
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

MODULE 2
Syllabus: Operators: Arithmetic Operators, The Bitwise Operators, Relational Operators, Boolean Logical
Operators, The Assignment Operator, The ? Operator, Operator Precedence, Using Parentheses.
Control Statements: Java’s Selection Statements, Iteration Statements, Jump Statements.

Operators
Java provides rich set of operators, mainly divided into four groups viz. arithmetic, bitwise, relational and
logical. These operators are discussed here.

2.1 Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are used in
algebra. The following table lists the arithmetic operators:

The operands of the arithmetic operators must be of a numeric type. You cannot use them on boolean
types, but you can use them on char types, since the char type in Java is a subset of int.

Note down following few points about various operators:

 Basic arithmetic operators like +, -, * and / behave as expected for numeric data.
 The – symbol can be used as unary operator to negate a variable.
 If / is operated on two integer operands, then we will get only integral part of the result by

truncating the fractional part.
 The % operator returns the remainder after division. It can be applied on integer and floating-point

types. For example,
int x=57;
double y= 32.8;
System.out.println(“on integer “ + x%10); //prints 7
System.out.println(“on double “ + y%10); //prints 2.8

 Compound assignment operators like += will perform arithmetic operation with assignment. That
is,

a+=2; a=a+2;
 Increment/decrement operators (++ and --) will increase/decrease the operand by 1. That is,

a++; a=a+1;
b--; b=b-1;

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division

% Modulus
++ Increment
-- Decrement
+= Addition assignment
-= Subtraction assignment
*= Multiplication assignment
/= Division assignment

%= Modulus assignment

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

 The ++ and -- operators can be used either as pre-increment/decrement or post-
increment/decrement operator. For example,

x= 5;
y=x++; //post increment

 Now, value of x (that is 5) is assigned to y first, and x is then incremented to become 6.
 x= 5;
 y=++x; //pre-increment
 Now, x is incremented to 6 and then 6 is assigned to y.

NOTE that in C/C++, the % operator cannot be used on float or double and should be used only on
integer variable.

2.2 Bitwise Operators
Java defines several bitwise operators that can be applied to long, int, short, char, and byte. These
operators act upon the individual bits of their operands. They are summarized in the following table:

Operator Meaning

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Since bitwise operators manipulate the bits within the integer, let us first understand the bit-
representation of integer data in Java.

All of the integer types are represented by binary numbers of varying bit widths. For example, the byte
value for 42 in binary is 00101010, where each position represents a power of two, starting with 20 at the
rightmost bit. All of the integer types are signed integers. Java uses an encoding known as two’s
complement, which means that negative numbers are represented by inverting (changing 1’s to 0’s and
vice versa) all of the bits in a value, then adding 1 to the result. For example, –42 is represented by
inverting all of the bits in 42, or 00101010, which yields 11010101, then adding 1, which results in
11010110, or –42. To decode a negative number, first invert all of the bits, and then add 1. For example,
–42, or 11010110 inverted, yields 00101001, or 41, so when you add 1 you get 42.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

Bitwise Logical Operators
The bitwise logical operators are &, |, ^ and ~. Following table shows the result of each operation.

A B A&B A|B A^B ~A
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

Bitwise NOT
A unary NOT operator ~, also called as bitwise complement inverts all the bits of the operand. For
example, the number 42, which has the following bit pattern: 00101010 becomes 11010101 after the
NOT operator is applied.

Bitwise AND
As the name suggests, initially, operands are converted into binary-format. Then, the AND (&) operation
is performed on the corresponding bits of operands. Consider an example –

 int x=5, y=6,z;
 z= x & y;

Now, this operation is carried out as –

 x 0000 0101
 y & 0000 0110
 z 0000 0100

Thus, z will be decimal equivalent of 0000 0100, which is 4.

Bitwise OR
Here, the OR (|) operations is performed on individual bit of operands. For example –

int x=5, y=6,z;
 z= x | y;

Now, this operation is carried out as –

 x 0000 0101
 y | 0000 0110
 z 0000 0111

Thus, z will be decimal equivalent of 0000 0111, which is 7.

Bitwise XOR
In XOR operation, if both bits are same (either both are 1 or both 0), then the resulting bit will be 0 (false).
Otherwise, the resulting bit is 1 (true). For example –

int x=5, y=6,z;
 z= x ^ y;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

Now, this operation is carried out as –

 x 0000 0101
 y ^ 0000 0110
 z 0000 0011

Thus, z will be decimal equivalent of 0000 0011, which is 3.

Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left by a specified number of times. It has
this general form:

value << num
For each shift, one higher order bit is shifted out (or lost) and extra zero is appended as the lower order
bit. Thus, for int, after 31 shifts, all the bits will be lost and result will be 0, whereas for long, after 63
shifts, all bits will be lost.

Java’s automatic type promotions produce unexpected results when you are shifting byte and short
values. As you know, byte and short values are promoted to int when an expression is evaluated.
Furthermore, the result of such an expression is also an int. This means that the outcome of a left shift
on a byte or short value will be an int, and the bits shifted left will not be lost until they shifted for 31
times. To avoid this problem, we should use type-casting as shown in the following example.

Program 2.1: Demonstration of left-shift operator

class ShiftDemo
{

public static void main(String args[])
{

byte a = 64, b;
int i;
i = a << 2;
b = (byte) (a << 2);
System.out.println("Original value of a: " + a);
System.out.println("i and b: " + i + " " + b);

}
}

The result would be –
 Original value of a: 64
 i and b: 256 0

Since a is promoted to int for evaluation, left-shifting the value 64 (0100 0000) twice results in i
containing the value 256 (1 0000 0000). However, the value in b contains 0 because after the shift, the
low-order byte is now zero.

Each left shift can be thought of as multiplying the number by 2. But, one should be careful because once
the number crosses its range during left shift, it will become negative. Consider an illustration –

Program 2.2

class ShiftDemo1
 {

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

public static void main(String args[])
{

int i;
int num = 0xFFFFFFE;
for(i=0; i<4; i++)
{

num = num << 1;
System.out.println(num);

}
}

}

The output would be –
536870908
1073741816 //twice the previous value
2147483632 //twice the previous value
-32 //crosses the range of int and hence negative

Right Shift
The right shift operator, >> shifts all of the bits in a value to the right by a specified number of times. It
has this general form:

value >> num
For each shift, one lower order bit is shifted out (or lost) and extra zero is appended as the higher order
bit. For example,
 int a = 35; //00100011 is the binary equivalent

a = a >> 2; // now, a contains 8

Each right shift can be thought of as dividing the number by 2. When you are shifting right, the top
(leftmost) bit is filled with the previous content of the top bit. This is called sign extension and is needed
to preserve the sign of negative numbers when you shift them right. For example, –8 >> 1 is –4, which, in
binary, is

11111000 (–8)
>>1
11111100 (–4)

Unsigned Right Shift
We have seen that right shift always fills the highest order bit with the previous content of the top bit. But
when we are using shift operation on non-numeric data, sign-bit has no significance. To ignore the sign-
bit, we will go for unsigned right shift. The following code fragment demonstrates the >>>. Here, a is set
to –1, which sets all 32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with
zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Bitwise Operator Compound Assignment
We can use compound assignment even with bitwise operators. That is,
 a<<=2; implies a=a<<2;
 a^=3; implies a=a^3; and so on.

2.3 Relational Operators
The relational operators determine the relationship between two operands. Specifically, they determine
equality and ordering among operands. Following table lists the relational operators supported by Java.

Operator Meaning
== Equal to (or comparison)
!= Not equal to
> Greater than
< Less than

>= Greater than or equal to
<= Less than or equal to

The outcome of these operations is a boolean value. Any type in Java, including integers, floating-point
numbers, characters, and Booleans can be compared using the equality test, ==, and the inequality test,
!=. Only numeric types can be compared using the ordering operators. That is, only integer, floating-
point, and character operands may be compared to see which is greater or less than the other. For
example, the following code fragment is perfectly valid:

int a = 4;
int b = 1;
boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.

Note that in C/C++ we can have following type of statement –
 int flag;
 …….
 if(flag)
 //do something
In C/C++, true is any non-zero number and false is zero. But in Java, true and false are Boolean values
and nothing to do with zero or non-zero. Hence, the above set of statements will cause an error in Java.
We should write –
 int flag;
 ………..
 if(flag==1)
 //do some thing

2.4 Boolean Logical Operators
The Boolean logical operators shown here operate only on boolean operands. All of the binary logical
operators combine two boolean values to form a resultant boolean value.

