
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

1

MODULE – 2:
GETTING STARTED WITH ANDROID PROGRAMMING

Syllabus: What is Android? Obtaining the required tools, Anatomy of an Android
Application, Components of Android Applications: Activities, Fragments, Utilizing the Action
Bar

2.1 WHAT IS ANDROID?
2.1.1 Introduction
Android is a mobile operating system that is based on a modified version of Linux. It was
originally developed by a startup of the same name, Android, Inc. In 2005, as part of its
strategy to enter the mobile space, Google purchased Android and took over its
development work. The main advantage of adopting Android:

 It offers a unified approach to application development.
 Developers need only develop for Android, and their applications can run on

numerous different devices based on Android OS.

2.1.2 Features of Android
As Android is open source and freely available to manufacturers for customization,
there are no fixed hardware and software configurations. However, Android itself
supports the following features:

 Storage : Uses SQLite, a lightweight relational database, for data storage.
 Connectivity : Supports GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth

(includes A2DP and AVRCP), WiFi, LTE, and WiMAX.
 Messaging: Supports both SMS and MMS.
 Web browser: Based on the open-source WebKit, together with Chrome’s V8

JavaScript engine
 Media support: Includes support for the following media: H.263, H.264 (in

3GP or MP4 container), MPEG-4 SP, AMR, AMR-WB (in 3GP container),
AAC, HE-AAC (in MP4 or 3GP container), MP3, MIDI, Ogg Vorbis, WAV,
JPEG, PNG, GIF, and BMP

 Hardware support: Accelerometer Sensor, Camera, Digital Compass,
Proximity Sensor, and GPS

 Multi-touch: Supports multi-touch screens
 Multi-tasking: Supports multi-tasking applications
 Flash support: Android 2.3 supports Flash 10.1.
 Tethering: Supports sharing of Internet connections as a wired/wireless

hotspot

2.1.3 Architecture of Android
The Android OS is roughly divided into five sections in four main layers as shown in Figure
2.1.

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

2

Figure 2.1 Various Layers of Android OS

 Linux kernel: This is the kernel on which Android is based. This layer contains all

the low level device drivers for the various hardware components of an Android
device.

 Libraries:
o These contain all the code that provides the main features of an Android OS.

For example, the SQLite library provides database support so that an
application can use it for data storage.

o The WebKit library provides functionalities for web browsing.
 Android runtime :

o At the same layer as the libraries, the Android runtime provides a set of core
libraries that enable developers to write Android apps using the Java
programming language.

o The Android runtime also includes the Dalvik virtual machine, which enables
every Android application to run in its own process, with its own instance of
the Dalvik virtual machine (Android applications are compiled into the Dalvik
executables).

o Dalvik is a specialized virtual machine designed specifically for Android and
optimized for battery-powered mobile devices with limited memory and CPU.

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

3

 Application Framework: Exposes the various capabilities of the Android OS to
application developers so that they can make use of them in their applications.

 Applications:
o At this top layer, you will find applications that ship with the Android device

(such as Phone, Contacts, Browser, etc.), as well as applications that you
download and install from the Android Market.

o Any applications that you write are located at this layer.

2.1.4 Android Devices in Market
Android devices come in all shapes and sizes. Few of the Android OS can be seen
powering the following types of devices: Smartphones, Tablets, E-reader devices,
Netbooks, MP4 players, Internet TVs etc.

2.1.5 The Android Market
One of the main factors determining the success of a smartphone platform is the
applications that support it. Applications play a very vital role in determining whether a new
platform swims or sinks. Making these applications accessible to the general user is
extremely important. In August 2008, Google announced the Android Market, an online
application store for Android devices, and made it available to users in October 2008. Using
the Market application that is preinstalled on their Android device, users can simply
download third-party applications directly onto their devices. Both paid and free applications
are supported on the Android Market, though paid applications are available only to users
in certain countries due to legal issues. Google Playstore is the current name of Android
Market!!

