
This document can be downloaded from www.chetanahegde.in with most recent updates. 
Notes for Python Application Programming (Open Elective - 15CS664) 

 

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org 

32

3.4 REGULAR EXPRESSIONS 
Searching for required patterns and extracting only the lines/words matching the pattern is 
a very common task in solving problems programmatically. We have done such tasks 
earlier using string slicing and string methods like split(), find() etc. As the task of searching 
and extracting is very common, Python provides a powerful library called regular 
expressions to handle these tasks elegantly. Though they have quite complicated syntax, 
they provide efficient way of searching the patterns.  
 
The regular expressions are themselves little programs to search and parse strings. To use 
them in our program, the library/module re must be imported. There is a search() function 
in this module, which is used to find particular substring within a string. Consider the 
following example – 
 

import re 
fhand = open('myfile.txt') 
for line in fhand: 
    line = line.rstrip() 
    if re.search('how', line): 
        print(line) 

 
By referring to file myfile.txt that has been discussed in previous Chapters, the output would 
be – 
 

hello, how are you? 
how about you? 
 

In the above program, the search() function is used to search the lines containing a word 
how.  
 
One can observe that the above program is not much different from a program that uses 
find() function of strings. But, regular expressions make use of special characters with 
specific meaning. In the following example, we make use of caret (^) symbol, which 
indicates beginning of the line.  
 

import re 
hand = open('myfile.txt') 
for line in hand: 
    line = line.rstrip() 
    if re.search('^how', line): 
        print(line) 

 
The output would be – 

how about you? 
 
Here, we have searched for a line which starts with a string how.  Again, this program will 
not makes use of regular expression fully. Because, the above program would have been 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Notes for Python Application Programming (Open Elective - 15CS664) 

 

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org 

33

written using a string function startswith(). Hence, in the next section, we will understand 
the true usage of regular expressions.  
 
3.4.1 Character Matching in Regular Expressions 
Python provides a list of meta-characters to match search strings. Table 3.1 shows the 
details of few important metacharacters. Some of the examples for quick and easy 
understanding of regular expressions are given in Table 3.2. 
 

Table 3.1 List of Important Meta-Characters 
 

Character Meaning 
^ (caret) Matches beginning of the line 
$  Matches end of the line 
. (dot) Matches any single character except newline. Using option m, then 

newline also can be matched 
[…] Matches any single character in brackets 
[^…] Matches any single character NOT in brackets 
re* Matches 0 or more occurrences of preceding expression. 
re+ Matches 1 or more occurrence of preceding expression. 
re? Matches 0 or 1 occurrence of preceding expression. 
re{ n} Matches exactly n number of occurrences of preceding expression. 
re{ n,} Matches n or more occurrences of preceding expression. 
re{ n, m} Matches at least n and at most m occurrences of preceding expression. 
a| b Matches either a or b. 
(re) Groups regular expressions and remembers matched text. 
\d Matches digits. Equivalent to [0-9]. 
\D Matches non-digits. 
\w Matches word characters. 
\W Matches non-word characters. 
\s Matches whitespace. Equivalent to [\t\n\r\f]. 
\S Matches non-whitespace. 
\A Matches beginning of string. 
\Z Matches end of string. If a newline exists, it matches just before 

newline. 
\z Matches end of string. 
\b Matches the empty string, but only at the start or end of a word. 
\B Matches the empty string, but not at the start or end of a word. 
( )  
 

When parentheses are added to a regular expression, they are ignored 
for the purpose of matching, but allow you to extract a particular subset 
of the matched string rather than the whole string when using 
findall() 

 
 
 
 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Notes for Python Application Programming (Open Elective - 15CS664) 

 

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org 

34

 
 

Table 3.2 Examples for Regular Expressions 
Expression Description 

[Pp]ython Match "Python" or "python" 
rub[ye] Match "ruby" or "rube" 
[aeiou] Match any one lowercase vowel 
[0-9] Match any digit; same as [0123456789] 
[a-z] Match any lowercase ASCII letter 
[A-Z] Match any uppercase ASCII letter 
[a-zA-Z0-9] Match any of uppercase, lowercase alphabets and digits 
[^aeiou] Match anything other than a lowercase vowel 
[^0-9] Match anything other than a digit 

 
Most commonly used metacharacter is dot, which matches any character. Consider the 
following example, where the regular expression is for searching lines which starts with I 
and has any two characters (any character represented by two dots) and then has a 
character m. 

import re 
fhand = open('myfile.txt') 
for line in fhand: 
    line = line.rstrip() 
    if re.search('^I..m', line): 
  print(line) 

 
The output would be – 

I am doing fine. 
 
Note that,  the regular expression ^I..m not only matches ‘I am’, but it can match ‘Isdm’, 
‘I*3m’ and so on. That is, between I and m, there can be any two characters. 
 
