
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

MODULE – 1

1.1 WHY SHOULD YOU LEARN TO WRITE PROGRAMS
Programs are generally written to solve the real-time arithmetic/logical problems.
Nowadays, computational devices like personal computer, laptop, and cell phones are
embedded with operating system, memory and processing unit. Using such devices one
can write a program in the language (which a computer can understand) of one’s choice to
solve various types of problems. Humans are tend get bored by doing computational tasks
multiple times. Hence, the computer can act as a personal assistant for people for doing
their job!! To make a computer to solve the required problem, one has to feed the proper
program to it. Hence, one should know how to write a program!!

There are many programming languages that suit several situations. The programmer must
be able to choose the suitable programming language for solving the required problem
based on the factors like computational ability of the device, data structures that are
supported in the language, complexity involved in implementing the algorithm in that
language etc.

1.1.1 Creativity and Motivation
When a person starts programming, he himself will be both the programmer and the end-
user. Because, he will be learning to solve the problems. But, later, he may become a
proficient programmer. A programmer should have logical thinking ability to solve a given
problem. He/she should be creative in analyzing the given problems, finding the possible
solutions, optimizing the resources available and delivering the best possible results to the
end-user. Motivation behind programming may be a job-requirement and such other
prospects. But, the programmer should follow certain ethics in delivering the best possible
output to his/her clients. The responsibilities of a programmer includes developing a
feasible, user-friendly software with very less or no hassles. The user is expected to have
only the abstract knowledge about the working of software, but not the implementation
details. Hence, the programmer should strive hard towards developing most effective
software.

1.1.2 Computer Hardware Architecture
To understand the art programming, it is better to know the basic architecture of computer
hardware. The computer system involves some of the important parts as shown in Figure
1.1. These parts are as explained below:

 Central Processing Unit (CPU): It performs basic arithmetic, logical, control and
I/O operations specified by the program instructions. CPU will perform the given
tasks with a tremendous speed. Hence, the good programmer has to keep the CPU
busy by providing enough tasks to it.

 Main Memory: It is the storage area to which the CPU has a direct access. Usually,
the programs stored in the secondary storage are brought into main memory before
the execution. The processor (CPU) will pick a job from the main memory and
performs the tasks. Usually, information stored in the main memory will be vanished
when the computer is turned-off.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

Figure 1.1 Computer Hardware Architecture

 Secondary Memory: The secondary memory is the permanent storage of
computer. Usually, the size of secondary memory will be considerably larger than
that of main memory. Hard disk, USB drive etc can be considered as secondary
memory storage.

 I/O Devices: These are the medium of communication between the user and the
computer. Keyboard, mouse, monitor, printer etc. are the examples of I/O devices.

 Network Connection: Nowadays, most of the computers are connected to network
and hence they can communicate with other computers in a network. Retrieving the
information from other computers via network will be slower compared to accessing
the secondary memory. Moreover, network is not reliable always due to problem in
connection.

The programmer has to use above resources sensibly to solve the problem. Usually, a
programmer will be communicating with CPU by telling it ‘what to do next’. The usage of
main memory, secondary memory, I/O devices also can be controlled by the programmer.

To communicate with the CPU for solving a specific problem, one has to write a set of
instructions. Such a set of instructions is called as a program.

1.1.3 Understanding Programming
A programmer must have skills to look at the data/information available about a problem,
analyze it and then to build a program to solve the problem. The skills to be possessed by a
good programmer includes –

 Thorough knowledge of programming language: One needs to know the
vocabulary and grammar (technically known as syntax) of the programming
language. This will help in constructing proper instructions in the program.

 Skill of implementing an idea: A programmer should be like a ‘story teller’. That is,
he must be capable of conveying something effectively. He/she must be able to
solve the problem by designing suitable algorithm and implementing it. And, the
program must provide appropriate output as expected.

Software

Input and Output
Devices

Central
Processing Unit

Main
Memory

Secondary
Memory

What
Next?

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

Thus, the art of programming requires the knowledge about the problem’s requirement and
the strength/weakness of the programming language chosen for the implementation. It is
always advisable to choose appropriate programming language that can cater the
complexity of the problem to be solved.

1.1.4 Words and Sentences
Every programming language has its own constructs to form syntax of the language. Basic
constructs of a programming language includes set of characters and keywords that it
supports. The keywords have special meaning in any language and they are intended for
doing specific task. Python has a finite set of keywords as given in Table 1.1.

Table 1.1 Keywords in Python
and as assert break class continue
def del elif else except False
finally for from global if import
in is lambda None nonlocal not
or pass raise return True try
while with Yield

A programmer may use variables to store the values in a program. Unlike many other
programming languages, a variable in Python need not be declared before its use.