2.2 OBTAINING THE REQUIRED TOOLS
To develop an android application, we need to install certain sofwares. It involves installing
Eclipse, Android SDK, Android Development Tools (ADT) and creating Android Virtual
Devices (AVD).

Note that, The Android SDK makes use of the Java SE Development Kit (JDK). Hence,
before installing Eclipse etc, install JDK from
www.oracle.com/technetwork/java/javase/downloads/index.html

2.2.1 Eclipse
The first step towards developing any applications is obtaining the integrated
development environment (IDE). For Android, the recommended IDE is Eclipse, a
multi-language software development environment featuring an extensible plug-in
system. It can be used to develop various types of applications, using languages
such as Java, Ada, C, C++, COBOL, Python, etc. For Android development, you
should download the Eclipse IDE for Java EE Developers (www.eclipse
.org/downloads/packages/eclipse-ide-java-eedevelopers/heliossr1). Once the
Eclipse IDE is downloaded, unzip its content (the eclipse folder) into a folder, say
C:\Android\.

http://www.chetanahegde.in
http://www.oracle.com/technetwork/java/javase/downloads/index.html

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

4

2.2.2 Android SDK
The Android SDK contains a debugger, libraries, an emulator, documentation, sample
code, and tutorials. You can download the Android SDK from
http://developer.android.com/sdk/index.html. Once the SDK is downloaded, unzip its
content (the android-sdk-windows folder) into the C:\Android\ folder, or whatever name you
have given to the folder you just created.

2.2.3 Android Development Tools (ADT)
The ADT plug-in for Eclipse is an extension to the Eclipse IDE that supports the creation
and debugging of Android applications. Using the ADT, you will be able to do the following
in Eclipse:

 Create new Android application projects.
 Access the tools for accessing your Android emulators and devices.
 Compile and debug Android applications.
 Export Android applications into Android Packages (APK).
 Create digital certificates for code-signing your APK.

To install the ADT, first launch Eclipse by double-clicking on the eclipse.exe file located in
the eclipse folder.

2.2.4 Creating Android Virtual Devices (AVD)
An AVD is an emulator instance that enables you to model an actual device. Each AVD
consists of a hardware profile, a mapping to a system image, as well as emulated storage,
such as a secure digital (SD) card. One can create many AVDs in order to test your
applications with several different configurations. This testing is important to confirm the
behavior of your application when it is run on different devices with varying capabilities. To
create an AVD, go to Windows Menu and choose “Android Virtual Device Manager”. Then
give appropriate name, device, memory required etc. for the application. Once the new
AVD is created, it can be used for different applications further.

2.3 Creating Your First Android Applications
Following are the steps involved in creating any Android application:

1. Using Eclipse, create a new project by selecting File ➪ New ➪ Android Application
Project.

2. Name the Android project suitably, say HelloWorld.
3. In the Package Explorer (located on the left of the Eclipse IDE), expand the

HelloWorld project by clicking on the various arrows displayed to the left of each
item in the project. In the res/layout folder, double-click the activity_main.xml file.
The activity_main.xml file defines the user interface (UI) of your application. The
default view is the Layout view, which lays out the activity graphically. To modify the
UI, click the activity_main.xml tab located at the bottom.

4. Add the following code in bold to the activity_main.xml file.

<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”

http://www.chetanahegde.in
http://developer.android.com/sdk/index.html.
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

5

android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent” >

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello” />

</LinearLayout>

5. To save the changes made to your project, press Ctrl+s.
6. You are now ready to test your application on the Android Emulator. Select the

project name in Eclipse and press F11. You will be asked to select a way to debug
the application. Select required Android Application and click OK.

7. The Android Emulator will now be started (if the emulator is locked, you need to slide
the unlock button to unlock it first).

8. Click the Home button (the house icon in the lower-left corner above the keyboard)
so that it now shows the Home screen.

9. Click the application Launcher icon to display the list of applications installed on the
device. Note that the HelloWorld application is now installed in the application
launcher.

(Note: In Step 6, include the steps of creating AVD).

