
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

MODULE 1
Syllabus: An Overview of Java: Object-Oriented Programming, A First Simple Program, A Second Short
Program, Two Control Statements, Using Blocks of Code, Lexical Issues, The Java Class Libraries.
Data Types, Variables, and Arrays: Java Is a Strongly Typed Language, The Primitive Types, Integers, Floating-
Point Types, Characters, Booleans, A Closer Look at Literals, Variables, Type Conversion and Casting,
Automatic Type Promotion in Expressions, Arrays, A Few Words About Strings

1.1 An Overview of Java
The key features of Java are security and portability (platform-independent nature). When we
download any application from the internet, there is a chance that the downloaded code contain virus.
But, downloading the Java code assures security. Java program can run on any type of system
connected to internet and thus provides portability.

The Platform independent nature can be interpreted by two things:

 Operating System Independent: Independent of the operating system on which your source
code is being run.

 Hardware Independent: Doesn't depend upon the hardware on which your java code is run upon
i.e. it can run on any hardware configuration.

These two points make it a platform independent language. Hence, the users do not have to change the
syntax of the program according to the Operating System and do not have to compile the program again
and again on different Operating Systems. The meaning of this point can be understood as you read
further.

C and C++ are platform dependent languages as the file which compiler of C,C++ forms is a
.exe(executable) file which is operating system dependent. The C/C++ program is controlled by the
operating system whereas, the execution of a Java program is controlled by JVM (Java Virtual
Machine).

The JVM is the Java run-time system and is the main component of making the java a platform
independent language. For building and running a java application we need JDK(Java Development Kit)
which comes bundled with Java runtime environment(JRE) and JVM. With the help of JDK the user
compiles and runs his java program. As the compilation of java program starts the Java Bytecode is
created i.e. a .class file is created by JRE. Bytecode is a highly optimized set of instructions designed to
be executed by JVM. Now the JVM comes into play, which is made to read and execute this bytecode.
The JVM is linked with operating system and runs the bytecode to execute the code depending upon
operating system. Therefore, a user can take this class file(Bytecode file) formed to any operating system
which is having a JVM installed and can run his program easily without even touching the syntax of a
program and without actually having the source code. The .class file which consists of bytecode is not
user-understandable and can be interpreted by JVM only to build it into the machine code.

Remember, although the details of the JVM will differ from platform to platform, all understand the same
Java bytecode. If a Java program were compiled to native code, then different versions of the same
program would have to exist for each type of CPU connected to the Internet. This is, of course, not a
feasible solution. Thus, the execution of bytecode by the JVM is the easiest way to create truly portable
programs. Java also has the standard data size irrespective of operating system or the processor. These
features make the java as a portable (platform-independent) language.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

Usually, when a program is compiled to an intermediate form and then interpreted by a virtual machine, it
runs slower than it would run if compiled to executable code. To improve the performance, Java provides
a Just-in-time (JIT) compiler for bytecode. JIT compilers alter the role of the JVM a little by directly
compiling Java bytecode into native platform code, thereby relieving the JVM of its need to manually call
underlying native system services. When JIT compiler is installed, instead of the JVM calling the
underlying native operating system, it calls the JIT compiler. The JIT compiler in turn generates native
code that can be passed on to the native operating system for execution. This makes the java program to
run faster than expected.

Moreover, when a JIT compiler is part of the JVM, selected portions of bytecode are compiled into
executable code in real time, on a piece-by-piece, demand basis. It is important to understand that it is
not practical to compile an entire Java program into executable code all at once, because Java performs
various run-time checks. Instead, a JIT compiler compiles code as it is needed, during execution.
Furthermore, not all sequences of bytecode are compiled—only those that will benefit from compilation.
The remaining code is simply interpreted.

1.2 Object-Oriented Programming
Java is purely object oriented programming (OOP) language. Here, we will discuss the basics of OOPs
concepts.

Two Paradigms
Every program consists of two elements viz. code and data. A program is constructed based on two
paradigms: a program written around what is happening (known as process-oriented model) and a
program written around who is being affected (known as object-oriented model). In process oriented
model, the program is written as a series of linear (sequential) steps and it is thought of as code acting
on data. Since this model fails to focus on real-world entities, it will create certain problems as the
program grows larger.

The object-oriented model focuses on real-world data. Here, the program is organized as data and a set
of well-defined interfaces to that data. Hence, it can be thought of as data controlling access to code.
This approach helps to achieve several organizational benefits.

Abstraction
Abstraction can be thought of as hiding the implementation details from the end-user. A powerful way
to manage abstraction is through the use of hierarchical classifications. This allows us to layer the
semantics of complex systems, breaking them into more manageable pieces. For example, we consider
a car as a vehicle and can be thought of as a single object. But, from inside, car is a collection of several
subsystems viz. steering, brakes, sound system, engine etc. Again, each of these subsystems is a
collection of individual parts (Ex. Sound system is a combination of a radio and CD/tape player). As an
owner of the car, we manage it as an individual entity by achieving hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs. The data from a
traditional process-oriented program can be transformed by abstraction into its component objects. A
sequence of process steps can become a collection of messages between these objects. Thus, each of
these objects describes its own unique behavior. You can treat these objects as concrete entities that
respond to messages telling them to do something. This is the essence of object-oriented programming.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

OOPs Principles: Encapsulation, Inheritance and Polymorphism are the basic principles of any
object oriented programming language.