1.1.5 Python Editors and Installing Python
Before getting into details of the programming language Python, it is better to learn how to
install the software. Python is freely downloadable from the internet. There are multiple
IDEs (Integrated Development Environment) available for working with Python. Some of
them are PyCharm, LiClipse, IDLE etc. When you install Python, the IDLE editor will be
available automatically. Apart from all these editors, Python program can be run on
command prompt also. One has to install suitable IDE depending on their need and the
Operating System they are using. Because, there are separate set of editors (IDE)
available for different OS like Window, UNIX, Ubuntu, Soloaris, Mac, etc. The basic Python
can be downloaded from the link:
 https://www.python.org/downloads/

Python has rich set of libraries for various purposes like large-scale data processing,
predictive analytics, scientific computing etc. Based on one’s need, the required packages
can be downloaded. But, there is a free open source distribution Anaconda, which
simplifies package management and deployment. Hence, it is suggested for the readers to
install Anaconda from the below given link, rather than just installing a simple Python.

https://anaconda.org/anaconda/python

Successful installation of anaconda provides you Python in a command prompt, the default
editor IDLE and also a browser-based interactive computing environment known as jupyter
notebook.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
https://www.python.org/downloads/
https://anaconda.org/anaconda/python

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

The jupyter notebook allows the programmer to create notebook documents including live
code, interactive widgets, plots, equations, images etc. To code in Python using jupyter
notebook, search for jupyter notebook in windows search (at Start menu). Now, a browser
window will be opened similar to the one shown in Figure 1.2.

Figure 1.2 Homepage of Jupyter Notebook

Figure 1.3 IDE of Jupyter Notebook

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

You can choose the working directory of your choice for storing your work. To open a
notebook for Python programming, click on New button at the right-side of the screen. Now
select Python 3 from the drop-down list. A new notebook (or workbook will be created as
shown in Figure 1.3. Type a command of your choice and press Ctrl+Enter to run that
command. One can give headings/subheadings etc for the commands being typed, store
the entire workbook for future reference etc. Readers are advised to try and experience
various options/menu’s available.

1.1.6 Conversing with Python
Once Python is installed, one can go ahead with working with Python. Use the IDE of your
choice for doing programs in Python. After installing Python (or Anaconda distribution), if
you just type ‘python’ in the command prompt, you will get the message as shown in Figure
1.4. The prompt >>> (usually called as chevron) indicates the system is ready to take
Python instructions. If you would like to use the default IDE of Python, that is, the IDLE,
then you can just run IDLE and you will get the editor as shown in Figure 1.5.

Figure 1.4 Python initialization in command prompt

After understanding the basics of few editors of Python, let us start our communication with
Python, by saying Hello World. The Python uses print() function for displaying the contents.
Consider the following code –

 >>> print(“Hello World”) #type this and press enter key
 Hello World #output displayed

>>> #prompt returns again

Here, after typing the first line of code and pressing the enter key, we could able to get the
output of that line immediately. Then the prompt (>>>) is returned on the screen. This
indicates, Python is ready to take next instruction as input for processing.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Figure 1.5 Python IDLE editor

Once we are done with the program, we can close or terminate Python by giving quit()
command as shown –

>>> quit() #Python terminates

1.1.7 Terminology: Interpreter and Compiler
All digital computers can understand only the machine language written in terms of zeros
and ones. But, for the programmer, it is difficult to code in machine language. Hence, we
generally use high level programming languages like Java, C++, PHP, Perl, JavaScript etc.
Python is also one of the high level programming languages. The programs written in high
level languages are then translated to machine level instruction so as to be executed by
CPU. How this translation behaves depending on the type of translators viz. compilers and
interpreters.

A compiler translates the source code of high-level programming language into machine
level language. For this purpose, the source code must be a complete program stored in a
file (with extension, say, .java, .c, .cpp etc). The compiler generates executable files
(usually with extensions .exe, .dll etc) that are in machine language. Later, these
executable files are executed to give the output of the program.

On the other hand, interpreter performs the instructions directly, without requiring them to
be pre-compiled. Interpreter parses (syntactic analysis) the source code ant interprets it
immediately. Hence, every line of code can generate the output immediately, and the
source code as a complete set, need not be stored in a file. That is why, in the previous
section, the usage of single line print(“Hello World”) could able to generate the
output immediately.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

Consider an example of adding two numbers –
>>> x=10
>>> y=20
>>> z= x+y
>>> print(z)
30

Here, x, y and z are variables storing respective values. As each line of code above is
processed immediately after the line, the variables are storing the given values. Observe
that, though each line is treated independently, the knowledge (or information) gained in
the previous line will be retained by Python and hence, the further lines can make use of
previously used variables. Thus, each line that we write at the Python prompt are logically
related, though they look independent.