In Android, an Activity is a window that contains the user interface of your applications. An
application can have zero or more activities; in this example, the application contains one
activity: MainActivity. This MainActivity is the entry point of the application, which is
displayed when the application is started. When you debug the application on the Android
Emulator, the application is automatically installed on the emulator.

2.4 Anatomy of Android Application
The various folders and their files are as follows:

 src — Contains the file, MainActivity.java. It is the source file for your activity. You
will write the code for your application in this file.

 Android 4.4.2 — This item contains one file, android.jar, which contains all the
class libraries needed for an Android application.

 gen — Contains the R.java file, a compiler-generated file that references all the
resources found in your project. You should not modify this file.

 assets — This folder contains all the assets used by your application, such as
HTML, text files, databases, etc.

 res — This folder contains all the resources used in your application. It also contains
a few other subfolders:

o drawable - <resolution>: All the image files to be used by the Android
application must be stored here.

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

6

o layout - contains activity_main.xml file, which the is GUI of the application.
o values - contains files like strings.xml, styles.xml that are need for storing

the string variables used in the applications, creating style-sheets etc.
 AndroidManifest.xml — This is the manifest file for your Android application. Here

you specify the permissions needed by your application, as well as other features
(such as intent-filters, receivers, etc.).

Details of some of the important files are given hereunder:

 strings.xml File: The activity_main.xml file defines the user interface for your
activity. Observe the following in bold:

<TextView
android:layout_width=”fill_parent”
android:layout_height=”wrap_content”
android:text=”@string/hello” />

The @string in this case refers to the strings.xml file located in the res/values folder.
Hence, @string/hello refers to the hello string defined in the strings.xml file, which
is “Hello World!”:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
<string name=”hello”>Hello World!</string>
<string name=”app_name”>HelloWorld</string>
</resources>

It is recommended that you store all the string constants in your application in this
strings.xml file and reference these strings using the @string identifier. That way,
if you ever need to localize your application to another language, all you need to do
is replace the strings stored in the strings.xml file with the targeted language and
recompile your application.

 AndroidManifest.xml File: This file contains detailed information about the

application. Observe the code in this file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.HelloWorld"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="19"
 android:targetSdkVersion="19" />

 <application
 android:allowBackup="true"

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

7

 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

 Key points about this file are as below :

o It defines the package name of the application as
net.learn2develop.HelloWorld.

o The version code of the application is 1. This value is used to identify the
version number of your application. It can be used to programmatically
determine whether an application needs to be upgraded.

o The version name of the application is 1.0. This string value is mainly used for
display to the user.

o The application uses the image named ic_launcher.png located in the
drawable folder.

o The name of this application is the string named app_name defined in the
strings.xml file.

o There is one activity in the application represented by the MainActivity.java
file. The label displayed for this activity is the same as the application name.

o Within the definition for this activity, there is an element named <intent-filter>:
 The action for the intent filter is named android.intent.action.MAIN to

indicate that this activity serves as the entry point for the application.
 The category for the intent-filter is named

android.intent.category.LAUNCHER to indicate that the application
can be launched from the device’s Launcher icon.

o Finally, the android:minSdkVersion attribute of the <uses-sdk> element
specifies the minimum version of the OS on which the application will run.

 R.java File: As you add more files and folders to your project, Eclipse will

automatically generate the content of R.java, which at the moment contains the
following:

package net.learn2develop.HelloWorld;

public final class R {
public static final class attr {
}

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

8

public static final class drawable {
 public static final int icon=0x7f020000;
}
public static final class layout {
 public static final int main=0x7f030000;
}
public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
}
}

You are not supposed to modify the content of the R.java file; Eclipse automatically
generates the content for you when you modify your project.

 MainActivity.java File: The code that connects the activity to the UI
(activity_main.xml) is the setContentView() method, which is in the MainActivity.java
file:

package net.learn2develop.HelloWorld;
import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity
{

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

Here, R.layout.main refers to the activity_main.xml file located in the res/layout
folder. As you add additional XML files to the res/layout folder, the filenames will
automatically be generated in the R.java file. The onCreate() method is one of many
methods that are fired when an activity is loaded.