Encapsulation is the mechanism to bind the data and code working on that data into a single entity. It
provides the security for the data by avoiding outside manipulations. In Java, encapsulation is achieved
using classes. A class is a collection of data and code. An object is an instance of a class. That is,
several objects share a common structure (data) and behavior (code) defined by that class. A class is a
logical entity (or prototype) and an object is a physical entity. The elements inside the class are known as
members. Specifically, the data or variables inside the class are called as member variables or
instance variables or data members. The code that operates on these data is referred to as member
methods or methods (In C++, we term this as member function). The method operating on data will
define the behavior and interface of a class.

Another purpose of the class is to hide the information from outside manipulation. Class uses public and
private interfaces. The members declared as private can only be accessed by the members of that class,
whereas, the public members can be accessed from outside the class.

Inheritance allows us to have code re-usability. It is a process by which one object can acquire the
properties of another object. It supports the concept of hierarchical classification. For example, consider a
large group of animals having few of the abstract attributes like size, intelligence, skeletal structure etc.
and having behavioral aspects like eating, breathing etc. Mammals have all the properties of Animals
and also have their own specific features like type of teeth, mammary glands etc. that make them
different from Reptiles. Similarly, Cats and Dogs have all the characteristics of mammals, yet with few
features which are unique for themselves. Though Doberman, German-shepherd, Labrador etc. have the
features of Dog class, they have their own unique individuality. This concept can be depicted using
following figure.

If we apply the above concept for programming, it can be easily understood that a code written is
reusable. Thus, in this mechanism, it is possible for one object to be a specific instance of a more general
case. Using inheritance, an object need only define those qualities that make it a unique object within its
class. It can inherit its general attributes from its parent. Hence, through inheritance, we can achieve
generalization-specialization concept. The top-most parent (or base class or super class) class is the

Figure 1.1 Example of Inheritance

Animal

Reptile Mammal

Human Cat Dog

German-
ShepherdDoberman

...

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

generalized class and the bottom-most child (or derived class or subclass) class is a more specialized
class with specific characteristics.

Inheritance interacts with encapsulation as well. If a given class encapsulates some attributes, then any
subclass will have the same attributes plus any that it adds as part of its specialization. This is a key
concept that lets object-oriented programs grow in complexity linearly rather than geometrically. A new
subclass inherits all of the attributes of all of its ancestors. It does not have unpredictable interactions with
the majority of the rest of the code in the system.

Polymorphism can be thought of as one interface, multiple methods. It is a feature that allows one
interface to be used for a general class of actions. The specific action is determined by the exact nature
of the situation. Consider an example of performing stack operation on three different types of data viz.
integer, floating-point and characters. In a non-object oriented programming, we write functions with
different names for push and pop operations though the logic is same for all the data types. But in Java,
the same function names can be used with data types of the parameters being different.

1.3 A First Simple Program
Here, we will discuss the working of a Java program by taking an example –

Program 1.1 Illustration of First Java Program
 class Prg1
 {
 public static void main(String args[])
 {
 System.out.println(“Hello World!!!”);

}

}

Save this program as Prg1.java. A java program source code is a text file containing one or more class
definitions is called as compilation unit and the extension of this file name should be .java.

To compile above program, use the following statement in the command prompt –

javac Prg1.java

(Note: You have to store the file Prg1.java in the same location as that of javac compiler or you should
set the Environment PATH variable suitably.)

Now, the javac compiler creates a file Prg1.class containing bytecode version of the program, which can
be understandable by JVM. To run the program, we have to use Java application launcher called java.
That is, use the command –

java Prg1

The output of the program will now be displayed as –

Hello World!!!

Note: When java source code is compiled, each class in that file will be put into separate output file
having the same name as of the respective class and with the extension of .class. To run a java code,
we need a class file containing main() function (Though, we can write java program without main(), for the

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

time-being you assume that we need a main() function!!!). Hence, it is a tradition to give the name of the
java source code file as the name of the class containing main() function.

Let us have closer look at the terminologies used in the above program now –

class is the keyword to declare a class.
Prg1 is the name of the class. You can use any valid identifier for a class name.
main() is name of the method from which the program execution starts.
public is a keyword indicating the access specifier of the method. The public members can be

accessed from outside the class in which they have been declared. The main() function
must be declared as public as it needs to be called from outside the class.

static The keyword static allows main() to be called without having to instantiate a particular
instance of the class. This is necessary since main() is called by the Java Virtual Machine
before any objects are made.

void indicates that main() method is not returning anything.
String args[] The main() method takes an array of String objects as a command-line argument.
System is a predefined class (present in java.lang package) which gives access to the system. It

contains pre-defined methods and fields, which provides facilities like standard input,
output, etc.

out is a static final (means not inheritable) field (ie, variable)in System class which is of the
type PrintStream (a built-in class, contains methods to print the different data values).
Static fields and methods must be accessed by using the class name, so we need to use
System.out.

println is a public method in PrintStream class to print the data values. After printing the data, the
cursor will be pushed to the next line (or we can say that, the data is followed by a new
line).

