
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

MODULE 4
Syllabus:
Packages: Packages, Access Protection, Importing Packages
Interfaces
Exception Handling: Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and
catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java’s Built-in Exceptions, Creating
Your Own Exception Subclasses, Chained Exceptions, Using Exceptions.

4.1 Packages
When we have more than one class in our program, usually we give unique names to classes. In a real-
time development, as the number of classes increases, giving unique meaningful name for each class will
be a problem. To avoid name-collision in such situations, Java provides a concept of packages. A
package is a collection of classes. The package is both a naming and a visibility control mechanism.
You can define classes inside a package that are not accessible by code outside that package. You can
also define class members that are only exposed to other members of the same package. This allows
your classes to have intimate knowledge of each other, but not expose that knowledge to the rest of the
world.

4.1.1 Defining a Package
To create a package, include a package command as the first statement in a Java source file. Any class
declared within that file will belong to the specified package. If you omit the package statement, the class
names are put into the default package, which has no name.

General form of the package statement:
 package pkg;
Example –
 package MyPackage;

Java uses file system directories to store packages. For example, the .class file for any class you
declare to be part of MyPackage must be stored in a directory called MyPackage. Remember that case
is significant, and the directory name must match the package name exactly. More than one file can
include the same package statement. The package statement simply specifies to which package the
classes defined in a file belong. It does not exclude other class in other files from being part of that same
package.

One can create a hierarchy of packages. To do so, simply separate each package name from the one
above it by use of a period. The general form of a multileveled package statement is shown here:
 package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development system. For example,
a package declared as package java.awt.image; needs to be stored in java\awt\image in a
Windows environment. You cannot rename a package without renaming the directory in which the
classes are stored.

4.1.2 Finding Packages and CLASSPATH
As we have seen, packages are reflected with directories. This will raise the question that - how does
Java run-time know where to look for the packages that we create?

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

 By default, Java run-time uses current working directory as a starting point. So, if our package
is in a sub-directory of current working directory, then it will be found.

 We can set directory path using CLASSPATH environment variable.
 We can use –classpath option with javac and java to specify path of our classes.

Assume that we have created a package MyPackage. When the second two options are used, the class
path must not include MyPackage. It must simply specify the path to MyPackage. For example, in a
Windows environment, if the path to MyPackage is
 C:\MyPrograms\Java\MyPackage

Then the class path to MyPackage is
 C:\MyPrograms\Java

Consider the program given below –

package MyPackage;

class Test
{
 int a, b;
 Test(int x, int y)
 {
 a=x; b=y;
 }

 void disp()
 {
 System.out.println("a= "+a+" b= "+b);
 }
}

class PackDemo
{
 public static void main(String args[])
 {
 Test t=new Test(2,3);
 t.disp();
 }
}

4.1.3 Access Protection
Java provides many levels of protection to allow fine-grained control over the visibility of variables and
methods within classes, subclasses, and packages. Classes and packages are both means of
encapsulating and containing the name space and scope of variables and methods. Packages act as
containers for classes and other subordinate packages. Classes act as containers for data and code. The
class is Java’s smallest unit of abstraction.

Java addresses four categories of visibility for class members:

 Subclasses in the same package
 Non-subclasses in the same package

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

 Subclasses in different packages
 Classes that are neither in the same package nor subclasses

Even a class has accessibility feature. A class can be kept as default or can be declared as public.
When a class is declared as public, it is accessible by any other code. If a class has default access, then
it can only be accessed by other code within its same package. When a class is public, it must be the
only public class declared in the file, and the file must have the same name as the class

Accessibility of members of the class can be better understood using the following table.

 Private No Modifier Protected Public

Same class Yes Yes Yes Yes

Same package
subclass

No Yes Yes Yes

Same package
non-subclass

No

Yes Yes Yes

Different package
Subclass

No

No

Yes Yes

Different package
non-subclass

No

No

No

Yes

4.1.4 Importing Packages
Since classes within packages must be fully qualified with their package name or names, it could become
tedious to type in the long dot-separated package path name for every class you want to use. For this
reason, Java includes the import statement to bring certain classes, or entire packages, into visibility.
Once imported, a class can be referred to directly, using only its name.