Operator Meaning
& Logical AND
| Logical OR
^ Logical XOR (exclusive OR)
|| Short-circuit OR

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

& Short-circuit AND
! Logical unary NOT

&= AND assignment
|= OR assignment
^= XOR assignment
== Equal to
!= Not equal to
?: Ternary if-then-else

The truth table is given below for few operations:

A B A|B A&B A^B !A
False False False False False True
False True True False True True
True False True False True False
True True True True False False

Program 2.3 Demonstration of Boolean Logical operators

class BoolLogic
{
 public static void main(String args[])
 {
 boolean a = true;
 boolean b = false;
 boolean c = a | b;
 boolean d = a & b;
 boolean e = a ^ b;
 boolean f = (!a & b) | (a & !b);
 boolean g = !a;

 System.out.println(" a = " + a);
 System.out.println(" b = " + b);
 System.out.println(" a|b = " + c);
 System.out.println(" a&b = " + d);
 System.out.println(" a^b = " + e);
 System.out.println("!a&b|a&!b = " + f);
 System.out.println(" !a = " + g);

 boolean h = b & (a=!a);

 System.out.println("b & (a=!a) =" +h);
 System.out.println("New a is "+a);

 }
}

The output would be –

a = true
b = false
a|b = true
a&b = false

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

a^b = true
!a&b|a&!b = true
!a = false
b & (a=!a) =false
New a is false

Note: In C/C++, the logical AND/OR operations never evaluates the second operand if the value of first
operand itself can judge the result. That is, if the first operand is false, then second operand is not
evaluated in AND operation and result will be false. Similarly, if the first operand is true in OR operation,
without evaluating the second operand, it results true. But in Java, Boolean logical operators will not act
so. Even if the first operand is decisive, the second operand is evaluated. This can be observed in the
above program while evaluating h= b& (a= !a). Here, b is false and hence ANDed with anything results
false. But, still the second operand (a= !a) is evaluated resulting a as false.

If we don’t want the second operand to be evaluated, we can use short-circuit logical operators.

Short-Circuit Logical Operators
The short-circuit AND (&&) and OR (||) operators will not evaluate the second operand if the first is
decisive. For example,
 int x=0, n=5;
 ……..
 if(x!=0 && n/x > 0)
 //do something

Here, the first operand x!= 0 is false. If we use logical AND (&) then the second operand n/x>0 will be
evaluated and we will get DivisionByZero Exception. So, to avoid this problem we use && operator which
will never evaluated second operand if the first operand results into false.

It is standard practice to use the short-circuit forms of AND and OR in cases involving Boolean logic,
leaving the single-character versions exclusively for bitwise operations. However, there are exceptions to
this rule. For example, consider the following statement:

if(c==1 & e++ < 100)
d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether c is equal to 1 or
not.

2.5 The Assignment Operator
The assignment operator is the single equal sign, =. It has this general form:

var = expression;
Here, the type of var must be compatible with the type of expression. It allows you to create a chain of
assignments. For example, consider this fragment:

int x, y, z;
x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works because the = is
an operator that yields the value of the right-hand expression. Thus, the value of z = 100 is 100, which is
then assigned to y, which in turn is assigned to x. Using a “chain of assignment” is an easy way to set a
group of variables to a common value.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

2.6 The ?: Operator
Java supports ternary operator which sometimes can be used as an alternative for if-then-else statement.
The general form is –
 var = expression1 ? expression2 : expression3;

Here, expression1 is evaluated first and it must return Boolean type. If it results true, then value of
expression2 is assigned to var, otherwise value of expression3 is assigned to var. For example,
 int a, b, c ;
 ……….
 c= (a>b)?a:b; //c will be assigned with biggest among a and b

2.7 Operator Precedence
Following table describes the precedence of operators. Though parenthesis, square brackets etc. are
separators, they do behave like operators in expressions. Operators at same precedence level will be
evaluated from left to right, whichever comes first.

 Highest

 Lowest

2.8 Using Parentheses
Parentheses always make the expression within them to execute first. This is necessary sometimes. For
example,
 a= b – c * d;
Here, c and d are multiplied first and then the result is subtracted from b. If we want subtraction first, we
should use parenthesis like
 a= (b-c)*d;

Sometimes, parenthesis is useful for clarifying the meaning of an expression and for making readers to
understand the code. For example,
 a | 4 + c >> b & 7 can be written as (a | (((4 + c) >> b) & 7))

In such situations, though parenthesis seems to be redundant, it existence will not reduce the
performance of the program.

(), [], .
++, --, ~, !
*, /, %
+, -
>>, >>>, <<
>, >=, <, <=
==, !=
&
^
|
&&
||
?:
=, op=

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

2.9 Control Statements
A programming language uses control statements to cause the flow of execution to advance and branch
based on changes to the state of a program. Java’s program control statements can be put into the
following categories: selection, iteration, and jump. Selection statements allow your program to choose
different paths of execution based upon the outcome of an expression or the state of a variable. Iteration
statements enable program execution to repeat one or more statements (that is, iteration statements form
loops). Jump statements allow your program to execute in a nonlinear fashion. All of Java’s control
statements are examined here.