NOTE that, Python do not require variable declaration (unlike in C, C++, Java etc) before
its use. One can use any valid variable name for storing the values. Depending on the type
(like number, string etc) of the value being assigned, the type and behavior of the variable
name is judged by Python.

1.1.8 Writing a Program
As Python is interpreted language, one can keep typing every line of code one after the
other (and immediately getting the output of each line) as shown in previous section. But, in
real-time scenario, typing a big program is not a good idea. It is not easy to logically debug
such lines. Hence, Python programs can be stored in a file with extension .py and then can
be run. Programs written within a file are obviously reusable and can be run whenever we
want. Also, they are transferrable from one machine to other machine via pen-drive, CD
etc.

1.1.9 What is a Program?
A program is a sequence of instructions intended to do some task. For example, if we need
to count the number of occurrences of each word in a text document, we can write a
program to do so. Writing a program will make the task easier compared to manually
counting the words in a document. Moreover, most of the times, the program is a generic
solution. Hence, the same program may be used to count the frequency of words in
another file. The person who does not know anything about the programming also can run
this program to count the words.

Programming languages like Python will act as an intermediary between the computer and
the programmer. The end-user can request the programmer to write a program to solve
one’s problem.

1.1.10 The Building Blocks of Programs
There are certain low-level conceptual structures to construct a program in any
programming language. They are called as building-blocks of a program and listed below –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

 Input: Every program may take some inputs from outside. The input may be through
keyboard, mouse, disk-file etc. or even through some sensors like microphone, GPS
etc.

 Output: Purpose of a program itself is to find the solution to a problem. Hence,
every program must generate at least one output. Output may be displayed on a
monitor or can be stored in a file. Output of a program may even be a music/voice
message.

 Sequential Execution: In general, the instructions in the program are sequentially
executed from the top.

 Conditional Execution: In some situations, a set of instructions have to be
executed based on the truth-value of a variable or expression. Then conditional
constructs (like if) have to be used. If the condition is true, one set of instructions will
be executed and if the condition is false, the true-block is skipped.

 Repeated Execution: Some of the problems require a set of instructions to be
repeated multiple times. Such statements can be written with the help of looping
structures like for, while etc.

 Reuse: When we write the programs for general-purpose utility tasks, it is better to
write them with a separate name, so that they can be used multiple times
whenever/wherever required. This is possible with the help of functions.

The art of programming involves thorough understanding of the above constructs and using
them legibly.

1.1.11 What Could Possibly Go Wrong?
It is obvious that one can do mistakes while writing a program. The possible mistakes are
categorized as below –

 Syntax Errors: The statements which are not following the grammar (or syntax) of
the programming language are tend to result in syntax errors. Python is a case-
sensitive language. Hence, there is a chance that a beginner may do some
syntactical mistakes while writing a program. The lines involving such mistakes are
encountered by the Python when you run the program and the errors are thrown by
specifying possible reasons for the error. The programmer has to correct them and
then proceed further.

 Logical Errors: Logical error occurs due to poor understanding of the problem.
Syntactically, the program will be correct. But, it may not give the expected output.
For example, you are intended to find a%b, but, by mistake you have typed a/b.
Then it is a logical error.

 Semantic Errors: A semantic error may happen due to wrong use of variables,
wrong operations or in wrong order. For example, trying to modify un-initialized
variable etc.

Note that, some of textbooks/authors refer logical and semantic error both as same,
as the distinction between these two is very small.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

NOTE: There is one more type of error – runtime error, usually called as exceptions.
It may occur due to wrong input (like trying to divide a number by zero), problem in
database connectivity etc. When a run-time error occurs, the program throws some
error, which may not be understood by the normal user. And he/she may not
understand how to overcome such errors. Hence, suspicious lines of code have to
be treated by the programmer himself by the procedure known as exception
handling. Python provides mechanism for handling various possible exceptions like
ArithmeticError, FloatingpointError, EOFError, MemoryError etc. A brief idea about
exception handling is there in Section 1.3.7 later in this Module. For more details,
interested readers can go through the links –

https://docs.python.org/3/tutorial/errors.html and
https://docs.python.org/2/library/exceptions.html

1.2 VARIABLES, EXPRESSIONS AND STATEMENTS
After understanding some important concepts about programming and programming
languages, we will now move on to learn Python as a programming language with its
syntax and constructs.