In a Java source file, import statements occur immediately following the package statement (if it exists)
and before any class definitions. The general form of the import statement is:

import pkg1[.pkg2].(classname|*);

For example,

import java.util.Date;
import java.io.*;

The star form may increase compilation time—especially if you import several large packages. For this
reason it is a good idea to explicitly name the classes that you want to use rather than importing whole
packages. However, the star form has absolutely no effect on the run-time performance or size of your
classes.

All of the standard Java classes included with Java are stored in a package called java. The basic
language functions are stored in a package inside of the java package called java.lang. Normally, you
have to import every package or class that you want to use, but since Java is useless without much of the
functionality in java.lang, it is implicitly imported by the compiler for all programs. This is equivalent to the
following line being at the top of all of your programs:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

import java.lang.*;

If a class with the same name exists in two different packages that you import using the star form, the
compiler will remain silent, unless you try to use one of the classes. In that case, you will get a compile-
time error and have to explicitly name the class specifying its package.

The import statement is optional. Any place you use a class name, you can use its fully qualified name,
which includes its full package hierarchy. For example,

import java.util.*;

class MyDate extends Date
{ ……………}

Can be written as –
class MyDate extends java.util.Date
{ …}

4.2 Interfaces
Interface is an abstract type that can contain only the declarations of methods and constants. Interfaces
are syntactically similar to classes, but they do not contain instance variables, and their methods are
declared without any body. Any number of classes can implement an interface. One class may
implement many interfaces. By providing the interface keyword, Java allows you to fully utilize the “one
interface, multiple methods” aspect of polymorphism. Interfaces are alternative means for multiple
inheritance in Java.

4.2.1 Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface name
{
 type final-varname1 = value;
 type final-varname2 = value;
 …………………
 return-type method-name1(parameter-list);
 return-type method-name2(parameter-list);
 …………………
}

Few key-points about interface:

 When no access specifier is mentioned for an interface, then it is treated as default and the
interface is only available to other members of the package in which it is declared. When an
interface is declared as public, the interface can be used by any other code.

 All the methods declared are abstract methods and hence are not defined inside interface. But, a
class implementing an interface should define all the methods declared inside the interface.

 Variables declared inside of interface are implicitly final and static, meaning they cannot be
changed by the implementing class.

 All the variables declared inside the interface must be initialized.
 All methods and variables are implicitly public.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

4.2.2 Implementing Interface
To implement an interface, include the implements clause in a class definition, and then create the
methods defined by the interface. The general form of a class that includes the implements clause looks
like this:

class classname extends superclass implements interface1, interface2...
{
 // class-body
}

Consider the following example:

interface ICallback
{
 void callback(int param);
}

class Client implements ICallback
{

public void callback(int p) //note public
{

 System.out.println("callback called with " + p);
 }
 void test()
 {
 System.out.println(“ordinary method”);
 }
}

class TestIface
{

public static void main(String args[])
 {
 ICallback c = new Client();
 c.callback(42);

// c.test() //error!!
 }
}

Here, the interface ICallback contains declaration of one method callback(). The class Client
implementing this interface is defining the method declared in interface. Note that, the method callback()
is public by default inside the interface. But, the keyword public must be used while defining it inside the
class. Also, the class has its own method test(). In the main() method, we are creating a reference of
interface pointing to object of Client class. Through this reference, we can call interface method, but not
method of the class.

The true polymorphic nature of interfaces can be found from the following example –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

interface ICallback
{
 void callback(int param);
}

class Client implements ICallback
{
 public void callback(int p) //note public
 {
 System.out.println("callback called with " + p);
 }
}

class Client2 implements ICallback
{
 public void callback(int p)
 {
 System.out.println("Another version of ICallBack");
 System.out.println("p squared " + p*p);
 }
}

class TestIface
{

public static void main(String args[])
 {
 ICallback x[]={new Client(), new Client2()};

 for(int i=0;i<2;i++)
 x[i].callback(5);
 }
}

Output:
 callback called with 5
 Another version of ICallBack
 p squared 25

In this program, we have created array of references to interface, but they are initialized to class objects.
Using the array index, we call respective implementation of callback() method.