2.5 Components of Android Application
Android applications consist of loosely coupled components, bound by the application
manifest that describes each component and how they interact. The manifest is also used
to specify the application’s metadata, its hardware and platform requirements, external
libraries, and required permissions. The following components comprise the building blocks
for all your Android applications:

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

9

 Activities — It is the presentation layer of application. The UI of your application is
built around one or more extensions of the Activity class. Activities use Fragments
and Views to layout and display information, and to respond to user actions.
Compared to desktop development, Activities are equivalent to Forms.

 Services — These are the invisible workers of your application. Service components
run without a UI, updating your data sources and Activities, triggering Notifications,
and broadcasting Intents. They are used to perform long running tasks, or those that
require no user interaction (such as network lookups or tasks that need to continue
even when your application’s Activities aren’t active or visible.)

 Content Providers — Shareable persistent data storage. Content Providers
manage and persist application data and typically interact with SQL databases. They
are also the preferred means to share data across application boundaries. You can
configure your application’s Content Providers to allow access from other
applications, and you can access the Content Providers exposed by others. Android
devices include several native Content Providers that expose useful databases such
as the media store and contacts.

 Intents — A powerful inter-application message-passing framework. Intents are
used extensively throughout Android. You can use Intents to start and stop Activities
and Services, to broadcast messages system-wide or to an explicit Activity, Service,
or Broadcast Receiver, or to request an action be performed on a particular piece of
data.

 Broadcast Receivers — Intent listeners. Broadcast Receivers enable your
application to listen for Intents that match the criteria you specify. Broadcast
Receivers start your application to react to any received Intent, making them perfect
for creating event-driven applications.

 Widgets — Visual application components that are typically added to the device
home screen. A special variation of a Broadcast Receiver, widgets enable you to
create dynamic, interactive application components for users to embed on their
home screens.

 Notifications — Notifications enable you to alert users to application events without
stealing focus or interrupting their current Activity. They’re the preferred technique
for getting a user’s attention when your application is not visible or active, particularly
from within a Service or Broadcast Receiver. For example, when a device receives a
text message or an email, the messaging and Gmail applications use Notifications to
alert you by flashing lights, playing sounds, displaying icons, and scrolling a text
summary. You can trigger these notifications from your applications

By decoupling the dependencies between application components, you can share and use
individual Content Providers, Services, and even Activities with other applications — both
your own and those of third parties.

2.6 Activities
An activity is a window that contains the user interface of your applications. An application
can have zero or more activities. Typically, applications have one or more activities, and
the main aim of an activity is to interact with the user. From the moment an activity appears

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

10

on the screen to the moment it is hidden, it goes through a number of stages, known as an
activity’s life cycle. One has to understand the life cycle of an activity to ensure that the
application works correctly. To create an activity, you create a Java class that extends the
Activity base class:

package net.learn2develop.Activities;
import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity
{
/** Called when the activity is first created. */
@Override

public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

Your activity class would then load its UI component using the XML file defined in your
res/layout folder. In this example, you would load the UI from the activity_main.xml file:

setContentView(R.layout.main);

Every activity you have in your application must be declared in your AndroidManifest.xml
file, like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.program4"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="19"
 android:targetSdkVersion="19" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

11

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The Activity base class defines a series of events that governs the life cycle of an activity.
Figure 2.2 shows the life cycle of an activity and the various stages it goes through — from
when the activity is started until it ends.

Figure 2.2 Life Cycle of Activity

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

12

The Activity class defines the following events:
 onCreate() — Called when the activity is first created
 onStart() — Called when the activity becomes visible to the user
 onResume() — Called when the activity starts interacting with the user
 onPause() — Called when the current activity is being paused and the previous

activity is being resumed
 onStop() — Called when the activity is no longer visible to the user
 onDestroy() — Called before the activity is destroyed by the system (either manually

or by the system to conserve memory)
 onRestart() — Called when the activity has been stopped and is restarting again

By default, the activity created for you contains the onCreate() event. This event handler
contains the code that helps to display the UI elements of your screen.