In the previous program, we knew that there are exactly two characters between I and m. 
Hence, we could able to give two dots. But, when we don’t know the exact number of 
characters between two characters (or strings), we can make use of dot and + symbols 
together. Consider the below given program – 
 

import re 
hand = open('myfile.txt') 
for line in hand: 
    line = line.rstrip() 
    if re.search('^h.+u', line): 
        print(line) 

 
The output would be – 

hello, how are you? 
how about you? 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Notes for Python Application Programming (Open Elective - 15CS664) 

 

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org 

35

 
Observe the regular expression ^h.+u  here. It indicates that, the string should be starting 
with h and ending with u and there may by any number of (dot and +) characters in-
between.  
 
Few examples: 
To understand the behavior of few basic meta characters, we will see some examples. The 
file used for these examples is mbox-short.txt which can be downloaded from – 

https://www.py4e.com/code3/mbox-short.txt 
 
Use this as input and try following examples – 
 
 Pattern to extract lines starting with the word From (or from) and ending with edu: 

import re 
fhand = open('mbox-short.txt') 
for line in fhand: 
    line = line.rstrip() 
    pattern = ‘^[Ff]rom.*edu$’ 
    if re.search(pattern, line): 
        print(line) 

 
Here the pattern given for regular expression indicates that the line should start with 
either From or from. Then there may be 0 or more characters, and later the line should 
end with edu. 
 

 Pattern to extract lines ending with any digit: 
Replace the pattern by following string, rest of the program will remain the same. 

    pattern = ‘[0-9]$’ 
 

 Using Not : 
   pattern = ‘^[^a-z0-9]+’ 
 

Here, the first ^ indicates we want something to match in the beginning of a line. Then, 
the ^ inside square-brackets indicate do not match any single character within bracket. 
Hence, the whole meaning would be – line must be started with anything other than a 
lower-case alphabets and digits. In other words, the line should not be started with 
lowercase alphabet and digits. 
 

 Start with upper case letters and end with digits: 
pattern = '^[A-Z].*[0-9]$' 

 
Here, the line should start with capital letters, followed by 0 or more characters, but must 
end with any digit. 
 

 
 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
https://www.py4e.com/code3/mbox-short.txt


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Notes for Python Application Programming (Open Elective - 15CS664) 

 

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org 

36

 
3.4.2 Extracting Data using Regular Expressions 
Python provides a method findall() to extract all of the substrings matching a regular 
expression. This function returns a list of all non-overlapping matches in the string. If there 
is no match found, the function returns an empty list. Consider an example of extracting 
anything that looks like an email address from any line. 
 
import re 
s = 'A message from csev@umich.edu to cwen@iupui.edu about meeting 
     @2PM' 
lst = re.findall('\S+@\S+', s) 
print(lst) 
 
The output would be – 

['csev@umich.edu', 'cwen@iupui.edu'] 
 
Here, the pattern indicates at least one non-white space characters (\S) before @ and at 
least one non-white space after @. Hence, it will not match with @2pm, because of a white-
space before @. 
 
Now, we can write a complete program to extract all email-ids from the file. 
 

import re 
fhand = open('mbox-short.txt') 
for line in fhand: 
    line = line.rstrip() 
    x = re.findall('\S+@\S+', line) 
    if len(x) > 0: 
        print(x) 

 
Here, the condition len(x) > 0 is checked because, we want to print only the line which 
contain an email-ID. If any line do not find the match for a pattern given, the findall() 
function will return an empty list. The length of empty list will be zero, and hence we would 
like to print the lines only with length greater than 0.  
 
The output of above program will be something as below – 
 

['stephen.marquard@uct.ac.za'] 
['<postmaster@collab.sakaiproject.org>'] 
['<200801051412.m05ECIaH010327@nakamura.uits.iupui.edu>'] 
['<source@collab.sakaiproject.org>;'] 
['<source@collab.sakaiproject.org>;'] 
['<source@collab.sakaiproject.org>;'] 
['apache@localhost)'] 

 ………………………………. 
 ……………………………….. 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
mailto:csev@umich.edu
mailto:cwen@iupui.edu
mailto:'cwen@iupui.edu'
mailto:'stephen.marquard@uct.ac.za'
mailto:postmaster@collab.sakaiproject.org
mailto:200801051412.m05ECIaH010327@nakamura.uits.iupui.edu
mailto:source@collab.sakaiproject.org
mailto:source@collab.sakaiproject.org
mailto:source@collab.sakaiproject.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Notes for Python Application Programming (Open Elective - 15CS664) 

 

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org 

37

Note that, apart from just email-ID’s, the output contains additional characters (<, >, ; etc) 
attached to the extracted pattern. To remove all that, refine the pattern. That is, we want 
email-ID to be started with any alphabets or digits, and ending with only alphabets. Hence, 
the statement would be – 

 
    x = re.findall('[a-zA-Z0-9]\S*@\S*[a-zA-Z]', line) 

 
3.4.3 Combining Searching and Extracting 
Assume that we need to extract the data in a particular syntax. For example, we need to 
extract the lines containing following format – 
 

