
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

MODULE 2 – FILES

2.3 FILES
File handling is an important requirement of any programming language, as it allows us to
store the data permanently on the secondary storage and read the data from a permanent
source. Here, we will discuss how to perform various operations on files using the
programming language Python.

2.3.1 Persistence
The programs that we have considered till now are based on console I/O. That is, the input
was taken from the keyboard and output was displayed onto the monitor. When the data to
be read from the keyboard is very large, console input becomes a laborious job. Also, the
output or result of the program has to be used for some other purpose later, it has to be
stored permanently. Hence, reading/writing from/to files are very essential requirement of
programming.

We know that the programs stored in the hard disk are brought into main memory to
execute them. These programs generally communicate with CPU using conditional
execution, iteration, functions etc. But, the content of main memory will be erased when we
turn-off our computer. We have discussed these concepts in Module1 with the help of
Figure 1.1. Here we will discuss about working with secondary memory or files. The files
stored on the secondary memory are permanent and can be transferred to other machines
using pen-drives/CD.

2.3.2 Opening Files
To perform any operation on a file, one must open a file. File opening involves
communication with operating system. In Python, a file can be opened using a built-in
function open(). While opening a file, we must specify the name of the file to be opened.
Also, we must inform the OS about the purpose of opening a file, which is termed as file
opening mode. The syntax of open() function is as below –

 fhand= open(“filename”, “mode”)

Here, filename is name of the file to be opened. This string may be just a name of the

file, or it may include pathname also. Pathname of the file is optional
when the file is stored in current working directory

mode This string indicates the purpose of opening a file. It takes a pre-
defined set of values as given in Table 2.1

fhand It is a reference to an object of file class, which acts as a handler or
tool for all further operations on files.

When our Python program makes a request to open a specific file in a particular mode,
then OS will try to serve the request. When a file gets opened successfully, then a file
object is returned. This is known as file handle and is as shown in Figure 2.1. It will help to

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

perform various operations on a file through our program. If the file cannot be opened due
to some reason, then error message (traceback) will be displayed.

Figure 2.1 A File Handle

A file opening may cause an error due to some of the reasons as listed below –

o File may not exist in the specified path (when we try to read a file)
o File may exist, but we may not have a permission to read/write a file
o File might have got corrupted and may not be in an opening state

Since, there is no guarantee about getting a file handle from OS when we try to open a file,
it is always better to write the code for file opening using try-except block. This will help us
to manage error situation.

Mode Meaning
r Opens a file for reading purpose. If the specified file does not exist in the

specified path, or if you don’t have permission, error message will be
displayed. This is the default mode of open() function in Python.

w Opens a file for writing purpose. If the file does not exist, then a new file
with the given name will be created and opened for writing. If the file
already exists, then its content will be over-written.

a Opens a file for appending the data. If the file exists, the new content will
be appended at the end of existing content. If no such file exists, it will be
created and new content will be written into it.

r+ Opens a file for reading and writing.
w+ Opens a file for both writing and reading. Overwrites the existing file if the

file exists. If the file does not exist, creates a new file for reading and
writing.

a+ Opens a file for both appending and reading. The file pointer is at
the end of the file if the file exists. The file opens in the append
mode. If the file does not exist, it creates a new file for reading and
writing.

rb Opens a file for reading only in binary format
wb Opens a file for writing only in binary format
ab Opens a file for appending only in binary format

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

2.3.3 Text Files and Lines
A text file is a file containing a sequence of lines. It contains only the plain text without any
images, tables etc. Different lines of a text file are separated by a newline character \n. In
the text files, this newline character may be invisible, but helps in identifying every line in
the file. There will be one more special entry at the end to indicate end of file (EOF).

NOTE: There is one more type of file called binary file, which contains the data in the form
of bits. These files are capable of storing text, image, video, audio etc. All these data will be
stored in the form of a group of bytes whose formatting will be known. The supporting
program can interpret these files properly, whereas when opened using normal text editor,
they look like messy, unreadable set of characters.

2.3.4 Reading Files
When we successfully open a file to read the data from it, the open() function returns the
file handle (or an object reference to file object) which will be pointing to the first character
in the file. A text file containing lines can be iterated using a for-loop starting from the
beginning with the help of this file handle. Consider the following example of counting
number of lines in a file.

NOTE: Before executing the below given program, create a text file (using Notepad or
similar editor) myfile.txt in the current working directory (The directory where you are going
store your Python program). Open this text file and add few random lines to it and then
close. Now, open a Python script file, say countLines.py and save it in the same directory
as that of your text file myfile.txt. Then, type the following code in Python script
countLines.py and execute the program. (You can store text file and Python script file in
different directories. But, if you do so, you have to mention complete path of text file in the
open() function.)

Sample Text file myfile.txt:

hello how are you?
I am doing fine
what about you?

Python script file countLines.py

fhand=open('myfile.txt','r')
count =0
for line in fhand:
 count+=1
 print("Line Number ",count, ":", line)

print("Total lines=",count)
fhand.close()

Output:

Line Number 1 : hello how are you?
Line Number 2 : I am doing fine

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

Line Number 3 : what about you?
Total lines= 3

In the above program, initially, we will try to open the file 'myfile.txt. As we have
already created that file, the file handler will be returned and the object reference to this file
will be stored in fhand. Then, in the for-loop, we are using fhand as if it is a sequence of
lines. For each line in the file, we are counting it and printing the line. In fact, a line is
identified internally with the help of new-line character present at the end of each line.
Though we have not typed \n anywhere in the file myfile.txt, after each line, we would
have pressed enter-key. This act will insert a \n, which is invisible when we view the file
through notepad. Once all lines are over, fhand will reach end-of-file and hence terminates
the loop. Note that, when end of file is reached (that is, no more characters are present in
the file), then an attempt to read will return None or empty character ‘’ (two quotes without
space in between).

