
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

 MODULE – 2

2.1 ITERATION
Iteration is a processing repeating some task. In a real time programming, we require a set
of statements to be repeated certain number of times and/or till a condition is met. Every
programming language provides certain constructs to achieve the repetition of tasks. In this
section, we will discuss various such looping structures.

2.1.1 The while Statement
The while loop has the syntax as below –

Here, while is a keyword. The condition is evaluated first. Till its value remains true,
the statement_1 to statement_n will be executed. When the condition becomes
false, the loop is terminated and statements after the loop will be executed. Consider an
example –

n=1
while n<=5:
 print(n) #observe indentation
 n=n+1

print("over")

The output of above code segment would be –

1
2
3
4
5
over

In the above example, a variable n is initialized to 1. Then the condition n<=5 is being
checked. As the condition is true, the block of code containing print statement (print(n))
and increment statement (n=n+1) are executed. After these two lines, condition is checked
again. The procedure continues till condition becomes false, that is when n becomes 6.
Now, the while-loop is terminated and next statement after the loop will be executed. Thus,
in this example, the loop is iterated for 5 times.

while condition:
 statement_1
 statement_2
 …………….
 statement_n

statements_after_while

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

Note that, a variable n is initialized before starting the loop and it is incremented inside the
loop. Such a variable that changes its value for every iteration and controls the total
execution of the loop is called as iteration variable or counter variable. If the count
variable is not updated properly within the loop, then the loop may not terminate and keeps
executing infinitely.

2.1.2 Infinite Loops, break and continue
A loop may execute infinite number of times when the condition is never going to become
false. For example,

 n=1
 while True:
 print(n)
 n=n+1

Here, the condition specified for the loop is the constant True, which will never get
terminated. Sometimes, the condition is given such a way that it will never become false
and hence by restricting the program control to go out of the loop. This situation may
happen either due to wrong condition or due to not updating the counter variable.

In some situations, we deliberately want to come out of the loop even before the normal
termination of the loop. For this purpose break statement is used. The following example
depicts the usage of break. Here, the values are taken from keyboard until a negative
number is entered. Once the input is found to be negative, the loop terminates.

while True:
 x=int(input("Enter a number:"))
 if x>= 0:
 print("You have entered ",x)
 else:
 print("You have entered a negative number!!")
 break #terminates the loop

Sample output:

Enter a number:23
You have entered 23
Enter a number:12
You have entered 12
Enter a number:45
You have entered 45
Enter a number:0
You have entered 0
Enter a number:-2
You have entered a negative number!!

In the above example, we have used the constant True as condition for while-loop, which
will never become false. So, there was a possibility of infinite loop. This has been avoided

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

by using break statement with a condition. The condition is kept inside the loop such a
way that, if the user input is a negative number, the loop terminates. This indicates that, the
loop may terminate with just one iteration (if user gives negative number for the very first
time) or it may take thousands of iteration (if user keeps on giving only positive numbers as
input). Hence, the number of iterations here is unpredictable. But, we are making sure that
it will not be an infinite-loop, instead, the user has control on the loop.

Sometimes, programmer would like to move to next iteration by skipping few statements in
the loop, based on some condition. For this purpose continue statement is used. For
example, we would like to find the sum of 5 even numbers taken as input from the
keyboard. The logic is –

 Read a number from the keyboard
 If that number is odd, without doing anything else, just move to next iteration for

reading another number
 If the number is even, add it to sum and increment the accumulator variable.
 When accumulator crosses 5, stop the program

The program for the above task can be written as –

sum=0
count=0
while True:
 x=int(input("Enter a number:"))
 if x%2 !=0:
 continue
 else:
 sum+=x
 count+=1

 if count==5:
 break

print("Sum= ", sum)

Sample Output:

Enter a number:13
Enter a number:12
Enter a number:4
Enter a number:5
Enter a number:-3
Enter a number:8
Enter a number:7
Enter a number:16
Enter a number:6
Sum= 46

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

2.1.3 Definite Loops using for
The while loop iterates till the condition is met and hence, the number of iterations are
usually unknown prior to the loop. Hence, it is sometimes called as indefinite loop. When
we know total number of times the set of statements to be executed, for loop will be used.
This is called as a definite loop. The for-loop iterates over a set of numbers, a set of words,
lines in a file etc. The syntax of for-loop would be –

