
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

MODULE – 5

5.1 NETWORKED PROGRAMS
In this era of internet, it is a requirement in many situations to retrieve the data from web
and to process it. In this section, we will discuss basics of network protocols and Python
libraries available to extract data from web.

5.1.1 HyperText Transfer Protocol (HTTP)
HTTP (HyperText Transfer Protocol) is the media through which we can retrieve web-
based data. The HTTP is an application protocol for distributed and hypermedia information
systems. HTTP is the foundation of data communication for the World Wide Web.
Hypertext is structured text that uses logical links (hyperlinks) between nodes containing
text. HTTP is the protocol to exchange or transfer hypertext.

Consider a situation:

 you try to read a socket, but the program on the other end of the socket has not sent
any data, then you need to wait.

 If the programs on both ends of the socket simply wait for some data without
sending anything, they will wait for a very long time.

So an important part of programs that communicate over the Internet is to have some sort
of protocol. A protocol is a set of precise rules that determine

 Who will send request for what purpose
 What action to be taken
 What response to be given

To send request and to receive response, HTTP uses GET and POST methods.

NOTE: To test all the programs in this section, you must be connected to internet.

5.1.2 The World’s Simplest Web Browser
The built-in module socket of Python facilitates the programmer to make network
connections and to retrieve data over those sockets in a Python program. Socket is
bidirectional data path to a remote system. A socket is much like a file, except that a
single socket provides a two-way connection between two programs. You can both
read from and write to the same socket. If you write something to a socket, it is sent to the
application at the other end of the socket. If you read from the socket, you are given the
data which the other application has sent.

Consider a simple program to retrieve the data from a web page. To understand the
program given below, one should know the meaning of terminologies used there.

 AF_INET is an address family (IP) that is used to designate the type of addresses
that your socket can communicate with. When you create a socket, you have to

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

specify its address family, and then you can use only addresses of that type with the
socket.

 SOCK_STREAM is a constant indicating the type of socket (TCP). It works as a file
stream and is most reliable over the network.

 Port is a logical end-point. Port 80 is one of the most commonly used port numbers
in the Transmission Control Protocol (TCP) suite.

 The command to retrieve the data must use CRLF(Carriage Return Line Feed) line
endings, and it must end in \r\n\r\n (line break in protocol specification).

 encode() method applied on strings will return bytes-representation of the string.
Instead of encode() method, one can attach a character b at the beginning of the
string for the same effect.

 decode() method returns a string decoded from the given bytes.

A socket connection between the user program and the webpage is shown in Figure 5.1.

Figure 5.1 A Socket Connection

Now, observe the following program –

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
mysock.connect(('data.pr4e.org', 80))
cmd='GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode()
mysock.send(cmd)

while True:
 data = mysock.recv(512)
 if (len(data) < 1):
 break

 print(data.decode(),end='')

mysock.close()

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://data.pr4e.org/romeo.txt

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

When we run above program, we will get some information related to web-server of the
website which we are trying to scrape. Then, we will get the data written in that web-page.
In this program, we are extracting 512 bytes of data at a time. (One can use one’s
convenient number here). The extracted data is decoded and printed. When the length of
data becomes less than one (that is, no more data left out on the web page), the loop is
terminated.

5.1.3 Retrieving an Image over HTTP
In the previous section, we retrieved the text data from the webpage. Similar logic can be
used to extract images on the webpage using HTTP. In the following program, we extract
the image data in the chunks of 5120 bytes at a time, store that data in a string, trim off the
headers and then store the image file on the disk.

import socket
import time

HOST = 'data.pr4e.org' #host name
PORT = 80 #port number

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
mysock.connect((HOST, PORT))

mysock.sendall(b'GET http://data.pr4e.org/cover3.jpg HTTP/1.0\r\n\r\n')

count = 0
picture = b"" #empty string in binary format

while True:
 data = mysock.recv(5120) #retrieve 5120 bytes at a time
 if (len(data) < 1):
 break

 time.sleep(0.25) #programmer can see data retrieval easily
 count = count + len(data)
 print(len(data), count) #display cumulative data retrieved
 picture = picture + data

mysock.close()

pos = picture.find(b"\r\n\r\n") #find end of the header (2 CRLF)
print('Header length', pos)
print(picture[:pos].decode())

Skip past the header and save the picture data
picture = picture[pos+4:]

fhand = open("stuff.jpg", "wb") #image is stored as stuff.jpg

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://data.pr4e.org/cover3.jpg

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

fhand.write(picture)
fhand.close()

When we run the above program, the amount of data (in bytes) retrieved from the internet
is displayed in a cumulative format. At the end, the image file ‘stuff.jpg’ will be stored in the
current working directory. (One has to verify it by looking at current working directory of the
program).