1.4 A Second Short Program
Here, we will discuss a program having variables. Variable is a named memory location which may be
assigned a value in the program. A variable can be declared in the java program as –

type var_name;

Here, type is any built-in or user-defined data type (We will discuss various data types later in detail).
var_name is any valid name given to the variable. Consider the following example –

Program 1.2 Illustrating usage of variables
 class Prg2
 {
 public static void main(String args[])
 {
 int n;
 n=25;
 System.out.println(“The value of n is: “ + n);
 n= n*3;
 System.out.print(“The current value of n is: “);
 System.out.println(n);

}
}

The output will be –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

 The value of n is: 25
 The current value of n is: 75

In the above program, we have declared an integer variable n and then assigned a value to it. Now,
observe the statement,
 System.out.println(“The value of n is: “ + n);
Here, we are trying to print a string value “The value of n is:” and also value of an integer n together. For
this, we use + symbol. Truly speaking, the value of n is internally converted into string type and then
concatenated with the string “The value of n is:”. We can use + symbol as many times as we want to
print several values.

The above program uses one more method System.out.print() which will keep the cursor on the same
line after displaying the output. That is, no new line is not included in it.

1.5 Two Control Statements
Though control structures are discussed in Module 2, here we will glance two important structures which
are needed for some of the examples in the current Module.

if Statement: When a block of code has to be executed based on the value of a condition, if statement
is used. Syntax would be –
 if(condition)
 {
 //do something
 }

Here, condition has to be Boolean statement (unlike C/C++, where it could be integer type). If the
condition is true, the statement block will be executed, otherwise not.

To have a Boolean result from an expression, we may use relational operators like <, >, <=, == etc.

Program 1.3 Illustration of if statement

class IfSample
{

public static void main(String args[])
{

int x, y;
x = 10;
y = 20;

if(x < y)

System.out.println("x is less than y");

x = x * 2;
if(x == y)

System.out.println("x now equal to y");

x = x * 2;
if(x > y)

System.out.println("x now greater than y");

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

if(x == y)

System.out.println("you won't see this");
}

}

The output would be –

x is less than y
x now equal to y
x now greater than y

for Statement: Whenever a set of statements has to be executed multiple times, we will use for
statement. The syntax would be –
 for(initialization; condition; updation)
 {

 //statement block
}

Here, initialization contains declaring and/or initialization of one or more variables, that

happens only once
condition Must be some Boolean expression, that will be checked immediately after

initialization and each time when there is an updation of variables
updation Contains increment/decrement of variables, that will be executed after

executing statement block

Program 1.4 Illustration of for statement

class ForTest
{

public static void main(String args[])
{

int x;

for(x = 0; x<5; x = x+1)

System.out.println("This is x: " + x);
}

}

This program generates the following output:
This is x: 0
This is x: 1
This is x: 2
This is x: 3
This is x: 4

1.6 Using Blocks of Code
Java allows two or more statements to be grouped into blocks of code, also called code blocks. This is
done by enclosing the statements between opening and closing curly braces. Once a block of code has
been created, it becomes a logical unit that can be used any place that a single statement can.

For example, a block can be a target for Java’s if and for statements. Consider this if statement:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

if(x < y)
{ // block begins

x = y;
y = 0;

} // block ends here

The main reason for the existence of blocks of code is to create logically inseparable units of code.

1.7 Lexical Issues
Java programs are a collection of whitespace, identifiers, literals, comments, operators, separators, and
keywords. We will discuss the significance of each of these here.

Whitespace : In Java, whitespace is a space, tab or newline. Usually, a space is used to separate

tokens; tab and newline are used for indentation.

Identifiers : Identifiers are used for class names, method names, and variable names. An identifier

may be any sequence of uppercase and lowercase letters, numbers, or the underscore
and dollar-sign characters. They must not begin with a number. As Java is case-sensitive,
Avg is a different identifier than avg.
Examples of valid identifiers: Avg, sum1, $x, sum_sq etc.
Examples of invalid identifiers: 2sum, sum-sq, x/y etc.

Literals : A constant value in Java is created by using a literal representation of it. For example, 25

(an integer literal), 4.5 (a floating point value), ‘p’ (a character constant, “Hello World” (a
string value).

Comments : There are three types of comments defined by Java. Two of these are well-know viz.

single-line comment (starting with //), multiline comment (enclosed within /* and */).
The third type of comment viz. documentation comment is used to produce an HTML file
that documents your program. The documentation comment begins with a /** and ends
with a */.

Separators : In Java, there are a few characters that are used as separators. The most commonly used

separator in Java is the semicolon which is used to terminate statements. The separators
are shown in the following table:

Symbol Name Purpose

() Parentheses Used to provide parameter list in method definition and to call methods.
Also used for defining precedence in expressions, containing expressions in
control statements, and surrounding cast types.

{ } Braces Used to initialize arrays, to define a block of code, for classes, methods,
and local scopes.

[] Brackets Used to declare array types, to dereference array values.
; Semicolon Terminates statements.
, Comma Separates consecutive identifiers in a variable declaration. Also used to

chain statements together inside a for statement.
. Period Used to separate package names from sub-packages and classes. Also

used to separate a variable or method from a reference variable.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

Keywords : There are 50 keywords currently defined in the Java language as shown in the following
table. These keywords, combined with the syntax of the operators and separators, form
the foundation of the Java language. These keywords cannot be used as names for a
variable, class, or method.