Here, for and in are keywords

list/sequence is a set of elements on which the loop is iterated. That is, the
loop will be executed till there is an element in list/sequence

statements constitutes body of the loop

Ex: In the below given example, a list names containing three strings has been created.
Then the counter variable x in the for-loop iterates over this list. The variable x takes the
elements in names one by one and the body of the loop is executed.

names=["Ram", "Shyam", "Bheem"]
for x in names:
 print(x)

The output would be –

Ram
Shyam
Bheem

NOTE: In Python, list is an important data type. It can take a sequence of elements of
different types. It can take values as a comma separated sequence enclosed within square
brackets. Elements in the list can be extracted using index (just similar to extracting array
elements in C/C++ language). Various operations like indexing, slicing, merging, addition
and deletion of elements etc. can be applied on lists. The details discussion on Lists will be
done in Module 3.

The for loop can be used to print (or extract) all the characters in a string as shown below –

for i in "Hello":
 print(i, end=’\t’)

 Output:

H e l l o

for var in list/sequence:
 statement_1
 statement_2
 ………………
 statement_n

statements_after_for

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

When we have a fixed set of numbers to iterate in a for loop, we can use a function
range(). The function range() takes the following format –
 range(start, end, steps)

The start and end indicates starting and ending values in the sequence, where end is
excluded in the sequence (That is, sequence is up to end-1). The default value of start
is 0. The argument steps indicates the increment/decrement in the values of sequence
with the default value as 1. Hence, the argument steps is optional. Let us consider few
examples on usage of range() function.

Ex1. Printing the values from 0 to 4 –

for i in range(5):
 print(i, end= ‘\t’)

Output:
0 1 2 3 4

Here, 0 is the default starting value. The statement range(5) is same as range(0,5)
and range(0,5,1).

Ex2. Printing the values from 5 to 1 –

for i in range(5,0,-1):
 print(i, end= ‘\t’)

Output:

5 4 3 2 1
The function range(5,0,-1)indicates that the sequence of values are 5 to 0(excluded) in
steps of -1 (downwards).
Ex3. Printing only even numbers less than 10 –

for i in range(0,10,2):
 print(i, end= ‘\t’)

Output:

0 2 4 6 8

2.1.4 Loop Patterns
The while-loop and for-loop are usually used to go through a list of items or the contents of
a file and to check maximum or minimum data value. These loops are generally
constructed by the following procedure –

 Initializing one or more variables before the loop starts
 Performing some computation on each item in the loop body, possibly changing the

variables in the body of the loop
 Looking at the resulting variables when the loop completes

The construction of these loop patterns are demonstrated in the following examples.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Counting and Summing Loops: One can use the for loop for counting number of items in
the list as shown –

count = 0
for i in [4, -2, 41, 34, 25]:
 count = count + 1
print(“Count:”, count)

Here, the variable count is initialized before the loop. Though the counter variable i is not
being used inside the body of the loop, it controls the number of iterations. The variable
count is incremented in every iteration, and at the end of the loop the total number of
elements in the list is stored in it.

One more loop similar to the above is finding the sum of elements in the list –

total = 0
for x in [4, -2, 41, 34, 25]:
 total = total + x
print(“Total:”, total)

Here, the variable total is called as accumulator because in every iteration, it
accumulates the sum of elements. In each iteration, this variable contains running total of
values so far.

NOTE: In practice, both of the counting and summing loops are not necessary, because
there are built-in functions len() and sum() for the same tasks respectively.

Maximum and Minimum Loops: To find maximum element in the list, the following code
can be used –

big = None
print('Before Loop:', big)
for x in [12, 0, 21,-3]:
 if big is None or x > big :
 big = x
 print('Iteration Variable:', x, 'Big:', big)

print('Biggest:', big)

Output:

Before Loop: None
Iteration Variable: 12 Big: 12
Iteration Variable: 0 Big: 12
Iteration Variable: 21 Big: 21
Iteration Variable: -3 Big: 21
Biggest: 21

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

Here, we initialize the variable big to None. It is a special constant indicating empty.
Hence, we cannot use relational operator == while comparing it with big. Instead, the is
operator must be used. In every iteration, the counter variable x is compared with previous
value of big. If x > big, then x is assigned to big.