5.1.4 Retrieving Web Pages with urllib
Python provides simpler way of webpage retrieval using the library urllib. Here, webpage is
treated like a file. urllib handles all of the HTTP protocol and header details. Following is
the code equivalent to the program given in Section 5.1.2.

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

for line in fhand:
 print(line.decode().strip())

Once the web page has been opened with urllib.urlopen, we can treat it like a file and
read through it using a for-loop. When the program runs, we only see the output of the
contents of the file. The headers are still sent, but the urllib code consumes the headers
and only returns the data to us.

Following is the program to retrieve the data from the file romeo.txt which is residing at
www.data.pr4e.org, and then to count number of words in it.

import urllib.request
fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')
counts = dict()

for line in fhand:
 words = line.decode().split()
 for word in words:
 counts[word] = counts.get(word, 0) + 1

print(counts)

5.1.5 Reading Binary Files using urllib
Sometimes you want to retrieve a non-text (or binary) file such as an image or video file.
The data in these files is generally not useful to print out, but you can easily make a copy of
a URL to a local file on your hard disk using urllib. In Section 5.1.3, we have seen how to
retrieve image file from the web using sockets. Now, here is an equivalent program using
urllib.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://data.pr4e.org/romeo.txt')
http://www.data.pr4e.org,
http://data.pr4e.org/romeo.txt')

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

import urllib.request
img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg').read()
fhand = open('cover3.jpg', 'wb')
fhand.write(img)
fhand.close()

Once we execute the above program, we can see a file cover3.jpg in the current
working directory in our computer.

The program reads all of the data in at once across the network and stores it in the variable
img in the main memory of your computer, then opens the file cover.jpg and writes the
data out to your disk. This will work if the size of the file is less than the size of the memory
(RAM) of your computer. However, if this is a large audio or video file, this program may
crash or at least run extremely slowly when your computer runs out of memory. In order to
avoid memory overflow, we retrieve the data in blocks (or buffers) and then write each
block to your disk before retrieving the next block. This way the program can read any size
file without using up all of the memory you have in your computer.

Following is another version of above program, where data is read in chunks and then
stored onto the disk.

import urllib.request

img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg')
fhand = open('cover3.jpg', 'wb')
size = 0

while True:
 info = img.read(100000)
 if len(info) < 1:
 break
 size = size + len(info)
 fhand.write(info)

print(size, 'characters copied.')
fhand.close()

Once we run the above program, an image file cover3.jpg will be stored on to the
current working directory.

5.1.6 Parsing HTML and Scraping the Web
One of the common uses of the urllib capability in Python is to scrape the web. Web
scraping is when we write a program that pretends to be a web browser and retrieves
pages, then examines the data in those pages looking for patterns. Example: a search
engine such as Google will look at the source of one web page and extract the links to
other pages and retrieve those pages, extracting links, and so on. Using this technique,

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://data.pr4e.org/cover3.jpg').read()
http://data.pr4e.org/cover3.jpg')

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Google spiders its way through nearly all of the pages on the web. Google also uses
the frequency of links from pages it finds to a particular page as one measure of how
“important” a page is and how high the page should appear in its search results.

5.1.7 Parsing HTML using Regular Expressions
Sometimes, we may need to parse the data on the web which matches a particular pattern.
For this purpose, we can use regular expressions. Now, we will consider a program that
extracts all the hyperlinks given in a particular webpage. To understand the Python
program for this purpose, one has to know the pattern of an HTML file. Here is a simple
HTML file –

<h1>The First Page</h1>
<p>

If you like, you can switch to the

Second Page.

</p>

Here,
<h1> and </h1> are the beginning and end of header tags
<p> and </p> are the beginning and end of paragraph tags
<a> and are the beginning and end of anchor tag which is used for giving links
href is the attribute for anchor tag which takes the value as the link for another page.

The above information clearly indicates that if we want to extract all the hyperlinks in a
webpage, we need a regular expression which matches the href attribute. Thus, we can
create a regular expression as –

href="http://.+?"

Here, the question mark in .+? indicate that the match should find smallest possible
matching string.

Now, consider a Python program that uses the above regular expression to extract all
hyperlinks from the webpage given as input.

import urllib.request
import re

url = input('Enter - ') #give URL of any website

html = urllib.request.urlopen(url).read()
links = re.findall(b'href="(http://.*?)"', html)

for link in links:
 print(link.decode())

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://www.dr-chuck.com/page2.htm
http://.+?
http://.*?)

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

When we run this program, it prompts for user input. We need to give a valid URL of any
website. Then all the hyperlinks on that website will be displayed.