Note: Interfaces may look similar to abstract classes. But, there are lot of differences between them as
shown in the following table:

Abstract Class Interface

Can have instance methods that implements
a default behavior.

Are implicitly abstract and cannot have
implementations.

May contain non-final variables. Variables declared in interface are by
default final.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

Can have the members with private,
protected, etc..

Members of a Java interface are public by
default.

A Java abstract class should be extended
using keyword “extends”.

Java interface should be implemented
using keyword “implements”

An abstract class can extend another Java
class and implement multiple Java
interfaces.

An interface can extend another Java
interface only.

Not slow Compared to abstract classes, interfaces
are slow as it requires extra indirection.

4.2.3 Variables in Interfaces
You can use interfaces to import shared constants into multiple classes by simply declaring an interface
that contains variables that are initialized to the desired values. When you include that interface in a class
all of those variable names will be in scope as constants (Similar to #define in C/C++). If an interface
contains no methods, then any class that includes such an interface doesn’t actually implement anything.
It is just using a set of constants. Consider an example to illustrate the same:

interface SharedConst
{
 int FAIL=0; //these are final by default
 int PASS=1;
}

class Result implements SharedConst
{
 double mr;

 Result(double m)
 {
 mr=m;
 }

 int res()
 {
 if(mr<40)
 return FAIL;
 else return PASS;
 }
}
class Exam extends Result implements SharedConst
{
 Exam(double m)
 {
 super(m);
 }

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

 public static void main(String args[])
 {
 Exam r = new Exam(56);

 switch(r.res())
 {
 case FAIL:
 System.out.println("Fail");
 break;
 case PASS:
 System.out.println("Pass");
 break;
 }
 }
}

4.2.4 Interfaces can be extended
One interface can inherit another interface by using the keyword extends. The syntax is the same as for
inheriting classes. When a class implements an interface that inherits another interface, it must provide
implementations for all methods defined within the interface inheritance chain.

interface A
{

void meth1();
 void meth2();
}

interface B extends A
{
 void meth3();
}

class MyClass implements B
{

public void meth1()
 {
 System.out.println("Implement meth1().");
 }

public void meth2()
 {
 System.out.println("Implement meth2().");
 }
 public void meth3()
 {
 System.out.println("Implement meth3().");
 }
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

class IFExtend
{
 public static void main(String arg[])
 {
 MyClass ob = new MyClass();
 ob.meth1();
 ob.meth2();
 ob.meth3();
 }
}

4.3 Exception Handling
An exception is an abnormal condition that arises in a code sequence at run time. In other words, an
exception is a run-time error. In computer languages that do not support exception handling, errors must
be checked and handled manually—typically through the use of error codes. This approach is as
cumbersome as it is troublesome. Java’s exception handling avoids these problems and, in the process,
brings run-time error management into the object oriented world.

4.3.1 Exception Handling Fundamentals
A Java exception is an object that describes an exceptional (that is, error) condition that has occurred in
a piece of code. When an exceptional condition arises, an object representing that exception is created
and thrown in the method that caused the error. That method may choose to handle the exception itself,
or pass it on. Either way, at some point, the exception is caught and processed.

Exceptions can be generated by the Java run-time system, or they can be manually generated by your
code. Exceptions thrown by Java relate to fundamental errors that violate the rules of the Java language
or the constraints of the Java execution environment. Manually generated exceptions are typically used
to report some error condition to the caller of a method.

Java exception handling is managed using five keywords:

 try: A suspected code segment is kept inside try block.
 catch: The remedy is written within catch block.
 throw: Whenever run-time error occurs, the code must throw an exception.
 throws: If a method cannot handle any exception by its own and some subsequent methods

needs to handle them, then a method can be specified with throws keyword with its declaration.
 finally: block should contain the code to be executed after finishing try-block.

The general form of exception handling is –

try
{
 // block of code to monitor errors
}
catch (ExceptionType1 exOb)
{
 // exception handler for ExceptionType1
}
catch (ExceptionType2 exOb)
{

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

 // exception handler for ExceptionType2
}
...
….
finally
{
 // block of code to be executed after try block ends
}

4.3.2 Exception Types
All the exceptions are the derived classes of built-in class viz. Throwable. It has two subclasses viz.
Exception and Error.