Abstract assert boolean break byte case catch char class const
Continue default goto do double else enum extends final finally
Float for if implements import instanceof int interface long native
New package private protected public return short static strictfp super
Switch synchronized this throw throws transient try void while

The keywords const and goto are reserved but are rarely used. In addition to the
keywords, Java reserves the following: true, false, and null. These are values defined by
Java. You may not use these words for the names of variables, classes and so on.

1.8 The Java Class Libraries
The sample programs discussed in previous sections make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are members of the System class, which is a class
predefined by Java that is automatically included in your programs. In the larger view, the Java
environment relies on several built-in class libraries that contain many built-in methods that provide
support for such things as I/O, string handling, networking, and graphics. The standard classes also
provide support for windowed output. Thus, Java is a combination of the Java language itself, plus its
standard classes. The class libraries provide much of the functionality that comes with Java. The
standard library classes and methods are described in detail in forthcoming chapters.

1.9 Java is a Strongly Typed Language
A strongly-typed programming language is one in which each type of data (such as integer, character,
hexadecimal, packed decimal, and so forth) is predefined as part of the programming language and all
constants or variables defined for a given program must be described with one of the data types. Certain
operations may be allowable only with certain data types.

In other words, every variable has a type, every expression has a type, and every type is strictly defined.
And, all assignments, whether explicit or via parameter passing in method calls, are checked for type
compatibility. There are no automatic coercions or conversions of conflicting types as in some languages.
The Java compiler checks all expressions and parameters to ensure that the types are compatible. Any
type mismatches are errors that must be corrected before the compiler will finish compiling the class.
These features of Java make it a strongly typed language.

1.10 The Primitive Types
Java defines eight primitive (or simple) data types viz.

 byte, short, int, long : belonging to Integers group involving whole-valued signed numbers.
 char : belonging to Character group representing symbols in character set like alphabets, digits,

special characters etc.
 float, double : belonging to Floating-point group involving numbers with fractional part.
 boolean : belonging to Boolean group, a special way to represent true/false values.

These types can be used as primitive types, derived types (arrays) and as member of user-defined types
(classes). All these types have specific range of values irrespective of the platform in which the program

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

being run. In C and C++ the size of integer may vary (2 bytes or 4 bytes) based on the platform. Because
of platform-independent nature of Java, such variation in size of data types is not found in Java, and thus
making a Java program to perform better.

Integers
Java defines four integer types viz. byte, short, int and long. All these are signed numbers and Java
does not support unsigned numbers. The width of an integer type should not be thought of as the amount
of storage it consumes, but rather as the behaviour it defines for variables and expressions of that type.
The Java run-time environment is free to use whatever size it wants, as long as the types behave as you
declared them. The width and ranges of these integer types vary widely, as shown in this table:

Name Width
(in bits) Range

long 64 -263 to +263 –1

int 32 -231 to +231 –1

short 16 -215 to +215 –1 (-32768 to +32767)

byte 8 -27 to +27 –1 (-128 to +127)

byte : This is the smallest integer type. Variables of type byte are especially useful when you are

working with a stream of data from a network or file. They are also useful when you are working
with raw binary data that may not be directly compatible with Java’s other built-in types. Byte
variables are declared by use of the byte keyword. For example,

byte b, c;

short : It is probably the least-used Java type. Here are some examples of short variable declarations:

short s;
short t;

int : The most commonly used integer type is int. In addition to other uses, variables of type int are

commonly employed to control loops and to index arrays. Although you might think that using a
byte or short would be more efficient than using an int in situations in which the larger range of
an int is not needed, this may not be the case. The reason is that when byte and short values
are used in an expression they are promoted to int when the expression is evaluated. (Type
promotion is described later in this chapter.) Therefore, int is often the best choice when an
integer is needed.

long : It is useful for those occasions where an int type is not large enough to hold the desired value.

The range of a long is quite large. This makes it useful when big, whole numbers are needed.

Program 1.5: Program to illustrate need for long data type

class Light
{
 public static void main(String args[])
 {
 int lightspeed;
 long days, seconds, distance;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

 // approximate speed of light in miles per second
 lightspeed = 186000;
 days = 1000; // specify number of days here

 seconds = days * 24 * 60 * 60; // convert to seconds
 distance = lightspeed * seconds; // compute distance

 System.out.print("In " + days);
 System.out.print(" days light will travel about ");
 System.out.println(distance + " miles.");
 }
}

The output will be –
 In 1000 days light will travel about 16070400000000 miles.

Floating –Point Types
Floating-point (or real) numbers are used when evaluating expressions that require fractional precision.
Java implements the standard (IEEE–754) set of floating-point types and operators. There are two kinds
of floating-point types, float and double, which represent single- and double-precision numbers,
respectively. Their width and ranges are shown here:

Name Width
(in bits) Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

float : The type float specifies a single-precision value that uses 32 bits of storage. Single

precision is faster on some processors and takes half as much space as double precision,
but will become imprecise when the values are either very large or very small. Variables of
type float are useful when you need a fractional component, but don’t require a large
degree of precision. For example, float can be useful when representing currencies,
temperature etc. Here are some example float variable declarations:

float hightemp, lowtemp;

double : Double precision is actually faster than single precision on some modern processors that

have been optimized for high-speed mathematical calculations. All transcendental math
functions, such as sin(), cos(), and sqrt(), return double values. When you need to
maintain accuracy over many iterative calculations, or are manipulating large-valued
numbers, double is the best choice.