5.1.8 Parsing HTML using BeautifulSoup
There are a number of Python libraries which can help you parse HTML and extract data
from the pages. Each of the libraries has its strengths and weaknesses and you can pick
one based on your needs. BeautifulSoup library is one of the simplest libraries available
for parsing. To use this, download and install the BeautifulSoup code from:

 http://www.crummy.com/software/

Consider the following program which uses urllib to read the page and uses
BeautifulSoup to extract href attribute from the anchor tag.

import urllib.request
from bs4 import BeautifulSoup
import ssl #Secure Socket Layer

ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urllib.request.urlopen(url,context=ctx).read()
soup = BeautifulSoup(html, 'html.parser')
tags = soup('a')

for tag in tags:
 print(tag.get('href', None))

A sample output would be –

Enter - http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

The above program prompts for a web address, then opens the web page, reads the data
and passes the data to the BeautifulSoup parser, and then retrieves all of the anchor tags
and prints out the href attribute for each tag.

The BeautifulSoup can be used to extract various parts of each tag as shown below –

from urllib.request import urlopen
from bs4 import BeautifulSoup
import ssl

ctx = ssl.create_default_context()

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://www.crummy.com/software/
http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, "html.parser")
tags = soup('a')
for tag in tags:

print('TAG:', tag)
 print('URL:', tag.get('href', None))
 print('Contents:', tag.contents[0])
 print('Attrs:', tag.attrs)

The sample output would be –

Enter - http://www.dr-chuck.com/page1.htm
TAG:
Second Page
URL: http://www.dr-chuck.com/page2.htm
Contents:
Second Page
Attrs: {'href': 'http://www.dr-chuck.com/page2.htm'}

5.2 USING WEB SERVICES
There are two common formats that are used while exchanging data across the web. One
is HTML and the other is XML (eXtensible Markup Language). In the previous section we
have seen how to retrieve the data from a web-page which is in the form of HTML. Now, we
will discuss the retrieval of data from web-page designed using XML.

XML is best suited for exchanging document-style data. When programs just want to
exchange dictionaries, lists, or other internal information with each other, they use
JavaScript Object Notation or JSON (refer www.json.org). We will look at both formats.

5.2.1 eXtensible Markup Language (XML)
XML looks very similar to HTML, but XML is more structured than HTML. Here is a sample
of an XML document:

<person>
<name>Chuck</name>
<phone type="intl">

+1 734 303 4456
</phone>
<email hide="yes"/>

</person>

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm'
http://www.json.org).

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

Often it is helpful to think of an XML document as a tree structure where there is a top tag
person and other tags such as phone are drawn as children of their parent nodes. Figure
5.2 is the tree structure for above given XML code.

 Figure 5.2 Tree Representation of XML

5.2.2 Parsing XML
Python provides library xml.etree.ElementTree to parse the data from XML files. One
has to provide XML code as a string to built-in method fromstring() of ElementTree
class. ElementTree acts as a parser and provides a set of relevant methods to extract the
data. Hence, the programmer need not know the rules and the format of XML document
syntax. The fromstring()method will convert XML code into a tree-structure of XML
nodes. When the XML is in a tree format, Python provides several methods to extract data
from XML. Consider the following program.

import xml.etree.ElementTree as ET

#XML code embedded in a string format
data = '''
<person>
 <name>Chuck</name>
 <phone type="intl">
 +1 734 303 4456
 </phone>
 <email hide="yes"/>
</person>'''

tree = ET.fromstring(data)
print('Attribute for tag email:', tree.find('email').get('hide'))
print('Attribute for tag phone:', tree.find('phone').get('type'))

The output would be –

Name: Chuck
Attribute for the tag email: yes
Attribute for the tag phone: intl

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

In the above example, fromstring() is used to convert XML code into a tree. The
find() method searches XML tree and retrieves a node that matches the specified tag.
The get() method retrieves the value associated with the specified attribute of that tag.
Each node can have some text, some attributes (like hide), and some “child” nodes. Each
node can be the parent for a tree of nodes.

5.2.3 Looping Through Nodes
Most of the times, XML documents are hierarchical and contain multiple nodes. To process
all the nodes, we need to loop through all those nodes. Consider following example as an
illustration.

import xml.etree.ElementTree as ET

input = '''
<stuff>
 <users>
 <user x="2">
 <id>001</id>
 <name>Chuck</name>
 </user>
 <user x="7">
 <id>009</id>
 <name>Brent</name>
 </user>
 </users>
</stuff>'''

stuff = ET.fromstring(input)
lst = stuff.findall('users/user')
print('User count:', len(lst))

for item in lst:
 print('Name', item.find('name').text)

print('Id', item.find('id').text)
 print('Attribute', item.get("x"))

The output would be –

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent
Id 009
Attribute 7

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

The findall() method retrieves a Python list of subtrees that represent the user
structures in the XML tree. Then we can write a for-loop that extracts each of the user
nodes, and prints the name and id, which are text elements as well as the attribute x
from the user node.