1.2.1 Values and Types
A value is one of the basic things in a program. It may be like 2, 10.5, “Hello” etc. Each
value in Python has a type. Type of 2 is integer; type of 10.5 is floating point number;
“Hello” is string etc. The type of a value can be checked using type function as shown
below –

>>> type("hello")
<class 'str'> #output

>>> type(3)
<class 'int'>

>>> type(10.5)
<class 'float'>

>>> type("15")
<class 'str'>

In the above four examples, one can make out various types str, int and float. Observe the
4th example – it clearly indicates that whatever enclosed within a double quote is a string.

1.2.2 Variables
A variable is a named-literal which helps to store a value in the program. Variables may
take value that can be modified wherever required in the program. Note that, in Python, a
variable need not be declared with a specific type before its usage. Whenever you want a
variable, just use it. The type of it will be decided by the value assigned to it. A value can be
assigned to a variable using assignment operator (=). Consider the example given below–

>>> x=10
>>> print(x)

10 #output

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/2/library/exceptions.html

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

>>> type(x)
<class 'int'> #type of x is integer

>>> y="hi"
>>> print(y)

hi #output
>>> type(y)

<class 'str'> #type of y is string

It is observed from above examples that the value assigned to variable determines the type
of that variable.

1.2.3 Variable Names and Keywords
It is a good programming practice to name the variable such that its name indicates its
purpose in the program. There are certain rules to be followed while naming a variable –

 Variable name must not be a keyword
 They can contain alphabets (lowercase and uppercase) and numbers, but should

not start with a number.
 It may contain a special character underscore(_), which is usually used to combine

variables with two words like my_salary, student_name etc. No other special
characters like @, $ etc. are allowed.

 As Python is case-sensitive, variable name sum is different from SUM, Sum etc.

Examples:

>>> 3a=5 #starting with a number
SyntaxError: invalid syntax
>>> a$=10 #contains $
SyntaxError: invalid syntax
>>> if=15 #if is a keyword
SyntaxError: invalid syntax

1.2.4 Statements
A statement is a small unit of code that can be executed by the Python interpreter. It
indicates some action to be carried out. In fact, a program is a sequence of such
statements. Following are the examples of statements –

>>> print("hello") #printing statement
hello
>>> x=5 #assignment statement
>>> print(x) #printing statement

1.2.5 Operators and Operands
Special symbols used to indicate specific tasks are called as operators. An operator may
work on single operand (unary operator) or two operands (binary operator). There are
several types of operators like arithmetic operators, relational operators, logical operators
etc. in Python.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

Arithmetic Operators are used to perform basic operations as listed in Table 1.2.

Table 1.2 Arithmetic Operators
Operator Meaning Example

+ Addition Sum= a+b
- Subtraction Diff= a-b
* Multiplication Pro= a*b
/ Division Q = a/b

X = 5/3
(X will get a value 1.666666667)

// Floor Division – returns only
integral part after division

F = a//b
X= 5//3 (X will get a value 1)

% Modulus – remainder after
division

R = a %b
(Remainder after dividing a by b)

** Exponent E = x** y
(means x to the powder of y)

Relational or Comparison Operators are used to check the relationship (like less than,
greater than etc) between two operands. These operators return a Boolean value – either
True or False.

Assignment Operators: Apart from simple assignment operator = which is used for
assigning values to variables, Python provides compound assignment operators. For
example,

x= x+y
can be written as –

 x+=y

Now, += is compound assignment operator. Similarly, one can use most of the arithmetic
and bitwise operators (only binary operators, but not unary) like *, /, %, //, &, ^ etc. as
compound assignment operators. For example,

>>> x=3
>>> y=5
>>> x+=y #x=x+y
>>> print(x)

8
>>> y//=2 #y=y//2
>>> print(y)

2 #only integer part will be printed

NOTE:

1. Python has a special feature – one can assign values of different types to multiple
variables in a single statement. For example,

>>> x, y, st=3, 4.2, "Hello"
>>> print("x= ", x, " y= ",y, " st= ", st)

x=3 y=4.2 st=Hello

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

2. Python supports bitwise operators like &(AND), | (OR), ~(NOT), ^(XOR), >>(right
shift) and <<(left shift). These operators will operate on every bit of the operands.
Working procedure of these operators is same as that in other languages like C and
C++.

3. There are some special operators in Python viz. Identity operator (is and is not)
and membership operator (in and not in). These will be discussed in further
Modules.

1.2.6 Expressions
A combination of values, variables and operators is known as expression. Following are
few examples of expression –
 x=5
 y=x+10
 z= x-y*3

The Python interpreter evaluates simple expressions and gives results even without print().
For example,
 >>> 5

5 #displayed as it is
>>> 1+2
3 #displayed the sum

But, such expressions do not have any impact when written into Python script file.