Similarly, one can have a loop for finding smallest of elements in the list as given below –

small = None
print('Before Loop:', small)
for x in [12, 0, 21,-3]:
 if small is None or x < small :
 small = x
 print('Iteration Variable:', x, 'Small:', small)

print('Smallest:', small)

Output:

Before Loop: None
Iteration Variable: 12 Small: 12
Iteration Variable: 0 Small: 0
Iteration Variable: 21 Small: 0
Iteration Variable: -3 Small: -3
Smallest: -3

NOTE: In Python, there are built-in functions max() and min() to compute maximum and
minimum values among. Hence, the above two loops need not be written by the
programmer explicitly. The inbuilt function min() has the following code in Python –

def min(values):
smallest = None
for value in values:

if smallest is None or value < smallest:
smallest = value

return smallest

2.2 STRINGS
A string is a sequence of characters, enclosed either within a pair of single quotes or
double quotes. Each character of a string corresponds to an index number, starting with
zero as shown below –

S= “Hello World”

character H e l l o w o r l d
index 0 1 2 3 4 5 6 7 8 9 10

The characters of a string can be accessed using index enclosed within square brackets.
For example,

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

>>> word1="Hello"
>>> word2='hi'
>>> x=word1[1] #2nd character of word1 is extracted
>>> print(x)

e
>>> y=word2[0] #1st character of word1 is extracted
>>> print(y)

h

Python supports negative indexing of string starting from the end of the string as shown
below –

S= “Hello World”

character H e l l o w o r l D
Negative index -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

The characters can be extracted using negative index also. For example,

>>> var=“Hello”
>>> print(var[-1])
 o
>>> print(var[-4])
 e

Whenever the string is too big to remember last positive index, one can use negative index
to extract characters at the end of string.

2.2.1 Getting Length of a String using len()
The len() function can be used to get length of a string.

>>> var="Hello"
>>> ln=len(var)
>>> print(ln)

5

The index for string varies from 0 to length-1. Trying to use the index value beyond
this range generates error.

>>> var="Hello"
>>> ln=len(var)
>>> ch=var[ln]
IndexError: string index out of range

2.2.2 Traversal through String with a Loop
Extracting every character of a string one at a time and then performing some action on
that character is known as traversal. A string can be traversed either using while loop or
using for loop in different ways. Few of such methods is shown here –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

 Using for loop:
st="Hello"
for i in st:

 print(i, end='\t')

 Output:
 H e l l o

In the above example, the for loop is iterated from first to last character of the string st.
That is, in every iteration, the counter variable i takes the values as H, e, l, l and o. The
loop terminates when no character is left in st.

 Using while loop:

 st="Hello"
 i=0
 while i<len(st):
 print(st[i], end=‘\t’)
 i+=1

 Output:
 H e l l o
In this example, the variable i is initialized to 0 and it is iterated till the length of the
string. In every iteration, the value of i is incremented by 1 and the character in a string
is extracted using i as index.

2.2.3 String Slices
A segment or a portion of a string is called as slice. Only a required number of characters
can be extracted from a string using colon (:) symbol. The basic syntax for slicing a string
would be –
 st[i:j:k]

This will extract character from ith character of st till (j-1)th character in steps of k. If first
index i is not present, it means that slice should start from the beginning of the string. If the
second index j is not mentioned, it indicates the slice should be till the end of the string.
The third parameter k, also known as stride, is used to indicate number of steps to be
incremented after extracting first character. The default value of stride is 1.

Consider following examples along with their outputs to understand string slicing.

st="Hello World" #refer this string for all examples

1. print("st[:] is", st[:]) #output Hello World
As both index values are not given, it assumed to be a full string.

2. print("st[0:5] is ", st[0:5]) #output is Hello

Starting from 0th index to 4th index (5 is exclusive), characters will be printed.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

3. print("st[0:5:1] is", st[0:5:1]) #output is Hello
This code also prints characters from 0th to 4th index in the steps of 1. Comparing
this example with previous example, we can make out that when the stride value is
1, it is optional to mention.

4. print("st[3:8] is ", st[3:8]) #output is lo Wo

Starting from 3rd index to 7th index (8 is exclusive), characters will be printed.

5. print("st[7:] is ", st[7:]) #output is orld

Starting from 7th index to till the end of string, characters will be printed.

6. print(st[::2]) #outputs HloWrd

This example uses stride value as 2. So, starting from first character, every
alternative character (char+2) will be printed.

