google Maps.

We will discuss how to build a project using maps.

Creating the Project: Create a new android project. In order to use Google Maps in your
Android application, you need to ensure that you check the Google APIs as your build
target. Google Maps is not part of the standard Android SDK, so you need to find it in the
Google APIs add-on. If LBS is the name of your project, then you can see the additional
JAR file (maps.jar) located under the Google APIs folder as below–

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

12

Obtaining the Maps API Key: Beginning with the Android SDK release v1.0, you need to
apply for a free Google Maps API key before you can integrate Google Maps into your
Android application. When you apply for the key, you must also agree to Google’s terms of
use, so be sure to read them carefully.

First, if you are testing the application on the Android Emulator or an Android device
directly connected to your development machine, locate the SDK debug certificate located
in the default folder (C:\Users\<username>\.android for Windows 7 users). You can verify
the existence of the debug certificate by going to Eclipse and selecting Window ➪

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

13

Preferences. Expand the Android item and select Build (as shown in figure above). On the
right side of the window, you will be able to see the debug certificate’s location.

The filename of the debug keystore is debug.keystore. This is the certificate that Eclipse
uses to sign your application so that it may be run on the Android Emulator or devices.

Geocoding and Reverse Geocoding: If you know the latitude and longitude of a
location, you can find out its address using a process known as reverse geocoding. Google
Maps in Android supports this via the Geocoder class. You can retrieve the address of a
location just touched using the getFromLocation() method. The Geocoder object converts
the latitude and longitude into an address using the getFromLocation() method. Once the
address is obtained, you display it using the Toast class.

NOTE: Lab Program 7 is the example for location based services.

3.3.2 Getting Location Data

 Nowadays, mobile devices are commonly equipped with GPS receivers.
o Because of the many satellites orbiting the earth, you can use a GPS receiver

to find your location easily. However, GPS requires a clear sky to work and
hence does not always work indoors or where satellites can’t penetrate (such
as a tunnel through a mountain).

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

14

 Another effective way to locate your position is through cell tower triangulation.

o When a mobile phone is switched on, it is constantly in contact with base
stations surrounding it.

o By knowing the identity of cell towers, it is possible to translate this
information into a physical location through the use of various databases
containing the cell towers’ identities and their exact geographical locations.

o The advantage of cell tower triangulation is that it works indoors, without the
need to obtain information from satellites.

o It is not as precise as GPS because its accuracy depends on overlapping
signal coverage, which varies quite a bit.

o Cell tower triangulation works best in densely populated areas where the cell
towers are closely located.

 A third method of locating your position is to rely on Wi-Fi triangulation.
o Rather than connect to cell towers, the device connects to a Wi-Fi network

and checks the service provider against databases to determine the location
serviced by the provider

On the Android, the SDK provides the LocationManager class to help your device
determine the user’s physical location.

lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0,
locationListener);

This method takes four parameters:

1. Provider -The name of the provider with which you register. In this case, you are
using GPS to obtain your geographical location data.

2. minTime - The minimum time interval for notifications, in milliseconds.
3. minDistance - The minimum distance interval for notifications, in meters.
4. Listener - An object whose onLocationChanged() method will be called for each

location update

3.4 PREPARING FOR PUBLISHING
Google has made it relatively easy to publish your Android application so that it can be
quickly distributed to end users. The steps to publishing your Android application generally
involve the following:

 Export your application as an APK (Android Package) file.
 Generate your own self-signed certificate and digitally sign your application with it.
 Deploy the signed application.
 Use the Android Market for hosting and selling your application.

Here, you will learn how to prepare your application for signing, and then learn about the
various ways to deploy your applications.

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

15

 Versioning: Beginning with version 1.0 of the Android SDK, the
AndroidManifest.xml file of every Android application includes the
android:versionCode and android:versionName attributes:

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

package=”net.learn2develop.LBS”
android:versionCode=”1”
android:versionName=”1.0”>

The android:versionCode attribute represents the version number of your
application. For every revision you make to the application, you should increment
this value by 1 so that you can programmatically differentiate the newest version
from the previous one. This value is never used by the Android system, but is useful
for developers as a means to obtain the version number of an application. However,
the android:versionCode attribute is used by Android Market to determine if
there is a newer version of your application available.

The android:versionName attribute contains versioning information that is visible
to the users. If you are planning to publish your application on the Android Market
(means, playstore), the AndroidManifest.xml file must have the following
attributes:

o android:versionCode (within the <manifest> element)
o android:versionName (within the <manifest> element)
o android:icon (within the <application> element)
o android:label (within the <application> element)

The android:label attribute specifies the name of your application. This name
will be displayed in the Settings ➪ Applications ➪ Manage Applications section of
your Android device.

In addition, if your application needs a minimum version of the SDK, you can specify
it in the AndroidManifest.xml file using the <uses-sdk> element:

<uses-sdk android:minSdkVersion=”7” />

 Digitally Signing your Android Application: All Android applications must be
digitally signed before they are allowed to be deployed onto a device (or emulator).
Unlike some mobile platforms, you need not purchase digital certificates from a
certificate authority (CA) to sign your applications. Instead, you can generate your
own self-signed certificate and use it to sign your Android applications.