Program 1.6 Finding area of a cirlce

class Area
{
 public static void main(String args[])
 {

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

 double pi, r, a;
 r = 10.8;
 pi = 3.1416;
 a = pi * r * r;
 System.out.println("Area of circle is " + a);
 }
}

The output would be –

Area of circle is 366.436224

Characters
In Java, char is the data type used to store characters. In C or C++, char is of 8 bits, whereas in Java it
requires 16 bits. Java uses Unicode to represent characters. Unicode is a computing industry standard
for the consistent encoding, representation and handling of text expressed in many languages of the
world. Unicode has a collection of more than 109,000 characters covering 93 different languages like
Latin, Greek, Arabic, Hebrew etc. That is why, it requires 16 bits. The range of a char is 0 to 65,536. The
standard set of characters known as ASCII still ranges from 0 to 127 as always, and the extended 8-bit
character set, ISO-Latin-1, ranges from 0 to 255. Since Java is designed to allow programs to be written
for worldwide use, it makes sense that it would use Unicode to represent characters. Though it seems to
be wastage of memory as the languages like English, German etc. can accommodate their character set
in 8 bits, for a global usage point of view, 16-bits are necessary.

Though, char is designed to store Unicode characters, we can perform arithmetic operations on them.
For example, we can add two characters (but, not char variables!!), increment/decrement character
variable etc. Consider the following example for the demonstration of characters.

Program 1.7 Demonstration of char data type

class CharDemo
{
 public static void main(String args[])
 {
 char ch1=88, ch2=’Y’;

 System.out.print("ch1 and ch2: ");
 System.out.println(ch1 + " " + ch2);

 ch1++; //increment in ASCII (even Unicode) value
 System.out.println("ch1 now contains "+ch1);

--ch2; //decrement in ASCII (even Unicode) value
System.out.println("ch2 now contains "+ch2);

/* ch1=35;
 ch2=30;
 char ch3;

 ch3=ch1+ch2; //Error
 */

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

ch2='6'+'A'; //valid
System.out.println("ch2 now contains "+ch2);

 }
}

The output would be –
ch1 and ch2: X Y
ch1 now contains Y
ch2 now contains X
ch2 now contains w

Booleans
For storing logical values (true and false), Java provides this primitive data type. Boolean is the output of
any expression involving relational operators. For control structures (like if, for, while etc.) we need to
give boolean type. In C or C++, false and true values are indicated by zero and a non-zero numbers
respectively. And the output of relational operators will be 0 or 1. But, in Java, this is not the case.
Consider the following program as an illustration.

Program 1.8 Demonstration of Boolean data type

class BoolDemo
{
 public static void main(String args[])
 {

boolean b = false;

System.out.println("b is " + b);
b = true;
System.out.println("b is " + b);

if(b)

System.out.println("True block");

b = false;
 if(b)

 System.out.println("False Block will not be executed");

b=(3<5);
System.out.println("3<5 is " +b);

 }
}

The output would be –
b is false
b is true
True block
3<5 is true

NOTE: Size of a Boolean data type is JVM dependent. But, when Boolean variable appears in an
expression, Java uses 32-bit space (as int) for Boolean to evaluate expression.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

1.11 A Closer Look at Literals
A literal is the source code representation of a fixed value. In other words, by literal we mean any
number, text, or other information that represents a value. Literals are represented directly in our code
without requiring computation. Here we will discuss Java literals in detail.

Integer Literals
Integers are the most commonly used type in the typical program. Any whole number value is an integer
literal. For example, 1, 25, 33 etc. These are all decimal values, having a base 10. With integer literals we
can use octal (base 8) and hexadecimal (base 16) also. Octal values are denoted in Java by a leading
zero. Normal decimal numbers cannot have a leading zero. Thus, a value 09 will produce an error from
the compiler, since 9 is outside of octal’s 0 to 7 range. Hexadecimal constants denoted with a leading
zero-x, (0x or 0X). The range of a hexadecimal digit is 0 to 15, so A through F (or a through f) are
substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. It is possible to assign an
integer literal to other integer types like byte or long. When a literal value is assigned to a byte or short
variable, no error is generated if the literal value is within the range of the target type. An integer literal
can always be assigned to a long variable. However, to specify a long literal, you will need to explicitly
tell the compiler that the literal value is of type long. You do this by appending an upper- or lowercase L
to the literal. For example, 0x7ffffffffffffffL or 9223372036854775807L is the largest long. An integer can
also be assigned to a char as long as it is within range.

Floating-Point Literals
Floating-point numbers represent decimal values with a fractional component. They can be expressed in
either standard or scientific notation. Standard notation consists of a whole number component followed
by a decimal point followed by a fractional component. For example, 2.0, 3.14159, and 0.6667 represent
valid standard-notation floating-point numbers. Scientific notation uses a standard-notation, floating-point
number plus a suffix that specifies a power of 10 by which the number is to be multiplied. The exponent is
indicated by an E or e followed by a decimal number, which can be positive or negative. Examples
include 6.022E23, 314159E–05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you must append an F
or f to the constant. You can also explicitly specify a double literal by appending a D or d. Doing so is, of
course, redundant. The default double type consumes 64 bits of storage, while the less-accurate float
type requires only 32 bits.