7. print("st[4:4] is ", st[4:4]) #gives empty string

Here, st[4:4] indicates, slicing should start from 4th character and end with (4-
1)=3rd character, which is not possible. Hence the output would be an empty string.

8. print(st[3:8:2]) #output is l o

Starting from 3rd character, till 7th character, every alternative index is considered.

9. print(st[1:8:3]) #output is eoo
Starting from index 1, till 7th index, every 3rd character is extracted here.

10. print(st[-4:-1]) #output is orl
Refer the diagram of negative indexing given earlier. Excluding the -1st character, all
characters at the indices -4, -3 and -2 will be displayed. Observe the role of stride
with default value 1 here. That is, it is computed as -4+1 =-3, -3+1=-2 etc.

11. print(st[-1:]) #output is d

Here, starting index is -1, ending index is not mentioned (means, it takes the index
10) and the stride is default value 1. So, we are trying to print characters from -1
(which is the last character of negative indexing) till 10th character (which is also the
last character in positive indexing) in incremental order of 1. Hence, we will get only
last character as output.

12. print(st[:-1]) #output is Hello Worl

Here, starting index is default value 0 and ending is -1 (corresponds to last character
in negative indexing). But, in slicing, as last index is excluded always, -1st character
is omitted and considered only up to -2nd character.

13. print(st[::]) #outputs Hello World

Here, two colons have used as if stride will be present. But, as we haven’t
mentioned stride its default value 1 is assumed. Hence this will be a full string.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

14. print(st[::-1]) #outputs dlroW olleH
This example shows the power of slicing in Python. Just with proper slicing, we
could able to reverse the string. Here, the meaning is a full string to be extracted in
the order of -1. Hence, the string is printed in the reverse order.

15. print(st[::-2]) #output is drWolH

Here, the string is printed in the reverse order in steps of -2. That is, every
alternative character in the reverse order is printed. Compare this with example (6)
given above.

By the above set of examples, one can understand the power of string slicing and of
Python script. The slicing is a powerful tool of Python which makes many task simple
pertaining to data types like strings, Lists, Tuple, Dictionary etc. (Other types will be
discussed in later Modules)

2.2.4 Strings are Immutable
The objects of string class are immutable. That is, once the strings are created (or
initialized), they cannot be modified. No character in the string can be
edited/deleted/added. Instead, one can create a new string using an existing string by
imposing any modification required.

Try to attempt following assignment –

>>> st= “Hello World”
 >>> st[3]='t'
 TypeError: 'str' object does not support item assignment

Here, we are trying to change the 4th character (index 3 means, 4th character as the first
index is 0) to t. The error message clearly states that an assignment of new item (a string)
is not possible on string object. So, to achieve our requirement, we can create a new string
using slices of existing string as below –

>>> st= “Hello World”
>>> st1= st[:3]+ 't' + st[4:]
>>> print(st1)

Helto World #l is replaced by t in new string st1

2.2.5 Looping and Counting
Using loops on strings, we can count the frequency of occurrence of a character within
another string. The following program demonstrates such a pattern on computation called
as a counter. Initially, we accept one string and one character (single letter). Our aim to
find the total number of times the character has appeared in string. A variable count is
initialized to zero, and incremented each time a character is found. The program is given
below –

def countChar(st,ch):
 count=0
 for i in st:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

 if i==ch:
 count+=1
 return count

st=input("Enter a string:")
ch=input("Enter a character to be counted:")
c=countChar(st,ch)
print("{0} appeared {1} times in {2}".format(ch,c,st))

Sample Output:

Enter a string: hello how are you?
Enter a character to be counted: h
h appeared 2 times in hello how are you?

2.2.6 The in Operator
The in operator of Python is a Boolean operator which takes two string operands. It returns
True, if the first operand appears in second operand, otherwise returns False. For example,

>>> 'el' in 'hello' #el is found in hello
 True
>>> 'x' in 'hello' #x is not found in hello
 False

2.2.7 String Comparison
Basic comparison operators like < (less than), > (greater than), == (equals) etc. can be
applied on string objects. Such comparison results in a Boolean value True or False.
Internally, such comparison happens using ASCII codes of respective characters. Consider
following examples –

Ex1. st= “hello”
 if st== ‘hello’:
 print(‘same’)

Output is same. As the value contained in st and hello both are same, the equality
results in True.