5.2.4 JavaScript Object Notation (JSON)
The JSON format was inspired by the object and array format used in the JavaScript
language. But since Python was invented before JavaScript, Python’s syntax for
dictionaries and lists influenced the syntax of JSON. So the format of JSON is a
combination of Python lists and dictionaries. Following is the JSON encoding that is roughly
equivalent to the XML code (the string data) given in the program of Section 5.2.2.

{
"name" : "Chuck",
"phone": {"type" : "intl", "number" : "+1 734 303 4456"},
"email": {"hide" : "yes"}

}

Observe the differences between XML code and JSON code:
 In XML, we can add attributes like “intl” to the “phone” tag. In JSON, we simply have

key-value pairs.
 XML uses tag “person”, which is replaced by a set of outer curly braces in JSON.

In general, JSON structures are simpler than XML because JSON has fewer capabilities
than XML. But JSON has the advantage that it maps directly to some combination of
dictionaries and lists. And since nearly all programming languages have something
equivalent to Python’s dictionaries and lists, JSON is a very natural format to have two
compatible programs exchange data. JSON is quickly becoming the format of choice for
nearly all data exchange between applications because of its relative simplicity compared
to XML.

5.2.5 Parsing JSON
Python provides a module json to parse the data in JSON pages. Consider the following
program which uses JSON equivalent of XML string written in Section 5.2.3. Note that, the
JSON string has to embed a list of dictionaries.

import json

data = '''
[
 { "id" : "001",
 "x" : "2",
 "name" : "Chuck"
 } ,
 { "id" : "009",
 "x" : "7",

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

 "name" : "Chuck"
 }
]'''

info = json.loads(data)
print('User count:', len(info))

for item in info:
 print('Name', item['name'])
 print('Id', item['id'])

 print('Attribute', item['x'])

The output would be –

User count: 2
Name Chuck
Id 001
Attribute 2
Name Chuck
Id 009
Attribute 7

Here, the string data contains a list of users, where each user is a key-value pair. The
method loads() in the json module converts the string into a list of dictionaries. Now
onwards, we don’t need anything from json, because the parsed data is available in
Python native structures. Using a for-loop, we can iterate through the list of dictionaries and
extract every element (in the form of key-value pair) as if it is a dictionary object. That is, we
use index operator (a pair of square brackets) to extract value for a particular key.

NOTE: Current IT industry trend is to use JSON for web services rather than XML.
Because, JSON is simpler than XML and it directly maps to native data structures we
already have in the programming languages. This makes parsing and data extraction
simpler compared to XML. But XML is more self descriptive than JSON and so there are
some applications where XML retains an advantage. For example, most word processors
store documents internally using XML rather than JSON.

5.2.6 Application Programming Interface (API)
Till now, we have discussed how to exchange data between applications using HTTP, XML
and JSON. The next step is to understand API. Application Programming Interface defines
and documents the contracts between the applications. When we use an API, generally
one program makes a set of services available for use by other applications and publishes
the APIs (i.e., the “rules”) that must be followed to access the services provided by the
program.

When we begin to build our programs where the functionality of our program includes
access to services provided by other programs, we call the approach a Service-Oriented
Architecture(SOA). A SOA approach is one where our overall application makes use of

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

the services of other applications. A non-SOA approach is where the application is a single
stand-alone application which contains all of the code necessary to implement the
application.

Consider an example of SOA: Through a single website, we can book flight tickets and
hotels. The data related to hotels is not stored in the airline servers. Instead, airline servers
contact the services on hotel servers and retrieve the data from there and present it to the
user. When the user agrees to make a hotel reservation using the airline site, the airline
site uses another web service on the hotel systems to actually make the reservation.
Similarly, to reach airport, we may book a cab through a cab rental service. And when it
comes time to charge your credit card for the whole transaction, still other computers
become involved in the process. This process is depicted in Figure 5.3.

Figure 5.3 Server Oriented Architecture

SOA has following major advantages:

 we always maintain only one copy of data (this is particularly important for things like
hotel reservations where we do not want to over-commit)

 the owners of the data can set the rules about the use of their data.

With these advantages, an SOA system must be carefully designed to have good
performance and meet the user’s needs. When an application makes a set of services in its
API available over the web, then it is called as web services.