Once the operations on a file is completed, it is a practice to close the file using a function
close(). Closing of a file ensures that no unwanted operations are done on a file handler.
Moreover, when a file was opened for writing or appending, closure of a file ensures that
the last bit of data has been uploaded properly into a file and the end-of-file is maintained
properly. If the file handler variable (in the above example, fhand) is used to assign some
other file object (using open() function), then Python closes the previous file automatically.

If you run the above program and check the output, there will be a gap of two lines between
each of the output lines. This is because, the new-line character \n is also a part of the
variable line in the loop, and the print() function has default behavior of adding a line at
the end (due to default setting of end parameter of print()). To avoid this double-line
spacing, we can remove the new-line character attached at the end of variable line by
using built-in string function rstrip() as below –

 print("Line Number ",count, ":", line.rstrip())

It is obvious from the logic of above program that from a file, each line is read one at a time,
processed and discarded. Hence, there will not be a shortage of main memory even though
we are reading a very large file. But, when we are sure that the size of our file is quite
small, then we can use read() function to read the file contents. This function will read
entire file content as a single string. Then, required operations can be done on this string
using built-in string functions. Consider the below given example –

fhand=open('myfile.txt')
s=fhand.read()
print(“Total number of characters:”,len(s))
print(“String up to 20 characters:”, s[:20])

After executing above program using previously created file myfile.txt, then the output
would be –

Total number of characters:50
String up to 20 characters: hello how are you?
I

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

2.3.5 Writing Files
To write a data into a file, we need to use the mode w in open() function.

>>> fhand=open(“mynewfile.txt","w")
>>> print(fhand)
<_io.TextIOWrapper name='mynewfile.txt' mode='w' encoding='cp1252'>

If the file specified already exists, then the old contents will be erased and it will be ready to
write new data into it. If the file does not exists, then a new file with the given name will be
created.

The write() method is used to write data into a file. This method returns number of
characters successfully written into a file. For example,

>>> s="hello how are you?"
>>> fhand.write(s)

18

Now, the file object keeps track of its position in a file. Hence, if we write one more line into
the file, it will be added at the end of previous line. Here is a complete program to write few
lines into a file –

fhand=open('f1.txt','w')
for i in range(5):

line=input("Enter a line: ")
fhand.write(line+"\n")

fhand.close()

The above program will ask the user to enter 5 lines in a loop. After every line has been
entered, it will be written into a file. Note that, as write() method doesn’t add a new-line
character by its own, we need to write it explicitly at the end of every line. Once the loop
gets over, the program terminates. Now, we need to check the file f1.txt on the disk (in
the same directory where the above Python code is stored) to find our input lines that have
been written into it.

2.3.6 Searching through a File
Most of the times, we would like to read a file to search for some specific data within it. This
can be achieved by using some string methods while reading a file. For example, we may
be interested in printing only the line which starts with a character h. Then we can use
startswith() method.

fhand=open('myfile.txt')
for line in fhand:
 if line.startswith('h'):
 print(line)
fhand.close()

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Assume the input file myfile.txt is containing the following lines –

hello how are you?
I am doing fine
how about you?

Now, if we run the above program, we will get the lines which starts with h –

hello how are you?
how about you?

2.3.7 Letting the User Choose the File Name
In a real time programming, it is always better to ask the user to enter a name of the file
which he/she would like to open, instead of hard-coding the name of a file inside the
program.

fname=input("Enter a file name:")
fhand=open(fname)

count =0
for line in fhand:
 count+=1
 print("Line Number ",count, ":", line)

print("Total lines=",count)
fhand.close()

In this program, the user input filename is received through variable fname, and the same
has been used as an argument to open() method. Now, if the user input is myfile.txt
(discussed before), then the result would be

Total lines=3

Everything goes well, if the user gives a proper file name as input. But, what if the input
filename cannot be opened (Due to some reason like – file doesn’t exists, file permission
denied etc)? Obviously, Python throws an error. The programmer need to handle such run-
time errors as discussed in the next section.

2.3.8 Using try, except to Open a File
It is always a good programming practice to write the commands related to file opening
within a try block. Because, when a filename is a user input, it is prone to errors. Hence,
one should handle it carefully. The following program illustrates this –

fname=input("Enter a file name:")
try:
 fhand=open(fname)
except:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

 print("File cannot be opened")
 exit()

count =0
for line in fhand:
 count+=1
 print("Line Number ",count, ":", line)

print("Total lines=",count)
fhand.close()

In the above program, the command to open a file is kept within try block. If the specified
file cannot be opened due to any reason, then an error message is displayed saying File
cannot be opened, and the program is terminated. If the file could able to open
successfully, then we will proceed further to perform required task using that file.

2.3.9 Debugging
While performing operations on files, we may need to extract required set of lines or words
or characters. For that purpose, we may use string functions with appropriate delimiters
that may exist between the words/lines of a file. But, usually, the invisible characters like
white-space, tabs and new-line characters are confusing and it is hard to identify them
properly. For example,

>>> s="1 2\t 3\n 4"
>>> print(s)
1 2 3
 4

Here, by looking at the output, it may be difficult to make out where there is a space, where
is a tab etc. Python provides a utility function called as repr() to solve this problem. This
method takes any object as an argument and returns a string representation of that object.
For example, the print() in the above code snippet can be modified as –

>>> print(repr(s))
'1 2\t 3\n 4'

Note that, some of the systems use \n as new-line character, and few others may use \r
(carriage return) as a new-line character. The repr() method helps in identifying that too.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