1.2.7 Order of Operations
When an expression contains more than one operator, the evaluation of operators depends
on the precedence of operators. The Python operators follow the precedence rule (which
can be remembered as PEMDAS) as given below –

 Parenthesis have the highest precedence in any expression. The operations within
parenthesis will be evaluated first. For example, in the expression (a+b)*c, the
addition has to be done first and then the sum is multiplied with c.

 Exponentiation has the 2nd precedence. But, it is right associative. That is, if there
are two exponentiation operations continuously, it will be evaluated from right to left
(unlike most of other operators which are evaluated from left to right). For example,

>>> print(2**3) #It is 23
8

>>> print(2**3**2) #It is
232 , so to be evaluated from right

512

 Multiplication and Division are the next priority. Out of these two operations,
whichever comes first in the expression is evaluated.

>>> print(5*2/4) #multiplication and then division
2.5

>>> print(5/4*2) #division and then multiplication
2.5

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

 Addition and Subtraction are the least priority. Out of these two operations,
whichever appears first in the expression is evaluated.

1.2.8 String Operations
String concatenation can be done using + operator as shown below –

>>> x="32"
>>> y="45"
>>> print(x+y)

3245

Observe the output: here, the value of y (a string “45”, but not a number 45) is placed just in
front of value of x(a string “32”). Hence the result would be “3245” and its type would be
string.

NOTE: One can use single quotes to enclose a string value, instead of double quotes.

1.2.9 Asking the User for Input
Python uses the built-in function input() to read the data from the keyboard. When this
function is invoked, the user-input is expected. The input is read till the user presses enter-
key. For example:

>>> str1=input()
Hello how are you? #user input
>>> print(“String is “,str1)
String is Hello how are you? #printing str1

When input() function is used, the curser will be blinking to receive the data. For a better
understanding, it is better to have a prompt message for the user informing what needs to
be entered as input. The input() function itself can be used to do so, as shown below –

>>> str1=input("Enter a string: ")
Enter a string: Hello
>>> print("You have entered: ",str1)
You have entered: Hello

One can use new-line character \n in the function input() to make the cursor to appear in
the next line of prompt message –

>>> str1=input("Enter a string:\n")
Enter a string:
Hello #cursor is pushed here

The key-board input received using input() function is always treated as a string type. If you
need an integer, you need to convert it using the function int(). Observe the following
example –

>>> x=input("Enter x:")
Enter x:10 #x takes the value “10”, but not 10
>>> type(x) #So, type of x would be str
<class 'str'>

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

>>> x=int(input("Enter x:")) #use int()
Enter x:10
>>> type(x) #Now, type of x is int
<class 'int'>

A function float() is used to convert a valid value enclosed within quotes into float number
as shown below –

>>> f=input("Enter a float value:")
Enter a float value: 3.5
>>> type(f)
<class 'str'> #f is actually a string “3.5”
>>> f=float(f) #converting “3.5” into float value 3.5
>>> type(f)
<class 'float'>

A function chr() is used to convert an integer input into equivalent ASCII character.

>>> a=int(input("Enter an integer:"))
Enter an integer:65
>>> ch=chr(a)
>>> print("Character Equivalent of ", a, "is ",ch)
Character Equivalent of 65 is A

There are several such other utility functions in Python, which will be discussed later.

1.2.10 Comments
It is a good programming practice to add comments to the program wherever required. This
will help someone to understand the logic of the program. Comment may be in a single line
or spread into multiple lines. A single-line comment in Python starts with the symbol #.
Multiline comments are enclosed within a pair of 3-single quotes.

Ex1. #This is a single-line comment

Ex2. ''' This

is a
multiline
comment '''

Python (and all programming languages) ignores the text written as comment lines. They
are only for the programmer’s (or any reader’s) reference.

1.2.11 Choosing Mnemonic Variable Names
Choosing an appropriate name for variables in the program is always at stake. Consider
the following examples –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

Ex1.
a=10000
b=0.3*a
c=a+b
print(c) #output is 13000

Ex2.

basic=10000
da=0.3*basic
gross_sal=basic+da
print("Gross Sal = ",gross_sal) #output is 13000

One can observe that both of these two examples are performing same task. But,
compared to Ex1, the variables in Ex2 are indicating what is being calculated. That is,
variable names in Ex2 are indicating the purpose for which they are being used in the
program. Such variable names are known as mnemonic variable names. The word
mnemonic means memory aid. The mnemonic variables are created to help the
programmer to remember the purpose for which they have been created.

Python can understand the set of reserved words (or keywords), and hence it flashes an
error when such words are used as variable names by the programmer. Moreover, most of
the Python editors have a mechanism to show keywords in a different color. Hence,
programmer can easily make out the keyword immediately when he/she types that word.