5.2.7 Google Geocoding Web Service
Google has a very good web service which allows anybody to use their large database of
geographic information. We can submit a geographic search string like “Rajarajeshwari
Nagar” to their geocoding API. Then Google returns the location details of the string
submitted.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

The following program asks the user to provide the name of a location to be searched for.
Then, it will call Google geocoding API and extracts the information from the returned
JSON.

import urllib.request, urllib.parse, urllib.error
import json

serviceurl = 'http://maps.googleapis.com/maps/api/geocode/json?'

address = input('Enter location: ')
if len(address) < 1:
 exit()

url = serviceurl + urllib.parse.urlencode({'address': address})
print('Retrieving', url)
uh = urllib.request.urlopen(url)
data = uh.read().decode()
print('Retrieved', len(data), 'characters')

try:
 js = json.loads(data)
except:
 js = None

if not js or 'status' not in js or js['status'] != 'OK':
 print('==== Failure To Retrieve ====')
 print(data)

print(json.dumps(js, indent=4))
lat = js["results"][0]["geometry"]["location"]["lat"]
lng = js["results"][0]["geometry"]["location"]["lng"]
print('lat', lat, 'lng', lng)
location = js['results'][0]['formatted_address']
print(location)

(Students are advised to run the above program and check the output, which will
contain several lines of Google geographical data).

The above program retrieves the search string and then encodes it. This encoded string
along with Google API link is treated as a URL to fetch the data from the internet. The data
retrieved from the internet will be now passed to JSON to put it in JSON object format. If
the input string (which must be an existing geographical location like Channasandra,
Malleshwaram etc!!) cannot be located by Google API either due to bad internet or due to
unknown location, we just display the message as ‘Failure to Retrieve’. If Google
successfully identifies the location, then we will dump that data in JSON object. Then, using

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://maps.googleapis.com/maps/api/geocode/json?'

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

indexing on JSON (as JSON will be in the form of dictionary), we can retrieve the location
address, longitude, latitude etc.

5.2.8 Security and API Usage
Public APIs can be used by anyone without any problem. But, if the API is set up by some
private vendor, then one must have API key to use that API. If API key is available, then it
can be included as a part of POST method or as a parameter on the URL while calling API.

Sometimes, vendor wants more security and expects the user to provide cryptographically
signed messages using shared keys and secrets. The most common protocol used in the
internet for signing requests is OAuth.

As the Twitter API became increasingly valuable, Twitter went from an open and public API
to an API that required the use of OAuth signatures on each API request. But, there are still
a number of convenient and free OAuth libraries so you can avoid writing an OAuth
implementation from scratch by reading the specification. These libraries are of varying
complexity and have varying degrees of richness. The OAuth web site has information
about various OAuth libraries.

5.3 USING DATABASES AND SQL
A structured set of data stored in a permanent storage is called as database. Most of the
databases are organized like a dictionary – that is, they map keys to values. Unlike
dictionaries, databases can store huge set of data as they reside on permanent storage like
hard disk of the computer.

There are many database management softwares like Oracle, MySQL, Microsoft SQL
Server, PostgreSQL, SQLite etc. They are designed to insert and retrieve data very fast,
however big the dataset is. Database software builds indexes as data is added to the
database so as to provider quicker access to particular entry.

In this course of study, SQLite is used because it is already built into Python. SQLite is a C
library that provides a lightweight disk-based database that doesn’t require a separate
server process and allows accessing the database using a non-standard variant of the SQL
query language. SQLite is designed to be embedded into other applications to provide
database support within the application. For example, the Firefox browser also uses the
SQLite database internally. SQLite is well suited to some of the data manipulation problems
in Informatics such as the Twitter spidering application etc.

5.3.1 Database Concepts
For the first look, database seems to be a spreadsheet consisting of multiple sheets. The
primary data structures in a database are tables, rows and columns. In a relational
database terminology, tables, rows and columns are referred as relation, tuple and
attribute respectively. Typical structure of a database table is as shown below. Each table
may consist of n number of attributes and m number of tuples (or records). Every tuple
gives the information about one individual. Every cell(i, j) in the table indicates value of jth
attribute for ith tuple.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

 Attribute1 Attribute2 ……………… Attribute_n

Tuple1 V11 V12 ……………… V1n
Tuple2 V21 V22 ……………… V2n
………….. ……… ……. ……………… ……….
…………. ………… ………. …………….. ………..
Tuple_m Vm1 Vm2 …………….. Vmn

Consider the problem of storing details of students in a database table. The format may
look like –

 RollNo Name DoB Marks
Student1 1 Ram 22/10/2001 82.5
Student2 2 Shyam 20/12/2000 81.3
………….. ……… ……. ……………… ……….
…………. ………… ………. …………….. ………..
Student_m ………….. ………. ……………. …………

Thus, table columns indicate the type of information to be stored, and table rows gives
record pertaining to every student. We can create one more table say addressTable
consisting of attributes like DoorNo, StreetName, Locality, City, PinCode. To relate this
table with a respective student stored in studentTable, we need to store RollNo also in
addressTable (Note that, RollNo will be unique for every student, and hence there won’t be
any confusion). Thus, there is a relationship between two tables in a single database.
There are softwares that can maintain proper relationships between multiple tables in a
single database and are known as Relational Database Management Systems (RDBMS).
The detailed discussion on RDBMS is out of the scope of this study.