Boolean Literals
Boolean literals are simple. There are only two logical values that a boolean value can have, true and
false. The values of true and false do not convert into any numerical representation. The true literal in
Java does not equal 1, nor does the false literal equal 0. In Java, they can only be assigned to variables
declared as boolean, or used in expressions with Boolean operators.

Character Literals
Characters in Java are indices into the Unicode character set. They are 16-bit values that can be
converted into integers and manipulated with the integer operators, such as the addition and subtraction
operators. A literal character is represented inside a pair of single quotes. All of the visible ASCII
characters can be directly entered inside the quotes, such as ‘a’, ‘z’, and ‘@’. For characters that are
impossible to enter directly, there are several escape sequences that allow you to enter the character you
need, such as ‘\’’ for the single-quote character itself and ‘\n’ for the new-line character. There is also a

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

mechanism for directly entering the value of a character in octal or hexadecimal. For octal notation, use
the backslash followed by the three-digit number. For example, ‘\141’ is the letter ‘a’. For hexadecimal,
you enter a backslash-u (\u), then exactly four hexadecimal digits. Following table shows the character
escape sequences.

Escape Sequence Description
\ddd Octal character (ddd)
\uxxxx Hexadecimal Unicode character (xxxx)
\' Single quote
\” Double quote
\\ Back slash
\r Carriage return (Enter key)
\n New line (also known as line feed)
\f Form feed
\t Tab
\b Back space

String Literals
String literals are a sequence of characters enclosed within a pair of double quotes. Examples of string
literals are

“Hello World”
“two\nlines”
“\“This is in quotes\””

Java strings must begin and end on the same line. There is no line-continuation escape sequence as
there is in some other languages. In Java, strings are actually objects and are discussed later in detail.

1.12 Variables
The variable is the basic unit of storage. A variable is defined by the combination of an identifier, a type,
and an optional initializer. In addition, all variables have a scope, which defines their visibility, and a
lifetime.

Declaring a Variable
In Java, all variables must be declared before they can be used. The basic form of a variable declaration
is shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is any of primitive data type or class or interface. The identifier is the name of the variable. We
can initialize the variable at the time of variable declaration. To declare more than one variable of the
specified type, use a comma-separated list. Here are several examples of variable declarations of
various types. Note that some include an initialization.

int a, b=5, c;
byte z = 22;
double pi = 3.1416;
char x = '$';

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows variables to be
initialized dynamically, using any expression valid at the time the variable is declared. For example,

 int a=5, b=4;
 int c=a*2+b; //variable declaration and dynamic initialization

The key point here is that the initialization expression may use any element valid at the time of the
initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables
A variable in Java can be declared within a block. A block is begun with an opening curly brace and
ended by a closing curly brace. A block defines a scope which determines the accessibility of variables
and/or objects defined within it. It also determines the lifetime of those objects.

Many languages like C/C++ have two scopes viz. global and local. But in Java, every line of code should
be embedded within a class. That is, no code is written outside the class. So, usage of the terms global
and local makes no sense. Instead, Java has two scopes viz. class level scope and method (or
function) level scope. Class level scope is discussed later and we will discuss method scope here.

The scope defined by a method begins with its opening curly brace. However, if that method has
parameters, they too are included within the method’s scope. As a general rule, variables declared inside
a scope are not visible (that is, accessible) to code that is defined outside that scope. Thus, when you
declare a variable within a scope, you are localizing that variable and protecting it from unauthorized
access and/or modification. Indeed, the scope rules provide the foundation for encapsulation. Scopes
can be nested. For example, each time you create a block of code, you are creating a new, nested
scope. When this occurs, the outer scope encloses the inner scope. This means that objects declared in
the outer scope will be visible to code within the inner scope. However, the reverse is not true. Objects
declared within the inner scope will not be visible outside it.

Variables are created when their scope is entered, and destroyed when their scope is left. This means
that a variable will not hold its value once it has gone out of scope. Therefore, variables declared within a
method will not hold their values between calls to that method. Also, a variable declared within a block
will lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

Program 1.9 Demonstration of scope of variables

class Scope
{
 public static void main(String args[])
 {
 int x=10, i; // x and i are local to main()

 if(x == 10)
 {
 int y = 20; // y is local to this block
 System.out.println("x and y: " + x + " " + y);
 x = y * 2;
 }

 // y = 100; //y cannot be accessed here

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

 System.out.println("x is " + x);

 for(i=0;i<3;i++)
 {
 int a=3; // a is local to this block
 System.out.println("a is " + a);
 a++;
 }
 }
}

The output would be –
x and y: 10 20
x is 40
a is 3
a is 3
a is 3

Note that, variable a is declared within the scope of for loop. Hence, each time the loop gets executed,
variable a is created newly and there is no effect of a++ for next iteration.

NOTE:
In Java, same variable name cannot be used in nested scopes. That is, the following code snippet
generates error.

 class Test
 {
 public static void main(String args[])
 {
 int x=3;

 {
 int x=5; //error!!

}
}

}

(Note that, having same variable name in nested scopes is VALID in C/C++).