1.2.12 Debugging
Some of the common errors a beginner programmer may make are syntax errors. Though
Python flashes the error with a message, sometimes it may become hard to understand the
cause of errors. Some of the examples are given here –

Ex1. >>> avg sal=10000

SyntaxError: invalid syntax

 Here, there is a space between the terms avg and sal, which is not allowed.

Ex2. >>> m=09

SyntaxError: invalid token

 Python does not allow preceding zeros for numeric values.

Ex3. >>> basic=2000

>>> da=0.3*Basic
NameError: name 'Basic' is not defined

 As Python is case sensitive, basic is different from Basic.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

As shown in above examples, the syntax errors will be alerted by Python. But, programmer
is responsible for logical errors or semantic errors. Because, if the program does not yield
into expected output, it is due to mistake done by the programmer, about which Python is
unaware of.

1.3 CONDITIONAL EXECUTION
In general, the statements in a program will be executed sequentially. But, sometimes we
need a set of statements to be executed based on some conditions. Such situations are
discussed in this section.

1.3.1 Boolean Expressions
A Boolean Expression is an expression which results in True or False. The True and False
are special values that belong to class bool. Check the following –

>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>

Boolean expression may be as below –

>>> 10==12
False
>>> x=10
>>> y=10
>>> x==y
True

Various comparison operations are shown in Table 1.3.

Table 1.3 Relational (Comparison) Operators
Operator Meaning Example

> Greater than a>b
< Less than a= Greater than or equal to a>=b
<= Less than or equal to a<=b
== Comparison a==b
!= Not equal to a !=b
is Is same as a is b
is not Is not same as a is not b

Few Examples:
>>> a=10
>>> b=20
>>> x= a>b
>>> print(x)

False
>>> print(a==b)

False

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

>>> print("a<b is ", a<b)
a<b is True

>>> print("a!=b is", a!=b)
a!=b is True

>>> 10 is 20
False

>>> 10 is 10
True

NOTE: For a first look, the operators == and is look same. Similarly, the operators != and
is not look the same. But, the operators == and != does the equality test. That is, they
will compare the values stored in the variables. Whereas, the operators is and is not
does the identity test. That is, they will compare whether two objects are same. Usually,
two objects are same when their memory locations are same. This concept will be more
clear when we take up classes and objects in Python.

1.3.2 Logical Operators
There are 3 logical operators in Python as shown in Table 1.4. (NOTE that symbols like &&,
|| are not used in Python for representing logical operators)

Table 1.4 Logical Operators

Operator Meaning Example
and Returns true, if both operands are true a and b
or Returns true, if any one of two operands is true a or b
not Return true, if the operand is false (it is a unary operator) not a

NOTE:

1. Logical operators treat the operands as Boolean (True or False).
2. Python treats any non-zero number as True and zero as False.
3. While using and operator, if the first operand is False, then the second operand is

not evaluated by Python. Because False and’ed with anything is False.
4. In case of or operator, if the first operand is True, the second operand is not

evaluated. Because True or’ed with anything is True.

Example 1 (with Boolean Operands):

>>> x= True
>>> y= False
>>> print('x and y is', x and y)

x and y is False
>>> print('x or y is', x or y)

x or y is True
>>> print('Complement of x is ', not x)

Complement of x is False

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

Example 2 (With numeric Operands):
>>> a=-3
>>> b=10
>>> print(a and b) #and operation

10 #a is true, hence b is evaluated and printed

>>> print(a or b) #or operation

-3 #a is true, hence b is not evaluated
>>> print(0 and 5) #0 is false, so printed

0

1.3.3 Conditional Execution
The basic level of conditional execution can be achieved in Python by using if statement.
The syntax and flowcharts are as below –

Consider an example –

>>> x=10
>>> if x<40:

print("Fail") #observe indentation after if

Fail #output

Usually, the if conditions have a statement block. In any case, the programmer feels to do
nothing when the condition is true, the statement block can be skipped by just typing pass
statement as shown below –

>>> if x<0:
pass #do nothing when x is negative

1.3.4 Alternative Execution
A second form of if statement is alternative execution. Here, when the condition is true, one
set of statements will be executed and when the condition is false, another set of
statements will be executed. The syntax and flowchart are as given below –

if condition:
Statement block

Statement Block

 condition?