Ex2. st= “hello”

if st<= ‘Hello’:
 print(‘lesser’)
 else:
 print(‘greater’)

Output is greater. The ASCII value of h is greater than ASCII value of H. Hence, hello
is greater than Hello.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

NOTE: A programmer must know ASCII values of some of the basic characters. Here are
few –
 A – Z : 65 – 90
 a – z : 97 – 122
 0 – 9 : 48 – 57
 Space : 32
 Enter Key : 13

2.2.8 String Methods
String is basically a class in Python. When we create a string in our program, an object of
that class will be created. A class is a collection of member variables and member methods
(or functions). When we create an object of a particular class, the object can use all the
members (both variables and methods) of that class. Python provides a rich set of built-in
classes for various purposes. Each class is enriched with a useful set of utility functions
and variables that can be used by a Programmer. A programmer can create a class based
on his/her requirement, which are known as user-defined classes.

The built-in set of members of any class can be accessed using the dot operator as
shown–
 objName.memberMethod(arguments)

The dot operator always binds the member name with the respective object name. This is
very essential because, there is a chance that more than one class has members with
same name. To avoid that conflict, almost all Object oriented languages have been
designed with this common syntax of using dot operator. (Detailed discussion on classes
and objects will be done in later Modules.)

Python provides a function (or method) dir to list all the variables and methods of a
particular class object. Observe the following statements –

>>> s="hello" #string object is created with the name s
>>> type(s) #checking type of s
<class ‘str’> #s is object of type class str
>>> dir(s) #display all methods and variables of object s

['__add__', '__class__', '__contains__', '__delattr__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__',
'__mod__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', 'capitalize',
'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs',
'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha',
'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric',

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust',
'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind',
'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase', 'title',
'translate', 'upper', 'zfill']

Students need not remember the above list !!

Note that, the above set of variables and methods are common for any object of string
class that we create. Each built-in method has a predefined set of arguments and return
type. To know the usage, working and behavior of any built-in method, one can use the
command help. For example, if we would like to know what is the purpose of islower()
function (refer above list to check its existence!!), how it behaves etc, we can use the
statement –

>>> help(str.islower)
Help on method_descriptor:

islower(...)
 S.islower() -> bool

 Return True if all cased characters in S are lowercase and
there is at least one cased character in S, False otherwise.

This is built-in help-service provided by Python. Observe the className.memberName
format while using help.

The methods are usually called using the object name. This is known as method
invocation. We say that a method is invoked using an object.

Now, we will discuss some of the important methods of string class.
 capitalize(s) : This function takes one string argument s and returns a capitalized

version of that string. That is, the first character of s is converted to upper case, and all
other characters to lowercase. Observe the examples given below –
Ex1. >>> s="hello"

 >>> s1=str.capitalize(s)
 >>> print(s1)

Hello #1st character is changed to uppercase

Ex2. >>> s="hello World"

>>> s1=str.capitalize(s)
>>> print(s1)

Hello world

Observe in Ex2 that the first character is converted to uppercase, and an in-between
uppercase letter W of the original string is converted to lowercase.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

 s.upper(): This function returns a copy of a string s to uppercase. As strings are

immutable, the original string s will remain same.

>>> st= “hello”
>>> st1=st.upper()
>>> print(st1)
 'HELLO'
>>> print(st) #no change in original string
 'hello'

 s.lower(): This method is used to convert a string s to lowercase. It returns a copy of

original string after conversion, and original string is intact.

>>> st='HELLO'
>>> st1=st.lower()
>>> print(st1)
 hello
>>> print(st) #no change in original string
 HELLO

 s.find(s1) : The find() function is used to search for a substring s1 in the string s. If

found, the index position of first occurrence of s1 in s, is returned. If s1 is not found in s,
then -1 is returned.

>>> st='hello'
>>> i=st.find('l')
>>> print(i) #output is 2
>>> i=st.find('lo')
>>> print(i) #output is 3
>>> print(st.find(‘x’)) #output is -1

The find() function can take one more form with two additional arguments viz. start
and end positions for search.

>>> st="calender of Feb. cal of march"
>>> i= st.find(‘cal’)
>>> print(i) #output is 0

 Here, the substring ‘cal’ is found in the very first position of st, hence the result is 0.