2.6.1 Understanding Life Cycle of an Activity using an Example
Perform the following steps to understand the working of life cycle of an activity:

a) Using Eclipse, create a new Android project and name it.
b) In the MainActivity.java file, add the following statements (Do not remove existing

statements):

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class MainActivity extends Activity
{

String tag = “Events”;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Log.d(tag, “In the onCreate() event”);

 }

public void onStart()
 {

 super.onStart();
 Log.d(tag, "In the onStart() event");

 }
 public void onRestart()
 {
 super.onRestart();

 Log.d(tag, "In the onRestart() event");
 }

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

13

 public void onResume()
 {
 super.onResume();

Log.d(tag, "In the onResume() event");
 }
 public void onPause()
 {

 super.onPause();
 Log.d(tag, "In the onPause() event");

 }
 public void onStop()
 {

 super.onStop();
 Log.d(tag, "In the onStop() event");

 }
 public void onDestroy()
 {

 super.onDestroy();
 Log.d(tag, "In the onDestroy() event");

 }

 /* keep the remaining code as it is */
}

c) Start the AVD and Press F11 to debug the application on the Android Emulator.

d) When the activity is first loaded, you should see the following in the LogCat window

12-28 13:45:28.115: DEBUG/Events(334): In the onCreate() event
12-28 13:45:28.115: DEBUG/Events(334): In the onStart() event
12-28 13:45:28.115: DEBUG/Events(334): In the onResume() event

e) When you now press the back button on the Android Emulator, observe that the
following is printed:
12-28 13:59:46.266: DEBUG/Events(334): In the onPause() event
12-28 13:59:46.806: DEBUG/Events(334): In the onStop() event
12-28 13:59:46.806: DEBUG/Events(334): In the onDestroy() event

f) Click the Home button and hold it there. Click the Activities icon and observe the
following:
12-28 14:00:54.115: DEBUG/Events(334): In the onCreate() event
12-28 14:00:54.156: DEBUG/Events(334): In the onStart() event
12-28 14:00:54.156: DEBUG/Events(334): In the onResume() event

g) Press the Phone button on the Android Emulator so that the activity is pushed to the
background. Observe the output in the LogCat window:
12-28 14:01:16.515: DEBUG/Events(334): In the onPause() event
12-28 14:01:17.135: DEBUG/Events(334): In the onStop() event

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

14

h) Notice that the onDestroy() event is not called, indicating that the activity is still in

memory. Exit the phone dialer by pressing the Back button. The activity is now
visible again. Observe the output in the LogCat window:
12-28 14:02:17.255: DEBUG/Events(334): In the onRestart() event
12-28 14:02:17.255: DEBUG/Events(334): In the onStart() event
12-28 14:02:17.255: DEBUG/Events(334): In the onResume() event

The onRestart() event is now fired, followed by the onStart() and onResume() events.

As we can see from this simple experiment, an activity is destroyed when you press the
Back button. This is crucial to know, as whatever state the activity is currently in will be lost;
hence, you need to write additional code in your activity to preserve its state when it is
destroyed. At this point, note that the onPause() event is called in both scenarios — when
an activity is sent to the background, as well as when it is killed when the user presses the
Back button. When an activity is started, the onStart() and onResume() events are
always called, regardless of whether the activity is restored from the background or newly
created.

2.7 Fragments
Fragments enable you to divide your Activities into fully encapsulated reusable
components, each with its own lifecycle and UI. The primary advantage of Fragments is the
ease with which you can create dynamic and flexible UI designs that can be adapted to
various screen sizes.

Each Fragment is an independent module that is tightly bound to the Activity into which it is
placed. Fragments can be reused within multiple activities, as well as laid out in a variety of
combinations to suit multi-pane tablet UIs and added to, removed from, and exchanged
within a running Activity to help build dynamic UIs. Fragments provide a way to present a
consistent UI optimized for a wide variety of Android device types, screen sizes, and device
densities.