Exception class is used for exceptional conditions that user programs should catch. We can inherit from
this class to create our own custom exception types. There is an important subclass of Exception, called
RuntimeException. Exceptions of this type are automatically defined for the programs that you write and
include things such as division by zero and invalid array indexing.

Error class defines exceptions that are not expected to be caught under normal circumstances by our
program. Exceptions of type Error are used by the Java run-time system to indicate errors having to do
with the run-time environment, itself. Stack overflow is an example of such an error.

4.3.3 Uncaught Exceptions
Let us see, what happens if we do not handle exceptions.

class Exc0
{
 public static void main(String args[])
 {
 int d = 0;
 int a = 42 / d;
 }
}

When the Java run-time system detects the attempt to divide by zero, it constructs a new exception
object and then throws this exception. This causes the execution of Exc0 to stop, because once an
exception has been thrown, it must be caught by an exception handler and dealt with immediately. Since,

Throwable

Error Exception

RuntimeException
(Automatically defined
for programs)

Customized Exception
(User defined class to
handle own exception)

Customized Exception
(User defined class to
handle own exception)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

in the above program, we have not supplied any exception handlers of our own, so the exception is
caught by the default handler provided by the Java run-time system.

Any un-caught exception is handled by default handler. The default handler displays a string describing
the exception, prints a stack trace from the point at which the exception occurred, and terminates the
program. Here is the exception generated when above example is executed:

java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:6)

The stack trace displays class name, method name, file name and line number causing the exception.
Also, the type of exception thrown viz. ArithmeticException which is the subclass of Exception is
displayed. The type of exception gives more information about what type of error has occurred. The stack
trace will always show the sequence of method invocations that led up to the error.

class Exc1
{
 static void subroutine()
 {
 int d = 0;
 int a = 10 / d;
 }
 public static void main(String args[])
 {
 Exc1.subroutine();
 }
}

The resulting stack trace from the default exception handler shows how the entire call stack is displayed:

java.lang.ArithmeticException: / by zero
at Exc1.subroutine(Exc1.java:6)
at Exc1.main(Exc1.java:10)

4.3.4 Using try and catch
Handling the exception by our own is very much essential as

 We can display appropriate error message instead of allowing Java run-time to display stack-
trace.

 It prevents the program from automatic (or abnormal) termination.

To handle run-time error, we need to enclose the suspected code within try block.

class Exc2
{
 public static void main(String args[])
 {
 int d, a;

 try
 {
 d = 0;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

 a = 42 / d;
 System.out.println("This will not be printed.");
 } catch (ArithmeticException e)
 {
 System.out.println("Division by zero.");
 }
 System.out.println("After catch statement.");
 }
}

Output:

Division by zero.
After catch statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional condition and then
continue on as if the error had never happened.

import java.util.Random;
class HandleError
{

public static void main(String args[])
 {
 int a=0, b=0, c=0;
 Random r = new Random();

 for(int i=0; i<10; i++)
 {
 try
 {

b = r.nextInt();
 c = r.nextInt();
 a = 12345 / (b/c);
 } catch (ArithmeticException e)
 {

System.out.println("Division by zero.");
 a = 0;
 }
 System.out.println("a: " + a);
 }
 }
}

The output of above program is not predictable exactly, as we are generating random numbers. But, the
loop will execute 10 times. In each iteration, two random numbers (b and c) will be generated. When their
division results in zero, then exception will be caught. Even after exception, loop will continue to execute.

Displaying a Description of an Exception: We can display this description in a println() statement by
simply passing the exception as an argument. This is possible because Throwable overrides the
toString() method (defined by Object) so that it returns a string containing a description of the exception.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

catch (ArithmeticException e)
{
 System.out.println("Exception: " + e);
 a = 0;
}

Now, whenever exception occurs, the output will be –
 Exception: java.lang.ArithmeticException: / by zero

4.3.5 Multiple Catch Claues
In some cases, more than one exception could be raised by a single piece of code. To handle this type
of situation, you can specify two or more catch clauses, each catching a different type of exception.
When an exception is thrown, each catch statement is inspected in order, and the first one whose type
matches that of the exception is executed. After one catch statement executes, the others are bypassed,
and execution continues after the try/catch block.