When you use Eclipse to develop your Android application and then press F11 to
deploy it to an emulator, Eclipse automatically signs it for you. You can verify this by
going to Windows ➪ Preferences in Eclipse, expanding the Android item, and
selecting Build. Eclipse uses a default debug keystore (appropriately named
“debug.keystore”) to sign your application. A keystore is commonly known as a
digital certificate.

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

16

If you are publishing an Android application, you must sign it with your own
certificate. Applications signed with the debug certificate cannot be published. While
you can manually generate your own certificates using the keytool.exe utility
provided by the Java SDK, Eclipse has made it easy for you by including a wizard
that walks you through the steps to generate a certificate. It will also sign your
application with the generated certificate (which you can also sign manually using
the jarsigner.exe tool from the Java SDK).

3.5 DEPLOYING APK FILES
Once you have signed your APK fi les, you need a way to get them onto your users’
devices. Three methods are here:

 Deploying manually using the adb.exe tool
 Hosting the application on a web server
 Publishing through the Android Market

Besides the above methods, you can install your applications on users’ devices through e-
mails, SD card, etc. As long as you can transfer the APK file onto the user’s device, you
can install the application.

Using the adb.exe Tool: Once your Android application is signed, you can deploy it to
emulators and devices using the adb.exe (Android Debug Bridge) tool (located in the
platform-tools folder of the Android SDK). Using the command prompt in Windows,
navigate to the “<Android_SDK>\platform-tools” folder. To install the application to an
emulator/device (assuming the emulator is currently up and running or a device is currently
connected), issue the following command:

adb install “C:\Users\Wei-Meng Lee\Desktop\LBS.apk”

(Note that, here, LBS is name of the project)

Besides using the adb.exe tool to install applications, you can also use it to remove an
installed application. To do so, you can use the shell option to remove an application from
its installed folder:

adb shell rm /data/app/net.learn2develop.LBS.apk

Another way to deploy an application is to use the DDMS tool in Eclipse. With an emulator
(or device) selected, use the File Explorer in DDMS to go to the /data/app folder and use
the “Push a file onto the device” button to copy the APK file onto the device.

Using a Web Server: If you wish to host your application on your own, you can use a web
server to do that. This is ideal if you have your own web hosting services and want to
provide the application free of charge to your users or you can restrict access to certain
groups of people. Following are the steps involved:

 Copy the signed LBS.apk fi le to c:\inetpub\wwwroot\. In addition, create a new
HTML file named Install.html with the following content:

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

17

<html>
<title>Where Am I application</title>
<body>
Download the Where Am I application here
</body>
</html>

 On your web server, you may need to register a new MIME type for the APK file.

The MIME type for the .apk extension is application/vnd.android.package-
archive.

 From the Application settings menu, check the “Unknown sources” item. You will be
prompted with a warning message. Click OK. Checking this item will allow the
Emulator/device to install applications from other non-Market sources (such as from
a web server).

 To install the LBS.apk application from the IIS web server running on your computer,
launch the Browser application on the Android Emulator/device and navigate to the
URL pointing to the APK file. To refer to the computer running the emulator, you
should use the special IP address of 10.0.2.2.

 Alternatively, you can also use the IP address of the host computer. Clicking the
“here” link will download the APK file onto your device. Drag the notification bar
down to reveal the download status. To install the downloaded application, simply
tap on it and it will show the permission(s) required by this application.

 Click the Install button to proceed with the installation. When the application is
installed, you can launch it by clicking the Open button.

Besides using a web server, you can also e‑mail your application to users as an
attachment; when the users receive the e‑mail they can download the attachment and
install the application directly onto their device.

Publishing on Android Market: It is always better to host your application on Android
market (Google Playstore). Steps involved in doing so, are explained hereunder:

 Creating a Developer Profile:
o Create a developer profile at http://market.android.com/publish/Home using a

Google account.
o Pay one-time registration fees.
o Agree Android Market Developer Distribution Agreement

 Submitting Your Apps: If you intend to charge for your application, click the Setup

Merchant Account link located at the bottom of the screen. Here you enter additional
information such as bank account and tax ID. You will be asked to supply some
details for your application. Following are the compulsory details to be provided:

o The application in APK format
o At least two screenshots. You can use the DDMS perspective in Eclipse to

capture screenshots of your application running on the Emulator or real
device.

http://www.chetanahegde.in
http://market.android.com/publish/Home

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde and Rajatha S, RNS Institute of Technology, Bangalore – 98

18

o A high-resolution application icon. This size of this image must be 512×512
pixels.

o Provide the title of your application, its description and recent update details.
o Indicate whether your application employs copy protection, and specify a

content rating.

When all these setup is done, click Publish to publish your application on the
Android Market.

Question Bank:

1. Define a View. Explain different types of views.
2. Discuss Basic Views in Android with a suitable code segment.
3. Briefly explain List Views. Design an application that contains Phone Contacts in

vertical linear manner. Selected contact appears at the top of the list with a large
italicized font and a blue background.(Lab Program 1)

4. Write a note on
a. TimePicker View
b. DatePicker View

5. Define viewgroup. List out various viewgroups in Android.
6. List out comman attributes of viewgroups.
7. Explain various viewgroups with suitable code segments.
8. How do you display Google maps in Android application?
9. Develop a mobile application that uses GPS location information. (Lab Program 7).
10. What are the different methods for getting location data? Explain.
11. How do you publish Android application? Explain the steps involved.
12. Discuss APK file deployment in detail.

http://www.chetanahegde.in