5.3.2 Structured Query Language (SQL) Summary
To perform operations on databases, one should use structured query language. SQL is a
standard language for storing, manipulating and retrieving data in databases. Irrespective
of RDBMS software (like Oracle, MySQL, MS Access, SQLite etc) being used, the syntax
of SQL remains the same. The usage of SQL commands may vary from one RDBMS to the
other and there may be little syntactical difference. Also, when we are using some
programming language like Python as a front-end to perform database applications, the
way we embed SQL commands inside the program source-code is as per the syntax of
respective programming language. Still, the underlying SQL commands remain the same.
Hence, it is essential to understand basic commands of SQL.

There are some clauses like FROM, WHERE, ORDER BY, INNER JOIN etc. that are used
with SQL commands, which we will study in a due course. The following table gives few of
the SQL commands.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

As mentioned earlier, every RDBMS has its own way of storing the data in tables. Each of
RDBMS uses its own set of data types for the attribute values to be used. SQLite uses the
data types as mentioned in the following table –

Note that, SQL commands are case-insensitive. But, it is a common practice to write
commands and clauses in uppercase alphabets just to differentiate them from table name
and attribute names.

Now, let us see some of the examples to understand the usage of SQL statements –

 CREATE TABLE Tracks (title TEXT, plays INTEGER)

Command Meaning

CREATE DATABASE creates a new database

ALTER DATABASE modifies a database

CREATE TABLE creates a new table

ALTER TABLE modifies a table

DROP TABLE deletes a table

SELECT extracts data from a database

INSERT INTO inserts new data into a database

UPDATE updates data in a database

DELETE deletes data from a database

Data Type Description

NULL The value is a NULL value.

INTEGER The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes
depending on the magnitude of the value.

REAL The value is a floating point value, stored as an 8-byte floating point
number

TEXT The value is a text string, stored using the database encoding (UTF-
8, UTF-16BE or UTF-16LE)

BLOB The value is a blob (Binary Large Object) of data, stored exactly as it
was input

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

This command creates a table called as Tracks with the attributes title
and plays where title can store data of type TEXT and plays can store
data of type INTEGER.

 INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)
This command inserts one record into the table Tracks where values for the
attributes title and plays are ‘My Way’ and 15 respectively.

 SELECT * FROM Tracks
Retrieves all the records from the table Tracks

 SELECT * FROM Tracks WHERE title = 'My Way’
Retrieves the records from the table Tracks having the value of attribute

title as ‘My Way’

 SELECT title, plays FROM Tracks ORDER BY title
The values of attributes title and plays are retrieved from the table
Tracks with the records ordered in ascending order of title.

 UPDATE Tracks SET plays = 16 WHERE title = 'My Way‘
Whenever we would like to modify the value of any particular attribute in the
table, we can use UPDATE command. Here, the value of attribute plays is
assigned to a new value for the record having value of title as ‘My Way’.

 DELETE FROM Tracks WHERE title = 'My Way'
A particular record can be deleted from the table using DELETE command.
Here, the record with value of attribute title as ‘My Way’ is deleted from
the table Tracks.

5.3.3 Database Browser for SQLite
Many of the operations on SQLite database files can be easily done with the help of
software called Database Browser for SQLite which is freely available from:

http://sqlitebrowser.org/

Using this browser, one can easily create tables, insert data, edit data, or run simple SQL
queries on the data in the database. This database browser is similar to a text editor when
working with text files. When you want to do one or very few operations on a text file, you
can just open it in a text editor and make the changes you want. When you have many
changes that you need to do to a text file, often you will write a simple Python program. You
will find the same pattern when working with databases. You will do simple operations in
the database manager and more complex operations will be most conveniently done in
Python.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://sqlitebrowser.org/

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

5.3.4 Creating a Database Table
When we try to create a database table, we must specify the names of table columns and
the type of data to be stored in those columns. When the database software knows the type
of data in each column, it can choose the most efficient way to store and look up the data
based on the type of data. Here is the simple code to create a database file and a table
named Tracks with two columns in the database:

Ex1.
import sqlite3
conn = sqlite3.connect('music.sqlite')
cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')
cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')
conn.close()

The connect() method of sqlite3 makes a “connection” to the database stored in the
file music.sqlite3 in the current directory. If the file does not exist, it will be created.
Sometimes, the database is stored on a different database server from the server on which
we are running our program. But, all the examples that we consider here will be local file in
the current working directory of Python code.