1.13 Type Conversion and Casting
It is quite common in a program to assign value of one type to a variable of another type. If two types are
compatible, Java performs implicit type conversion. For example, int to long is always possible. But,
whenever the types at two sides of an assignment operator are not compatible, then Java will not do the
conversion implicitly. For that, we need to go for explicit type conversion or type casting.

Java’s Automatic Conversions
When one type of data is assigned to another type of variable, an automatic type conversion will take
place if the following two conditions are met:

 The two types are compatible.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

 The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int type is
always large enough to hold all valid byte values, so no explicit cast statement is required. For widening
conversions, the numeric types, including integer and floating-point types, are compatible with each
other. However, there are no automatic conversions from the numeric types to char or boolean. Also,
char and boolean are not compatible with each other. As mentioned earlier, Java also performs an
automatic type conversion when storing a literal integer constant into variables of type byte, short, long,
or char.

Casting Incompatible Types
Although the automatic type conversions are helpful, they will not fulfill all needs. For example, what if
you want to assign an int value to a byte variable? This conversion will not be performed automatically,
because a byte is smaller than an int. This kind of conversion is sometimes called a narrowing
conversion, since you are explicitly making the value narrower so that it will fit into the target type. To
create a conversion between two incompatible types, we must use a cast. A cast is simply an explicit type
conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For example,

int a;
byte b;
b = (byte) a;

When a floating-point value is assigned to an integer type, the fractional component is lost. And such
conversion is called as truncation (narrowing). If the size of the whole number component is too large
to fit into the target integer type, then that value will be reduced modulo the target type’s range. Following
program illustrates various situations of explicit casting.

Program 1.10 Illustration of type conversion

class Conversion
{
 public static void main(String args[])
 {
 byte b;
 int i = 257;
 double d = 323.142;

 System.out.println("\nConversion of int to byte.");
 b = (byte) i;
 System.out.println("i and b " + i + " " + b);

 System.out.println("\nConversion of double to int.");
 i = (int) d;
 System.out.println("d and i " + d + " " + i);

 System.out.println("\nConversion of double to byte.");
 b = (byte) d;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

 System.out.println("d and b " + d + " " + b);
 }
}

The output would be –
Conversion of int to byte: i = 257 b = 1
Conversion of double to int: d = 323.142 i = 323
Conversion of double to byte: d = 323.142 b = 67

Here, when the value 257 is cast into a byte variable, the result is the remainder of the division of 257 by
256 (the range of a byte), which is 1 in this case. When the d is converted to an int, its fractional
component is lost. When d is converted to a byte, its fractional component is lost, and the value is
reduced modulo 256, which in this case is 67.

1.14 Automatic Type promotion in Expression
Apart from assignments, type conversion may happen in expressions also. In an arithmetic expression
involving more than one operator, some intermediate operation may exceed the size of either of the
operands. For example,
 byte x=25, y=80, z=50;
 int p= x*y/z ;

Here, the result of operation x*y is 4000 and it exceeds the range of both the operands i.e. byte (-128 to
+127). In such a situation, Java promotes byte, short and char operands to int That is, the operation x*y
is performed using int but not byte and hence, the result 4000 is valid.

On the other hand, the automatic type conversions may cause error. For example,
 byte x=10;
 byte y= x *3; //causes error!!!

Here, the result of x *3 is 30, and is well within the range of byte. But, for performing this operation, the
operands are automatically converted to byte and the value 30 is treated as of int type. Thus, assigning
an int to byte is not possible, which generates an error. To avoid such problems, we should use type
casting. That is,
 byte x=10;
 byte y=(byte) (x *3); //results 30

Type Promotion Rules
Java defines several type promotion rules that apply to expressions. They are as follows:

 All byte, short, and char values are promoted to int.
 If one operand is a long, the whole expression is promoted to long.
 If one operand is a float, the entire expression is promoted to float.
 If any of the operands is double, the result is double.

Program 1.11 Demonstration of type promotions
class TypePromo
{
 public static void main(String args[])
 {
 byte b = 42;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

 char c = 'a';
 short s = 1024;
 int i = 50000;
 float f = 5.67f;
 double d = .1234;
 double result = (f * b) + (i / c) - (d * s);

 System.out.println("result = " + result);
 }
}

The output would be –

result = 626.7784146484375

Let’s look closely at the type promotions that occur in this line from the program:
double result = (f * b) + (i / c) - (d * s);

In the first sub-expression, f * b, b is promoted to a float and the result of the sub-expression is float.
Next, in the sub-expression i / c, c is promoted to int, and the result is of type int. Then, in d * s, the
value of s is promoted to double, and the type of the sub-expression is double. Finally, these three
intermediate values, float, int, and double, are considered. The outcome of float plus an int is a float.
Then the resultant float minus the last double is promoted to double, which is the type for the final result
of the expression.

1.15 Arrays
Array is a collection of related items of same data type. Many items of an array share common name and
are accessed using index. Array can be one dimensional or multi-dimensional.