Although it is not necessary to divide your Activities (and their corresponding layouts) into
Fragments, doing so will drastically improve the flexibility of your UI and make it easier for
you to adapt your user experience for new device configurations.

2.7.1 Creating New Fragment
Extend the Fragment class to create a new Fragment, (optionally) defining the UI and
implementing the functionality it encapsulates. In most circumstances you’ll want to assign
a UI to your Fragment. It is possible to create a Fragment that doesn’t include a UI but
instead provides background behavior for an Activity. If your Fragment does require a UI,
override the onCreateView handler to inflate and return the required View hierarchy, as
shown in the Fragment skeleton code shown below:

package com.paad.fragments;
import android.app.Fragment;

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

15

import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class MySkeletonFragment extends Fragment
{

@Override
public View onCreateView(LayoutInflater inflater,

ViewGroup container, Bundle savedInstanceState)
{

// Create, or inflate the Fragment’s UI, and return it.
// If this Fragment has no UI then return null.
return inflater.inflate(R.layout.my_fragment, container, false);

}
}

Unlike Activities, Fragments don’t need to be registered in your manifest. This is because
Fragments can exist only when embedded into an Activity, with their lifecycles dependent
on that of the Activity to which they’ve been added.

2.7.2 Lifecycle of Fragments
The lifecycle events of a Fragment reflect those of its parent Activity. But, when the
container Activity is in its active and resumed state by adding or removing a fragment, it will
affect the lifecycle independently. Figure 2.3 shows various events in lifecycle of fragments.

Figure 2.3 Lifecycle of Fragments

Most of the Fragment lifecycle events correspond to their equivalents in the Activity class.
Those that remain are specific to Fragments and the way in which they’re inserted into their
parent Activity are explained here:

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

16

 Attaching and Detaching Fragments from the Parent Activity: The full lifetime of
your Fragment begins when it is bound to its parent Activity and ends when it has
been detached. These events are represented by the calls to onAttach and
onDetach, respectively. As with any handler called after a Fragment/Activity has
become paused, it’s possible that onDetach will not be called if the parent
Activity’s process is terminated without completing its full lifecycle. The onAttach
event is triggered before the Fragment’s UI has been created, before the Fragment
itself or its parent Activity have finished their initialization. Typically, the onAttach
event is used to gain a reference to the parent Activity in preparation for further
initialization tasks.

 Creating and Destroying Fragments: The created lifetime of your Fragment
occurs between the first call to onCreate and the final call to onDestroy. As it’s
not uncommon for an Activity’s process to be terminated without the corresponding
onDestroy method being called, so a Fragment can’t rely on its onDestroy
handler being triggered. As with Activities, you should use the onCreate method to
initialize your Fragment. It’s good practice to create any class scoped objects here to
ensure they’re created only once in the Fragment’s lifetime.

 Creating and Destroying User Interfaces: A Fragment’s UI is initialized (and
destroyed) within a new set of event handlers: onCreateView and
onDestroyView, respectively. Use the onCreateView method to initialize your
Fragment:

o Inflate the UI,
o get references (and bind data to) the Views it contains,
o and then create any required Services and Timers.

Once you have inflated your View hierarchy, it should be returned from this handler:

return inflater.inflate(R.layout.my_fragment, container, false);

If your Fragment needs to interact with the UI of its parent Activity, wait until the
onActivityCreated event has been triggered. This signifies that the containing
Activity has completed its initialization and its UI has been fully constructed.

2.7.3 Introducing Fragment Manager
Each Activity includes a Fragment Manager to manage the Fragments it contains. You can
access the Fragment Manager using the getFragmentManager method:

FragmentManager fragmentManager = getFragmentManager();

The Fragment Manager provides the methods used to access the Fragments currently
added to the Activity, and to perform Fragment Transaction to add, remove, and replace
Fragments.