2.9.1 Java’s Selection Statements
Java supports two selection statements: if and switch. These statements allow you to control the flow of
your program’s execution based upon conditions known only during run time.

if Statement
The general form is –
 if (condition)

{
 //true block
}
else
{
 //false block
}

If the condition is true, then the statements written within true block will be executed, otherwise false
block will be executed. The condition should result into Boolean type. For example,
 int a, b, max;
 …………
 if(a>b)
 max=a;
 else
 max=b;

Nested-if Statement
A nested if is an if statement that is the target of another if or else. For example,

if(i == 10)
{

if(j < 20)
a = b;

if(k > 100)
c = d;

else
a = c;

}
else

a = d;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

The if-else-if Statement
The general form is –
 if(condition1)
 block1;
 else if(condition2)
 block2;
 …………..
 …………..
 else
 blockn

The if statements are executed from the top down. As soon as one of the conditions controlling the if is
true, the block associated with that if is executed, and the rest of the ladder is bypassed. The final else
acts as a default condition; that is, if all other conditional tests fail, then the last else statement is
performed.

switch Statement
The switch statement is Java’s multi-way branch statement. It provides an easy way to dispatch
execution to different parts of your code based on the value of an expression. As such, it often provides a
better alternative than a large series of if-else-if statements. Here is the general form of a switch
statement:

switch (expression)
{

case value1:
// statement sequence
break;

case value2:
// statement sequence
break;

…………....
case valueN:

// statement sequence
break;

default:
// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in the case
statements must be of a type compatible with the expression. The switch statement works like this: The
value of the expression is compared with each of the literal values in the case statements. If a match is
found, the code sequence following that case statement is executed. If none of the constants matches
the value of the expression, then the default statement is executed. However, the default statement is
optional. If no case matches and no default is present, then no further action is taken. The break
statement is used inside the switch to terminate a statement sequence. When a break statement is
encountered, execution branches to the first line of code that follows the entire switch statement. This
has the effect of “jumping out” of the switch. The break statement is optional. If you omit the break,
execution will continue on into the next case.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

NOTE:
 We can even nest switch statements one within the other.
 The switch differs from the if in that switch can only test for equality, whereas if can evaluate

any type of Boolean expression. That is, the switch looks only for a match between the value of
the expression and one of its case constants.

 No two case constants in the same switch can have identical values. Of course, a switch
statement and an enclosing outer switch can have case constants in common.

 A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler works. When it
compiles a switch statement, the Java compiler will inspect each of the case constants and create a
“jump table” that it will use for selecting the path of execution depending on the value of the expression.
Therefore, if you need to select among a large group of values, a switch statement will run much faster
than the equivalent logic coded using a sequence of if-elses. The compiler can do this because it knows
that the case constants are all the same type and simply must be compared for equality with the switch
expression. The compiler has no such knowledge of a long list of if expressions.

2.9.2 Iteration Statements
Java’s iteration statements are for, while, and do-while. These statements create what we commonly
call loops. A loop repeatedly executes the same set of instructions until a termination condition is met.

while Loop
The general form is –
 while(condition)
 {
 //body of the loop
 }

The condition can be any Boolean expression. The body of the loop will be executed as long as the
conditional expression is true. When condition becomes false, control passes to the next line of code
immediately following the loop.

do- while Loop
The general form is –
 do
 {
 //body of the loop
 } while(condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the conditional
expression. If this expression is true, the loop will repeat. Otherwise, the loop terminates. As with all of
Java’s loops, condition must be a Boolean expression.

for Loop
The general form is –
 for(initialization; condition; updation)

{
// body of loop

}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

When the loop first starts, the initialization portion of the loop is executed. Generally, this is an expression
that sets the value of the loop control variable, which acts as a counter that controls the loop. It is
important to understand that the initialization expression is only executed once. Next, condition is
evaluated. This must be a Boolean expression. It usually tests the loop control variable against a target
value. If this expression is true, then the body of the loop is executed. If it is false, the loop terminates.
Next, the updation portion of the loop is executed. This is usually an expression that increments or
decrements the loop control variable. The loop then iterates, first evaluating the conditional expression,
then executing the body of the loop, and then executing the iteration expression with each pass. This
process repeats until the controlling expression is false.

for-each Loop
The for-each style of for is also referred to as the enhanced for loop. The general form of the for-each
version of the for is shown here:

for(type itr-var : collection)
statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive the
elements from a collection, one at a time, from beginning to end. The collection being cycled through is
specified by collection. There are various types of collections that can be used with the for, but the only
type used in this chapter is the array. With each iteration of the loop, the next element in the collection is
retrieved and stored in itr-var. The loop repeats until all elements in the collection have been obtained.