Entry

False

True

Exit

Observe the colon symbol after condition. When the
condition is true, the Statement block will be
executed. Otherwise, it is skipped. A set (block) of
statements to be executed under if is decided by the
indentation (tab space) given.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

Example:

x=int(input("Enter x:"))
if x%2==0:
 print("x is even")
else:

 print("x is odd")

Sample output:

 Enter x: 13
x is odd

1.3.5 Chained Conditionals
Some of the programs require more than one possibility to be checked for executing a set
of statements. That means, we may have more than one branch. This is solved with the
help of chained conditionals. The syntax and flowchart is given below –

The conditions are checked one by one sequentially. If any condition is satisfied, the
respective statement block will be executed and further conditions are not checked. Note
that, the last else block is not necessary always.

if condition:
 Statement block -1
else:
 Statement block -2

Statement
block-1

 Condition?

Statement
block -2

False True

As the condition will be either true or false,
only one among Statement block-1 and
Statement block-2 will be get executed. These
two alternatives are known as branches.

if condition1:
 Statement Block-1
elif condition2:
 Statement Block-2
 |
 |
 |
 |
elif condition_n:
 Statement Block-n
else:
 Statement Block-(n+1)

T T

F F

T

Cond1 Cond2 Condn

Statement
Block-1

Statement
Block-2

Statement
Block-n

Statement
Block-(n+1)

F

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

Example: marks=float(input("Enter marks:"))
if marks >= 80:
 print("First Class with Distinction")
elif marks >= 60 and marks < 80:
 print("First Class")
elif marks >= 50 and marks < 60:
 print("Second Class")
elif marks >= 35 and marks < 50:
 print("Third Class")
else:

 print("Fail")

Sample Output:

Enter marks: 78
First Class

1.3.6 Nested Conditionals
The conditional statements can be nested. That is, one set of conditional statements can
be nested inside the other. It can be done in multiple ways depending on programmer’s
requirements. Examples are given below –

Ex1. marks=float(input("Enter marks:"))

if marks>=60:
 if marks<70:
 print("First Class")
 else:
 print("Distinction")

Sample Output:

Enter marks:68
First Class

Here, the outer condition marks>=60 is checked first. If it is true, then there are two
branches for the inner conditional. If the outer condition is false, the above code does
nothing.

Ex2. gender=input("Enter gender:")

age=int(input("Enter age:"))

if gender == "M" :
 if age >= 21:
 print("Boy, Eligible for Marriage")
 else:
 print("Boy, Not Eligible for Marriage")
elif gender == "F":
 if age >= 18:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

 print("Girl, Eligible for Marriage")
 else:
 print("Girl, Not Eligible for Marriage")

Sample Output:

Enter gender: F
Enter age: 17
Girl, Not Eligible for Marriage

NOTE: Nested conditionals make the code difficult to read, even though there are proper
indentations. Hence, it is advised to use logical operators like and to simplify the nested
conditionals. For example, the outer and inner conditions in Ex1 above can be joined as -

if marks>=60 and marks<70:
#do something

1.3.7 Catching Exceptions using try and except
As discussed in Section 1.1.11, there is a chance of runtime error while doing some
program. One of the possible reasons is wrong input. For example, consider the following
code segment –

a=int(input("Enter a:"))
b=int(input("Enter b:"))
c=a/b
print(c)

When you run the above code, one of the possible situations would be –

Enter a:12
Enter b:0
Traceback (most recent call last):
 File "C:\Users\Chetana\Dropbox\PythonNotes\p1.py", line 154,
in <module>
 c=a/b
ZeroDivisionError: division by zero

For the end-user, such type of system-generated error messages is difficult to handle. So
the code which is prone to runtime error must be executed conditionally within try block.
The try block contains the statements involving suspicious code and the except block
contains the possible remedy (or instructions to user informing what went wrong and what
could be the way to get out of it). If something goes wrong with the statements inside try
block, the except block will be executed. Otherwise, the except-block will be skipped.
Consider the example –

a=int(input("Enter a:"))
b=int(input("Enter b:"))
try:
 c=a/b
 print(c)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

except:
 print("Division by zero is not possible")

Output:

Enter a:12
Enter b:0
Division by zero is not possible

Handling an exception using try is called as catching an exception. In general, catching an
exception gives the programmer to fix the probable problem, or to try again or at least to
end the program gracefully.

1.3.8 Short-Circuit Evaluation of Logical Expressions
When a logical expression (expression involving operands and, or, not) is being evaluated,
it will be processed from left to right. For example, consider the statements -
 x= 10
 y=20
 if x<10 and x+y>25:
 #do something

Here, the expression x<10 and x+y>25 involves the logical operator and. Now, x<10 is
evaluated first, which results to be False. As there is an and operator, irrespective of the
result of x+y>25, the whole expression will be False. In such situations, Python ignores the
remaining part of the expression. This is known as short-circuiting the evaluation. When
the first part of logical expression results in True, then the second part has to be evaluated
to know the overall result.