class MultiCatch
{
 public static void main(String args[])
 {
 try
 {
 int a = args.length;
 System.out.println("a = " + a);
 int b = 42 / a;
 int c[] = { 1 };
 c[42] = 99;
 } catch(ArithmeticException e)
 {
 System.out.println("Divide by 0: " + e);
 } catch(ArrayIndexOutOfBoundsException e)
 {
 System.out.println("Array index oob: " + e);
 }
 System.out.println("After try/catch blocks.");
 }
}

Here is the output generated by running it both ways:

C:\>java MultiCatch
a = 0
Divide by 0: java.lang.ArithmeticException: / by zero
After try/catch blocks.

C:\>java MultiCatch TestArg
a = 1
Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
After try/catch blocks.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

While using multiple catch blocks, we should give the exception types in a hierarchy of subclass to
superclass. Because, catch statement that uses a superclass will catch all exceptions of its own type plus
all that of its subclasses. Hence, the subclass exception given after superclass exception is never caught
and is a unreachable code, that is an error in Java.

class SuperSubCatch
{
 public static void main(String args[])
 {
 try
 {
 int a = 0;
 int b = 42 / a;
 } catch(Exception e)
 {
 System.out.println("Generic Exception catch.");
 }
 catch(ArithmeticException e) // ERROR - unreachable
 {
 System.out.println("This is never reached.");
 }
 }
}

The above program generates error “Unreachable Code”, because ArithmeticException is a subclass of
Exception.

4.3.6 Nested try Statements
The try statement can be nested. That is, a try statement can be inside the block of another try. Each
time a try statement is entered, the context of that exception is pushed on the stack. If an inner try
statement does not have a catch handler for a particular exception, the stack is unwound and the next try
statement’s catch handlers are inspected for a match. This continues until one of the catch statements
succeeds, or until all the nested try statements are exhausted. If no catch statement matches, then the
Java run-time system will handle the exception.

class NestTry
{

public static void main(String args[])
 {

try
 {
 int a = args.length;
 int b = 42 / a;

 System.out.println("a = " + a);

 try
 {
 if(a==1)
 a = a/(a-a);

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

 if(a==2)
 {
 int c[] = { 1 };
 c[10] = 99;
 }
 }catch(ArrayIndexOutOfBoundsException e)
 {

 System.out.println("Array index out-of-bounds: " + e);
 }
 }catch(ArithmeticException e)
 {
 System.out.println("Divide by 0: " + e);
 }
 }
}

When a method is enclosed within a try block, and a method itself contains a try block, it is considered to
be a nested try block.

class MethNestTry
{ static void nesttry(int a)
 { try
 {
 if(a==1)
 a = a/(a-a);
 if(a==2)
 {
 int c[] = { 1 };
 c[42] = 99;
 }
 }catch(ArrayIndexOutOfBoundsException e)
 {
 System.out.println("Array index out-of-bounds: " + e);
 }
 }

public static void main(String args[])
 {
 try
 {
 int a = args.length;
 int b = 42 / a;
 System.out.println("a = " + a);
 nesttry(a);
 } catch(ArithmeticException e)
 {
 System.out.println("Divide by 0: " + e);
 }
 }
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

4.3.7 throw
Till now, we have seen catching the exceptions that are thrown by the Java run-time system. It is possible
for your program to throw an exception explicitly, using the throw statement. The general form of throw
is shown here:
 throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable. Primitive
types, such as int or char, as well as non-Throwable classes, such as String and Object, cannot be
used as exceptions.

There are two ways you can obtain a Throwable object:

– using a parameter in a catch clause, or
– creating one with the new operator.

class ThrowDemo
{
 static void demoproc()
 {
 try
 {
 throw new NullPointerException("demo");
 } catch(NullPointerException e)
 {
 System.out.println("Caught inside demoproc: " + e);

 }
 }

 public static void main(String args[])
 {
 demoproc();
 }
}

Here, new is used to construct an instance of NullPointerException. Many of Java’s built-in run-time
exceptions have at least two constructors:

– one with no parameter and
– one that takes a string parameter

When the second form is used, the argument specifies a string that describes the exception. This string is
displayed when the object is used as an argument to print() or println(). It can also be obtained by a call
to getMessage(), which is defined by Throwable.