>>> i=st.find('cal',10,20)
>>> print(i) #output is 17

Here, the substring cal is searched in the string st between 10th and 20th position and
hence the result is 17.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

>>> i=st.find('cal',10,15)
>>> print(i) #ouput is -1

In this example, the substring 'cal' has not appeared between 10th and 15th
character of st. Hence, the result is -1.

 s.strip(): Returns a copy of string s by removing leading and trailing white spaces.

>>> st=" hello world "
>>> st1 = st.strip()
>>> print(st1)
 hello world

The strip() function can be used with an argument chars, so that specified chars are
removed from beginning or ending of s as shown below –

>>> st="###Hello##"
>>> st1=st.strip('#')
>>> print(st1) #all hash symbols are removed
 Hello

 We can give more than one character for removal as shown below –

>>> st="Hello world"
>>> st.strip("Hld")

ello wor

 S.startswith(prefix, start, end): This function has 3 arguments of which start and end
are option. This function returns True if S starts with the specified prefix, False
otherwise.

>>> st="hello world"
>>> st.startswith("he") #returns True

When start argument is provided, the search begins from that position and returns True
or False based on search result.

>>> st="hello world"
>>> st.startswith("w",6) #True because w is at 6th position

When both start and end arguments are given, search begins at start and ends at end.

>>> st="xyz abc pqr ab mn gh“
>>> st.startswith("pqr ab mn",8,12) #returns False
>>> st.startswith("pqr ab mn",8,18) #returns True

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

The startswith() function requires case of the alphabet to match. So, when we are
not sure about the case of the argument, we can convert it to either upper case or
lowercase and then use startswith() function as below –

>>> st="Hello"
>>> st.startswith("he") #returns False
>>> st.lower().startswith("he") #returns True

 S.count(s1, start, end): The count() function takes three arguments – string, starting
position and ending position. This function returns the number of non-overlapping
occurrences of substring s1 in string S in the range of start and end.

>>> st="hello how are you? how about you?"
>>> st.count('h') #output is 3
>>> st.count(‘how’) #output is 2
>>> st.count(‘how’,3,10) #output is 1 because of range given

There are many more built-in methods for string class. Students are advised to
explore more for further study.

2.2.9 Parsing Strings
Sometimes, we may want to search for a substring matching certain criteria. For example,
finding domain names from email-Ids in the list of messages is a useful task in some
projects. Consider a string below and we are interested in extracting only the domain name.

 “From chetanahegde@ieee.org Wed Feb 21 09:14:16 2018”

Now, our aim is to extract only ieee.org, which is the domain name. We can think of logic
as–

o Identify the position of @, because all domain names in email IDs will be after the
symbol @

o Identify a white space which appears after @ symbol, because that will be the
end of domain name.

o Extract the substring between @ and white-space.

The concept of string slicing and find() function will be useful here.Consider the code given
below –

st="From chetanahegde@ieee.org Wed Feb 21 09:14:16 2018"
atpos=st.find('@') #finds the position of @

print('Position of @ is', atpos)

spacePos=st.find(‘ ', atpos) #position of white-space after @

print('Position of space after @ is', spacePos)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

host=st[atpos+1:spacePos] #slicing from @ till white-space
print(host)

Execute above program to get the output as ieee.org. One can apply this logic in a loop,
when our string contains series of email IDs, and we may want to extract all those mail IDs.

2.2.10 Format Operator
The format operator, % allows us to construct strings, replacing parts of the strings with the
data stored in variables. The first operand is the format string, which contains one or more
format sequences that specify how the second operand is formatted. The result is a string.

>>> sum=20
>>> '%d' %sum

 ‘20’ #string ‘20’, but not integer 20

Note that, when applied on both integer operands, the % symbol acts as a modulus
operator. When the first operand is a string, then it is a format operator. Consider few
examples illustrating usage of format operator.

Ex1. >>> "The sum value %d is originally integer"%sum

 'The sum value 20 is originally integer‘

Ex2. >>> '%d %f %s'%(3,0.5,'hello')
 '3 0.500000 hello‘

Ex3. >>> '%d %g %s'%(3,0.5,'hello')
 '3 0.5 hello‘

Ex4. >>> '%d'% 'hello'
 TypeError: %d format: a number is required, not str

Ex5. >>> '%d %d %d'%(2,5)
 TypeError: not enough arguments for format string

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