Because the iteration variable receives values from the collection, type must be the same as (or
compatible with) the elements stored in the collection. Thus, when iterating over arrays, type must be
compatible with the base type of the array.

Consider an example –
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;
for(int i=0; i < 10; i++)

sum += nums[i];

The above set of statements can be optimized as follows –
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;
for(int x: nums)

sum += x;

With each pass through the loop, x is automatically given a value equal to the next element in nums.
Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so on. Not only is the
syntax streamlined, but it also prevents boundary errors.

For multi-dimensional arrays:
The for-each version also works for multi-dimensional arrays. Since a 2-d array is an array of 1-d array,
the iteration variable must be a reference to 1-d array. In general, when using the for-each for to iterate
over an array of N dimensions, the objects obtained will be arrays of N–1 dimensions.

Consider the following example –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

Program 2.4 Demonstration of for-each version of for loop
class ForEach
{
 public static void main(String args[])
 {
 int sum = 0;
 int nums[][] = new int[2][3];

 // give nums some values
 for(int i = 0; i < 2; i++)
 for(int j=0; j < 3; j++)
 nums[i][j] = (i+1)*(j+1);

 for(int x[] : nums) //nums is a 2-d array and x is 1-d array
 {
 for(int y : x) // y refers elements in 1-d array x
 {
 System.out.println("Value is: " +y);
 sum += y;
 }
 }
 System.out.println("Summation: " + sum);
 }
}
The output would be –

Value is: 1
Value is: 2
Value is: 3
Value is: 2
Value is: 4
Value is: 6
Summation: 18

The for-each version of for has several applications viz. Finding average of numbers, finding minimum
and maximum of a set, checking for duplicate entry in an array, searching for an element in unsorted list
etc. The following program illustrates the sequential (linear) search.

Program 2.5 Linear/Sequential Search

class SeqSearch
{
 public static void main(String args[])
 {
 int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
 int val = 5;
 boolean found = false;

 for(int x : nums)
 {
 if(x == val)
 {

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

 found = true;
 break;
 }
 }
 if(found)
 System.out.println("Value found!");
 }
}

The output would be –
 Value found !

2.9.3 Jump Statements
Java supports three jump statements: break, continue, and return. These statements transfer control to
another part of your program.

Using break
In java, break can be used in 3 different situations:

 To terminate statement sequence in switch
 To exit from a loop
 Can be used as a civilized version of goto

Following is an example showing terminating a loop using break.
 for (int i=0;i<20;i++)
 if(i==5)
 break;
 else
 System.out.println(“ i= “ + i);

The above code snippet prints values from 0 to 4 and when i become 5, the loop is terminated.

Using break as a form of goto
Java does not have a goto statement because it is an un-conditional jump and may end up with an
infinite loop. But in some situations, goto will be useful. For example, the goto can be useful when you
are exiting from a deeply nested set of loops. To handle such situations, Java defines an expanded form
of the break statement. By using this form of break, you can, for example, break out of one or more
blocks of code. These blocks need not be part of a loop or a switch. They can be any block. Further, you
can specify precisely where execution will resume, because this form of break works with a label. As you
will see, break gives you the benefits of a goto without its problems. The general form of labeled break is:
 break label;

Program 2.6 Illustration of break statement with labels
class Break
{
 public static void main(String args[])
 {
 boolean t = true;

 first:

{

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

 second:
{

 third:
{

 System.out.println("Before the break.");
 if(t)
 break second; // break out of second block
 System.out.println("This won't execute");
 }
 System.out.println("This won't execute");
 }
 System.out.println("This is after second block.");
 }
 }
}

The output would be –
 Before the break
 This is after second block

As we can see in the above program, the usage of break with a label takes the control out of the second
block directly.

Using continue
Sometimes, we may need to proceed towards next iteration in the loop by leaving some statements. In
such situations, we can use continue statement within for, while and do-while. For example –

 for (int i=1; i<20;i++)
 if (i%2 == 0)
 continue;
 else
 System.out.println(“i = “ + i);

The above code snippet prints only the odd numbers in the range of 1 to 20.

Using return
The return statement is used to explicitly return the method. Based on some condition, we may need to
go back to the calling method sometimes. So, we can use return in such situations.

QUESTION BANK:

1. What are different types of operators in Java? Explain any two of them.
2. Discuss ternary operator with examples.
3. Differentiate >> and >>> with suitable examples.
4. Briefly explain short-circuit logical operators with examples.
5. Explain different types of iteration statements with examples.
6. Discuss various selective control structures.
7. Write a note on jump statements in Java.
8. Discuss different versions of for - loop with examples.
9. Write a program to illustrate break statement with labels.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