4.3.8 throws
If a method is capable of causing an exception that it does not handle, it must specify this behavior so
that callers of the method can guard themselves against that exception. You do this by including a
throws clause in the method’s declaration. A throws clause lists the types of exceptions that a method
might throw. This is necessary for all exceptions, except those of type Error or RuntimeException, or
any of their subclasses. All other exceptions that a method can throw must be declared in the throws
clause. If they are not, a compile-time error will result.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

The general form of a method declaration that includes a throws clause:
type method-name(parameter-list) throws exception-list
{
 // body of method
}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

class ThrowsDemo
{
 static void throwOne() throws IllegalAccessException
 {
 System.out.println("Inside throwOne.");
 throw new IllegalAccessException("demo");
 }
 public static void main(String args[])
 {
 try
 {
 throwOne();
 } catch (IllegalAccessException e)
 {
 System.out.println("Caught " + e);
 }
 }
}

4.3.9 finally
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path that alters the
normal flow through the method. Sometimes it is even possible for an exception to cause the method to
return prematurely. This could be a problem in some methods. For example, if a method opens a file
upon entry and closes it upon exit, then you will not want the code that closes the file to be bypassed by
the exception-handling mechanism. The finally keyword is designed to address such situations.

The finally clause creates a block of code that will be executed after a try/catch block has completed
and before the next code of try/catch block. The finally block will execute whether or not an exception is
thrown. If an exception is thrown, the finally block will execute even if no catch statement matches the
exception. Any time a method is about to return to the caller from inside a try/catch block, via an
uncaught exception or an explicit return statement, the finally clause is also executed just before the
method returns. The finally clause is optional. However, each try statement requires at least one catch
or a finally clause.

class FinallyDemo
{
 static void procA()
 {

try
 {
 System.out.println("inside procA");
 throw new RuntimeException("demo");

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

 } finally
 {
 System.out.println("procA's finally");
 }
 }

 static void procB()
 {

try
 {
 System.out.println("inside procB");
 return;
 } finally
 {
 System.out.println("procB's finally");
 }
 }

static void procC()
 { try
 {
 System.out.println("inside procC");
 } finally
 {
 System.out.println("procC's finally");
 }
 }

 public static void main(String args[])
 {

try
 {
 procA();
 } catch (Exception e)
 {
 System.out.println("Exception caught");
 }
 procB();
 procC();
 }
}

Output:

inside procA
procA’s finally
Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

4.3.10 Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. The most general of
these exceptions are subclasses of the standard type RuntimeException. These exceptions need not be
included in any method’s throws list. Such exceptions are called as unchecked exceptions because the
compiler does not check to see if a method handles or throws these exceptions. Java.lang defines few
checked exceptions which needs to be listed out by a method using throws list if that method generate
one of these exceptions and does not handle it itself. Java defines several other types of exceptions that
relate to its various class libraries.

Table: Java’s Unchecked Exceptions
Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClassCastException Invalid cast.

EnumConstantNotPresentException An attempt is made to use an undefined enumeration
value.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked
thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread
state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

TypeNotPresentException Type not found.

UnsupportedOperationException An unsupported operation was encountered.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

Table: Java’s Checked Exceptions
Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the
Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

4.3.11 Creating your own Exception Subclasses
Although Java’s built-in exceptions handle most common errors, sometimes we may want to create our
own exception types to handle situations specific to our applications. This is achieved by defining a
subclass of Exception class. Your subclasses don’t need to actually implement anything—it is their
existence in the type system that allows you to use them as exceptions. The Exception class does not
define any methods of its own. It inherits those methods provided by Throwable. Thus, all exceptions,
including those that you create, have the methods defined by Throwable available to them.

Method Description

Throwable fillInStackTrace() Returns a Throwable object that contains a completed
stack trace. This object can be re-thrown.

Throwable getCause() Returns the exception that underlies the current exception.
If there is no underlying exception, null is returned.

String getLocalizedMessage() Returns a localized description of the exception.

String getMessage() Returns a description of the exception.