X-DSPAM-Confidence: 0.8475 
X-DSPAM-Probability: 0.0000 

 
The line should start with X-, followed by 0 or more characters. Then, we need a colon and 
white-space. They are written as it is. Then there must be a number containing one or more 
digits with or without a decimal point. Note that, we want dot as a part of our pattern string, 
but not as meta character here. The pattern for regular expression would be – 
  ^X-.*: [0-9.]+ 
 
The complete program is – 

import re 
hand = open('mbox-short.txt') 
for line in hand: 
    line = line.rstrip() 
    if re.search('^X\S*: [0-9.]+', line): 
      print(line) 

 
The output lines will as below – 

X-DSPAM-Confidence: 0.8475 
X-DSPAM-Probability: 0.0000 
X-DSPAM-Confidence: 0.6178 
X-DSPAM-Probability: 0.0000 
X-DSPAM-Confidence: 0.6961 
X-DSPAM-Probability: 0.0000 
…………………………………………………… 
…………………………………………………… 

 
Assume that, we want only the numbers (representing confidence, probability etc) in the 
above output. We can use split() function on extracted string. But, it is better to refine 
regular expression. To do so, we need the help of parentheses. 
 
When we add parentheses to a regular expression, they are ignored when matching the 
string. But when we are using findall(), parentheses indicate that while we want the whole 
expression to match, we only are interested in extracting a portion of the substring that 
matches the regular expression. 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Notes for Python Application Programming (Open Elective - 15CS664) 

 

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org 

38

 
import re 
hand = open('mbox-short.txt') 
for line in hand: 
    line = line.rstrip() 
    x = re.findall('^X-\S*: ([0-9.]+)', line) 
    if len(x) > 0: 
        print(x) 

 
Because of the parentheses enclosing the pattern above, it will match the pattern starting 
with X- and extracts only digit portion.  Now, the output would be – 

['0.8475'] 
['0.0000'] 
['0.6178'] 
['0.0000'] 
['0.6961'] 
………………… 
……………….. 

 
Another example of similar form: The file mbox-short.txt contains lines like – 

 

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772 
 
We may be interested in extracting only the revision numbers mentioned at the end of 
these lines. Then, we can write the statement – 
 

x = re.findall('^Details:.*rev=([0-9.]+)', line) 
 
The regex here indicates that the line must start with Details:, and has something with 
rev=  and then digits. As we want only those digits, we will put parenthesis for that portion 
of expression. Note that, the expression [0-9] is greedy, because, it can display very 
large number. It keeps grabbing digits until it finds any other character than the digit. The 
output of above regular expression is a set of revision numbers as given below – 

['39772'] 
['39771'] 
['39770'] 
['39769'] 
……………………… 
……………………… 

 
Consider another example – we may be interested in knowing time of a day of each email. 
The file mbox-short.txt has lines like – 

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008 
 
Here, we would like to extract only the hour 09. That is, we would like only two digits 
representing hour. Hence, we need to modify our expression as – 

x = re.findall('^From .* ([0-9][0-9]):', line) 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772
mailto:stephen.marquard@uct.ac.za


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Notes for Python Application Programming (Open Elective - 15CS664) 

 

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org 

39

Here, [0-9][0-9] indicates that a digit should appear only two times. The alternative way 
of writing this would be - 
 

x = re.findall('^From .* ([0-9]{2}):', line) 
 
The number 2 within flower-brackets indicates that the preceding match should appear 
exactly two times. Hence [0-9]{2}  indicates there can be exactly two digits. Now, the 
output would be – 
 

['09'] 
['18'] 
['16'] 
['15'] 
………………… 
………………… 

 
3.4.4 Escape Character 
As we have discussed till now, the character like dot, plus, question mark, asterisk, dollar 
etc. are meta characters in regular expressions. Sometimes, we need these characters 
themselves as a part of matching string. Then, we need to escape them using a back-
slash. For example, 
 

import re 
x = 'We just received $10.00 for cookies.' 
y = re.findall('\$[0-9.]+',x) 
 

Output: 
['$10.00'] 
 

Here, we want to extract only the price $10.00. As, $ symbol is a metacharacter, we need 
to use \ before it. So that, now $ is treated as a part of matching string, but not as 
metacharacter.  
 
3.4.5 Bonus Section for Unix/Linux Users 
Support for searching files using regular expressions was built into the Unix OS. There is a 
command-line program built into Unix called grep (Generalized Regular Expression Parser) 
that behaves similar to search() function. 
 
  $ grep '^From:'  mbox-short.txt 
Output: 

From: stephen.marquard@uct.ac.za 
From: louis@media.berkeley.edu 
From: zqian@umich.edu 
From: rjlowe@iupui.edu  

Note that, grep command does not support the non-blank character \S, hence we need to 
use [^ ] indicating not a white-space.  

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
mailto:stephen.marquard@uct.ac.za
mailto:louis@media.berkeley.edu
mailto:zqian@umich.edu
mailto:rjlowe@iupui.edu