A cursor() is like a file handle that we can use to perform operations on the data stored
in the database. Calling cursor() is very similar conceptually to calling open() when
dealing with text files. Hence, once we get a cursor, we can execute the commands on the
contents of database using execute() method.

Figure 5.4 A Database Cursor

In the above program, we are trying to remove the database table Tracks, if at all it
existed in the current working directory. The DROP TABLE command deletes the table
along with all its columns and rows. This procedure will help to avoid a possible error of
trying to create a table with same name. Then, we are creating a table with name Tracks
which has two columns viz. title, which can take TEXT type data and plays, which can

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

take INTEGER type data. Once our job with the database is over, we need to close the
connection using close() method.

In the previous example, we have just created a table, but not inserted any records into it.
So, consider below given program, which will create a table and then inserts two rows and
finally delete records based on some condition.

Ex2.
import sqlite3

conn = sqlite3.connect('music.sqlite')
cur = conn.cursor()
cur.execute('DROP TABLE IF EXISTS Tracks')
cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

cur.execute(“INSERT INTO Tracks (title, plays) VALUES
 ('Thunderstruck', 20)”)
cur.execute(“INSERT INTO Tracks (title, plays) VALUES (?, ?)”,

('My Way', 15))
conn.commit()

print('Tracks:')
cur.execute('SELECT title, plays FROM Tracks')
for row in cur:

print(row)

cur.execute('DELETE FROM Tracks WHERE plays < 100')
cur.close()

In the above program, we are inserting first record with the SQL command –

“INSERT INTO Tracks (title, plays) VALUES('Thunderstruck', 20)”

Note that, execute() requires SQL command to be in string format. But, if the value to be
store in the table is also a string (TEXT type), then there may be a conflict of string
representation using quotes. Hence, in this example, the entire SQL is mentioned within
double-quotes and the value to be inserted in single quotes. If we would like to use either
single quote or double quote everywhere, then we need to use escape-sequences like \’
or \”.

While inserting second row in a table, SQL statement is used with a little different syntax –

“INSERT INTO Tracks (title, plays) VALUES (?, ?)”,('My Way', 15)

Here, the question mark acts as a place-holder for particular value. This type of syntax is
useful when we would like to pass user-input values into database table.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

After inserting two rows, we must use commit() method to store the inserted records
permanently on the database table. If this method is not applied, then the insertion (or any
other statement execution) will be temporary and will affect only the current run of the
program.

Later, we use SELECT command to retrieve the data from the table and then use for-loop
to display all records. When data is retrieved from database using SELECT command, the
cursor object gets those data as a list of records. Hence, we can use for-loop on the cursor
object. Finally, we have used a DELETE command to delete all the records WHERE plays
is less than 100.

Let us consider few more examples –

Ex3.

import sqlite3
from sqlite3 import Error

def create_connection():
 """ create a database connection to a database that resides
 in the memory
 """
 try:
 conn = sqlite3.connect(':memory:')
 print("SQLite Version:",sqlite3.version)
 except Error as e:
 print(e)
 finally:
 conn.close()

create_connection()

Few points about above program:

 Whenever we try to establish a connection with database, there is a possibility of
error due to non-existing database, authentication issues etc. So, it is always better
to put the code for connection inside try-except block.

 While developing real time projects, we may need to create database connection
and close it every now-and-then. Instead of writing the code for it repeatedly, it is
better to write a separate function for establishing connection and call that function
whenever and wherever required.

 If we give the term :memory: as an argument to connect() method, then the
further operations (like table creation, insertion into tables etc) will be on memory
(RAM) of the computer, but not on the hard disk.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

Ex4. Write a program to create a Student database with a table consisting of student name
and age. Read n records from the user and insert them into database. Write queries to
display all records and to display the students whose age is 20.

import sqlite3
conn=sqlite3.connect('StudentDB.db')
c=conn.cursor()
c.execute('CREATE TABLE tblStudent(name text, age Integer)')

n=int(input(“Enter number of records:”))
for i in range(n):
 nm=input("Enter Name:")
 ag=int(input("Enter age:"))
 c.execute("INSERT INTO tblStudent VALUES(?,?)",(nm,ag))

conn.commit()
c.execute("select * from tblStudent ")
print(c.fetchall())

c.execute("select * from tblStudent where age=20")
print(c.fetchall())

conn.close()

In the above program we take a for-loop to get user-input for student’s name and age.
These data are inserted into the table. Observe the question mark acting as a placeholder
for user-input variables. Later we use a method fetchall() that is used to display all the
records form the table in the form of a list of tuples. Here, each tuple is one record from the
table.