StackTraceElement[]
 getStackTrace()

Returns an array that contains the stack trace, one
element at a time, as an array of StackTraceElement. The
method at the top of the stack is the last method called
before the exception was thrown. This method is found in
the first element of the array. The StackTraceElement
class gives your program access to information about each
element in the trace, such as its method name.

Throwable initCause(Throwable
causeExc)

Associates causeExc with the invoking exception as a
cause of the invoking exception. Returns a reference to
the exception.

void printStackTrace() Displays the stack trace.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

void printStackTrace(PrintStream
stream)

Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter
stream)

Sends the stack trace to the specified stream.

void setStackTrace(
StackTraceElement
elements[])

Sets the stack trace to the elements passed in elements.
This method is for specialized applications, not normal
use.

String toString() Returns a String object containing a description of the
exception. This method is called by println() when
outputting a Throwable object.

We may wish to override one or more of these methods in exception classes that we create. Two of the
constructors of Exception are:
 Exception()
 Exception(String msg)

Though specifying a description when an exception is created is often useful, sometimes it is better to
override toString(). The version of toString() defined by Throwable (and inherited by Exception) first
displays the name of the exception followed by a colon, which is then followed by your description. By
overriding toString(), you can prevent the exception name and colon from being displayed. This makes
for a cleaner output, which is desirable in some cases.

class MyException extends Exception
{
 int marks;

 MyException (int m)
 {
 marks=m;
 }

 public String toString()
 {
 return "MyException: Marks cannot be Negative";
 }
}
class CustExceptionDemo
{
 static void test(int m) throws MyException
 {
 System.out.println("Called test(): "+m);
 if(m<0)
 throw new MyException(m);

 System.out.println("Normal exit");
 }

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

 public static void main(String args[])
 {
 try{
 test(45);
 test(-2);
 }
 catch (MyException e)
 {
 System.out.println("Caught " + e);
 }
 }
}

4.3.12 Chained Exceptions
The concept of chained exception allows you to associate another exception with an exception. This
second exception describes the cause of the first exception. For example, imagine a situation in which a
method throws an ArithmeticException because of an attempt to divide by zero. However, the actual
cause of the problem was that an I/O error occurred, which caused the divisor to be set improperly.
Although the method must certainly throw an ArithmeticException, since that is the error that occurred,
you might also want to let the calling code know that the underlying cause was an I/O error. Chained
exceptions let you handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were added to Throwable. The
constructors are shown here:

– Throwable(Throwable causeExc)
– Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is, causeExc is the
underlying reason that an exception occurred. The second form allows you to specify a description at the
same time that you specify a cause exception. These two constructors have also been added to the
Error, Exception, and RuntimeException classes.

Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause exception can,
itself, have a cause. Be aware that overly long chains of exceptions may indicate poor design. Chained
exceptions are not something that every program will need. However, in cases in which knowledge of an
underlying cause is useful, they offer an elegant solution.

4.3.13 Using Exceptions
Exception handling provides a powerful mechanism for controlling complex programs that have many
dynamic run-time characteristics. It is important to think of try, throw, and catch as clean ways to handle
errors and unusual boundary conditions in your program’s logic. Unlike some other languages in which
error return codes are used to indicate failure, Java uses exceptions. Thus, when a method can fail,
have it throw an exception. This is a cleaner way to handle failure modes.

Note that Java’s exception-handling statements should not be considered a general mechanism for
nonlocal branching. If you do so, it will only confuse your code and make it hard to maintain.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

Question Bank:
1. What do you mean by a package? How do you use it in a Java program? Explain with a program.
2. How do you import a package? Explain.
3. Write a note on access protection in Java.
4. Define an interface. Explain how to define and implement an interface with an example.
5. Differentiate abstract base class and an interface.
6. How do you define variables inside interface? List out the the characteristics of such variables.
7. Define an exception. What are the key terms used in exception handling? Explain.
8. Demonstrate working of nest try block with an example.
9. Write a program which contains one method which will throw IllegalAccessException and use

proper exception handles so that exception should be printed.
10. Write a note on:

a. Java’s built-in exception
b. Uncaught Exceptions

11. How do you create your own exception class? Explain with a program.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