One Dimensional Arrays
It is a list of related items. To create 1-d array, it should be declared as –
 type arr_name[];
Here, type determines the data type of elements of arr_name. In Java, the above declaration will not
allocate any memory. That is, there is no physical existence for the array now. To allocate memory, we
should use new operator as follows:
 arr_name=new type[size];
Here, size indicates number of elements in an array. The new keyword is used because, in Java array
requires dynamic memory allocation. The above two statements can be merged as –
 type arr_name[]=new type[size];

For example, following statement create an array of 10 integers –
 int arr[]=new int[10];
Array index starts with 0 and we can assign values to array elements as –
 arr[0]=25;
 arr[1]=32; and so on.

Arrays can be initialized at the time of declaration. An array initializer is a list of comma-separated
expressions surrounded by curly braces. The commas separate the values of the array elements. The
array will automatically be created large enough to hold the number of elements you specify in the array
initializer. There is no need to use new. For example –
 int arr[] ={1, 2, 3, 4};

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

The above statement creates an integer array of 4 elements.

Java strictly checks to make sure you do not accidentally try to store or reference values outside of the
range of the array. The Java run-time system will check to be sure that all array indexes are in the correct
range. If you try to access elements outside the range of the array (negative numbers or numbers greater
than the length of the array), you will get a run-time error.

Multidimensional Arrays
Multidimensional arrays are arrays of arrays. Here, we will discuss two dimensional arrays in Java. The
declaration of 2-d array is as follows –
 type arr_name[][]=new type[row_size][col_size];

here, row_size and col_size indicates number of rows and columns of 2-d arrays. In other words, row-
size indicates number of 1-d arrays and col_size indicates size of each of such 1-d array. Consider the
following program –

Program 1.12 Demonstration of 2-d array

class TwoDArray
{
 public static void main(String args[])
 {
 int twoD[][]= new int[3][4];
 int i, j;

 for(i=0; i<3; i++)
 for(j=0; j<4; j++)
 twoD[i][j] = i+j;

 for(i=0; i<3; i++)
 {
 for(j=0; j<4; j++)
 System.out.print(twoD[i][j] + " ");

 System.out.println();
 }
 }
}

The output would be –
0 1 2 3
1 2 3 4
2 3 4 5

Instead of allocating memory for 2-day as shown in the above program, we can even do it in a different
way. We can first mention row_size and then using different statements, mention col_size as shown
below –

int twoD[][]= new int[3][];
twoD[0]=new int[4] ;
twoD[1]=new int[4] ;
twoD[2]=new int[4] ;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

But, above type of allocation is not having any advantage unless we need uneven or irregular
multidimensional array. In Java, it is possible to have different number of columns for each row in a 2-d
array. For example,

Program 1.13 Demonstration of irregular arrays

class UnevenArr
{
 public static void main(String args[])
 {
 int twoD[][] = new int[3][];
 twoD[0] = new int[3];
 twoD[1] = new int[1];
 twoD[2] = new int[5];

 int i, j, k = 0;

 for(i=0; i<3; i++)
 for(j=0; j<twoD[i].length; j++, k++)
 twoD[i][j] = k;

for(i=0; i<3; i++)
 {
 for(j=0; j<twoD[i].length; j++)
 System.out.print(twoD[i][j] + " ");
 System.out.println();
 }
 }
}

The output would be –
0 1 2
3
4 5 6 7 8

Here, we have declared a 2-d array with 3 rows. But, number of columns for each row varies. The first 1-
d array has 3 elements, second 1-d array as a single element and the third 1-d array has 5 elements.

A 2-d array can be initialized at the time of declaration as follows –

 int a[][]={{1,2},{3,4} };

We can have more than 2 dimensions as –

 int a[][][]=new int[3][2][4];
Here, the array elements can be accessed using 3 indices like a[i][j][k].

Alternative Array Declaration Syntax
There is another way of array declaration as given below –

 type[] arr_name;
That is, following two declarations are same –

 int a[]=new int[3];

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Programming in Java (Open Elective - 15CS561)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

 int[] a= new int[3];
Both the declarations will create an integer array of 3 elements. Such declarations are useful when we
have multiple array declarations of same type. For example,

 int [] a, b, c;
will declare three arrays viz. a, b and c of type integer. This declaration is same as –

 int a[], b[], c[];

The alternative declaration form is also useful when specifying an array as a return type for a method.

1.16 A few words about Strings
In Java, String is a class but not array of characters. So, the features of String class can be better
understood after learning about the concepts of classes in further chapters. For the time-being, we will
glance at String type.

 We can have array of strings.
 A set of characters enclosed within double quotes can be assigned to a String variable.
 One variable of type String can be assigned another String variable.
 Object of type String can be used as an argument to println as –

String str=”Hello”;
System.out.println(str);

QUESTION BANK:

1. Explain key attributes of Java programming language.
2. What is JVM? Why do we need it?
3. Briefly explain JRE and JDK.
4. Explain three OOPs principles.
5. What are Keywords and Identifiers? List the rules to write an identifier.
6. Discuss various data types used in Java.
7. What is type Conversion and Casting? Explain automatic type promotion in expressions with rules

and a demo program.
8. Explain scope and lifetime of variables with suitable examples.
9. "Java is a strongly typed language" - Justify this statement.
10. Write a note on

a. Java class libraries
b. Literals

11. Explain array declaration and initialization in Java with suitable examples.
12. What are multi-dimensional arrays? Explain with examples.
13. What are irregular arrays in Java? Write a program to find biggest of numbers in an irregular array

with at least three rows.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