5.3.5 Three Kinds of Keys
Sometimes, we need to build a data model by putting our data into multiple linked tables
and linking the rows of those tables using some keys. There are three types of keys used
in database model:

 A logical key is a key that the “real world” might use to look up a row. It defines the
relationship between primary keys and foreign keys. Most of the times, a UNIQUE
constraint is added to a logical key. Since the logical key is how we look up a row
from the outside world, it makes little sense to allow multiple rows with the same
value in the table.

 A primary key is usually a number that is assigned automatically by the database. It
generally has no meaning outside the program and is only used to link rows from
different tables together. When we want to look up a row in a table, usually
searching for the row using the primary key is the fastest way to find the row. Since
primary keys are integer numbers, they take up very little storage and can be
compared or sorted very quickly.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

 A foreign key is usually a number that points to the primary key of an associated
row in a different table.

Consider a table consisting of student details like RollNo, name, age, semester and
address as shown below –

RollNo Name Age Sem Address
1 Ram 29 6 Bangalore
2 Shyam 21 8 Mysore
3 Vanita 19 4 Sirsi
4 Kriti 20 6 Tumkur

In this table, RollNo can be considered as a primary key because it is unique for every
student in that table. Consider another table that is used for storing marks of students in all
the three tests as below –

RollNo Sem M1 M2 M3
1 6 34 45 42.5
2 6 42.3 44 25
3 4 38 44 41.5
4 6 39.4 43 40
2 8 37 42 41

To save the memory, this table can have just RollNo and marks in all the tests. There is no
need to store the information like name, age etc of the students as these information can
be retrieved from first table. Now, RollNo is treated as a foreign key in the second table.

5.3.6 Basic Data Modeling
The relational database management system (RDBMS) has the power of linking multiple
tables. The act of deciding how to break up your application data into multiple tables and
establishing the relationships between the tables is called data modeling. The design
document that shows the tables and their relationships is called a data model. Data
modeling is a relatively sophisticated skill. The data modeling is based on the concept of
database normalization which has certain set of rules. In a raw-sense, we can mention
one of the basic rules as never put the same string data in the database more than once. If
we need the data more than once, we create a numeric key (primary key) for the data and
reference the actual data using this key. This is because string requires more space on the
disk compared to integer, and data retrieval (by comparing) using strings is difficult
compared to that with integer.

Consider the example of Student database discussed in Section 5.3.5. We can create a
table using following SQL command –

CREATE TABLE tblStudent

(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem INTEGER, address TEXT)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

Here, RollNo is a primary key and by default it will be unique in one table. Now, another
take can be created as –

CREATE TABLE tblMarks

(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL, UNIQUE(RollNo,sem))

Now, in the tblMarks consisting of marks of 3 tests of all the students, RollNo and sem are
together unique. Because, in one semester, only one student can be there having a
particular RollNo. Whereas in another semester, same RollNo may be there.

Such types of relationships are established between various tables in RDBMS and that will
help better management of time and space.

5.3.7 Using JOIN to Retrieve Data
When we follow the rules of database normalization and have data separated into multiple
tables, linked together using primary and foreign keys, we need to be able to build a
SELECT that reassembles the data across the tables. SQL uses the JOIN clause to
reconnect these tables. In the JOIN clause you specify the fields that are used to reconnect
the rows between the tables.

Consider the following program which creates two tables tblStudent and tblMarks as
discussed in the previous section. Few records are inserted into both the tables. Then we
extract the marks of students who are studying in 6th semester.

import sqlite3

conn=sqlite3.connect('StudentDB.db')
c=conn.cursor()

c.execute('CREATE TABLE tblStudent

(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem
INTEGER, address TEXT)')

c.execute('CREATE TABLE tblMarks
(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL,
UNIQUE(RollNo,sem))')

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",
 (1,'Ram',20,6,'Bangalore'))
c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(2,'Shyam',21,8,'Mysore'))
c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(3,'Vanita',19,4,'Sirsi'))
c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(4,'Kriti',20,6,'Tumkur'))

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(1,6,34,45,42.5))
c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(2,6,42.3,44,25))
c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(3,4,38,44,41.5))
c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(4,6,39.4,43,40))
c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(2,8,37,42,41))

conn.commit()

query="SELECT tblStudent.RollNo, tblStudent.Name, tblMarks.sem,

tblMarks.m1, tblMarks.m2, tblMarks.m3
FROM tblStudent JOIN tblMarks ON
tblStudent.sem = tblMarks.sem AND
tblStudent.RollNo = tblMarks.RollNo
WHERE tblStudent.sem=6"

c.execute(query)
for row in c:
 print(row)

conn.close()

The output would be –

(1, 'Ram', 6, 34.0, 45.0, 42.5)
(4, 'Kriti', 6, 39.4, 43.0, 40.0)

The query joins two tables and extracts the records where RollNo and sem matches in both
the tables, and sem must be 6.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