2.7.4 Adding Fragments to Activities
The simplest way to add a Fragment to an Activity is by including it within the Activity’s
layout using the fragment tag, as shown below –

http://www.chetanahegde.in

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

17

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”horizontal”
android:layout_width=”match_parent”
android:layout_height=”match_parent”>
<fragment android:name=”com.paad.weatherstation.MyListFragment”
android:id=”@+id/my_list_fragment”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:layout_weight=”1”

/>
<fragment android:name=”com.paad.weatherstation.DetailsFragment”
android:id=”@+id/details_fragment”
android:layout_width=”match_parent”
android:layout_height=”match_parent”
android:layout_weight=”3”
/>

</LinearLayout>

Once the Fragment has been inflated, it becomes a View Group, laying out and managing
its UI within the Activity. This technique works well when you use Fragments to define a set
of static layouts based on various screen sizes. If you plan to dynamically modify your
layouts by adding, removing, and replacing Fragments at run time, a better approach is to
create layouts that use container Views into which Fragments can be placed at runtime,
based on the current application state.

2.8 Utilizing the Action Bar
The Action Bar component was introduced in Android 3.0 (API level 11). Few facts about
action bar:

 It is a navigation panel that replaces the title bar at the top of every Activity and that
formalizes a common Android design pattern.

 It is possible to hide the Action Bar, but best practice is to keep it and customize it to
suit the style and navigation requirements of your application.

 A simple action bar is as shown in Figure 2.4.

Figure 2.4 Action Bar

 The Action Bar can be added to each Activity within your application and is designed

to provide a consistent UI between applications and within a particular application’s
Activities.

 The Action Bar provides a consistent framework for providing branding, navigation,
and surfacing the key actions to be performed within an Activity.

http://www.chetanahegde.in
http://schemas.android.com/apk/res/android

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

18

 The Action Bar is enabled by default in any Activity that uses the (default)
Theme.Holo theme and whose application has a target (or minimum) SDK version
of 11 or higher.

Following code snippet shows how to enable the Action Bar by setting the target SDK to
Android 4.0.3 (API level 15) and not modifying the default theme.

<uses-sdk android:targetSdkVersion=”15” /> (inside manifest file)

To toggle the visibility of the Action Bar at run time, you can use its show and hide
methods:

ActionBar actionBar = getActionBar();
// Hide the Action Bar
actionBar.hide();
// Show the Action Bar
actionBar.show();

Alternatively, you can apply a theme that doesn’t include the Action Bar, such as the
Theme.Holo.NoActionBar theme, as shown below:

<activity
android:name=”.MyNonActionBarActivity”
android:theme=”@android:style/Theme.Holo.NoActionBar”>

(inside manifest file)

You can create or customize your own theme that removes the Action Bar by setting the
android:windowActionBar style property to false:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
<style name=”NoActionBar” parent=”@style/ActivityTheme”>
<item name=”android:windowActionBar”>false</item>
</style>
</resources>

When you apply a theme that excludes the Action Bar from an Activity, you can’t
programmatically display it at run time. A call to getActionBar will return null.

Question Bank:

1. Explain the features of Android.
2. Explain the architecture of Android (OR – Explain the various layers in android OS.)
3. Discuss the tools required for developing Android application.
4. What do you mean by an AVD? How do you create it?
5. Explain the various steps involved in creating an Android application.
6. Briefly discuss the anatomy of an android application.

http://www.chetanahegde.in
mailto:@android:style/Theme.Holo.NoActionBar

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Mobile Applications (16MCA53)

By: Dr. Chetana Hegde, RNS Institute of Technology, Bangalore – 98

19

7. Explain the content and working of Manifest file.
8. Bring out the significance of R.java file.
9. Discuss the usage of MainActivity.java file with suitable code.
10. Explain the components of android application.
11. What is an Activity? Explain lifecycle of an activity with a neat diagram.
12. Discuss lifecycle of an activity with an example.
13. Define a fragment. What are the events associated with a fragment? Explain with a

neat diagram.
14. What is a fragment Manager? How do you add a fragment to an Activity? Explain

with suitable code.
15. Explain action bar with suitable code segment.

http://www.chetanahegde.in