The short-circuiting not only saves the computational time, but it also leads to a technique
known as guardian pattern. Consider following sequence of statements –

>>> x=5
>>> y=0
>>> x>=10 and (x/y)>2
False

>>> x>=2 and (x/y)>2
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in <module>
 x>=2 and (x/y)>2
ZeroDivisionError: division by zero

Here, when we executed the statement x>=10 and (x/y)>2, the first half of logical
expression itself was False and hence by applying short-circuit rule, the remaining part was
not executed at all. Whereas, in the statement x>=2 and (x/y)>2, the first half is True
and the second half is resulted in runtime-error. Thus, in the expression x>=10 and
(x/y)>2, short-circuit rule acted as a guardian by preventing an error.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

One can construct the logical expression to strategically place a guard evaluation just
before the evaluation that might cause an error as follows:

>>> x=5
>>> y=0
>>> x>=2 and y!=0 and(x/y)>2
False

Here, x>=2 results in True, but y!=0 evaluates to be False. Hence, the expression
(x/y)>2 is never reached and possible error is being prevented from happening.

1.3.9 Debugging
One can observe from previous few examples that when a runtime error occurs, it displays
a term Traceback followed by few indications about errors. A traceback is a stack trace
from the point of error-occurrence down to the call-sequence till the point of call. This is
helpful when we start using functions and when there is a sequence of multiple function
calls from one to other. Then, traceback will help the programmer to identify the exact
position where the error occurred. Most useful part of error message in traceback are –

 What kind of error it is
 Where it occurred

Compared to runtime errors, syntax errors are easy to find, most of the times. But,
whitespace errors in syntax are quite tricky because spaces and tabs are invisible. For
example –

>>> x=10
>>> y=15
 SyntaxError: unexpected indent

The error here is because of additional space given before y. As Python has a different
meaning (separate block of code) for indentation, one cannot give extra spaces as shown
above.

In general, error messages indicate where the problem has occurred. But, the actual error
may be before that point, or even in previous line of code.

1.4 FUNCTIONS
Functions are the building blocks of any programming language. A sequence of instructions
intended to perform a specific independent task is known as a function. In this section, we
will discuss various types of built-in functions, user-defined functions, applications/uses of
functions etc.

1.4.1 Function Calls
A function is a named sequence of instructions for performing a task. When we define a
function we will give a valid name to it, and then specify the instructions for performing

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

required task. Later, whenever we want to do that task, a function is called by its name.
Consider an example –

>>> type(15)
<class 'int'>

Here type is a function name, 15 is the argument to a function and <class 'int'> is the
result of the function. Usually, a function takes zero or more arguments and returns the
result.

1.4.2 Built-in Functions
Python provides a rich set of built-in functions for doing various tasks. The
programmer/user need not know the internal working of these functions; instead, they need
to know only the purpose of such functions. Some of the built in functions are given below –

 max(): This function is used to find maximum value among the arguments. It can be

used for numeric values or even to strings.
o max(10, 20, 14, 12) #maximum of 4 integers

20
o max("hello world")

'w' #character having maximum ASCII code
o max(3.5, -2.1, 4.8, 15.3, 0.2)

15.3 #maximum of 5 floating point values

 min(): As the name suggests, it is used to find minimum of arguments.
o min(10, 20, 14, 12) #minimum of 4 integers

10
o min("hello world")

' ' #space has least ASCII code here
o min(3.5, -2.1, 4.8, 15.3, 0.2)

-2.1 #minimum of 5 floating point values

 len(): This function takes a single argument and finds its length. The argument can
be a string, list, tuple etc.

o len(“hello how are you?”)
18

There are many other built-in functions available in Python. They are discussed in further
Modules, wherever they are relevant.

1.4.3 Type Conversion Functions
As we have seen earlier (while discussing input() function), the type of the variable/value
can be converted using functions int(), float(), str(). Consider following few examples –

 int('20') #integer enclosed within single quotes
20 #converted to integer type

 int("20") #integer enclosed within double quotes
20

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

 int("hello") #actual string cannot be converted to int
Traceback (most recent call last):
 File "<pyshell#23>", line 1, in <module>
 int("hello")
ValueError: invalid literal for int() with base 10: 'hello'

 int(3.8) #float value being converted to integer

3 #round-off will not happen, fraction is ignored
 int(-5.6)

-5
 float('3.5') #float enclosed within single quotes

3.5 #converted to float type
 float(42) #integer is converted to float

42.0
 str(4.5) #float converted to string

'4.5'
 str(21) #integer converted to string

'21'

1.4.4 Random Numbers
Most of the programs that we write are deterministic. That is, the input (or range of inputs)
to the program is pre-defined and the output of the program is one of the expected values.
But, for some of the real-time applications in science and technology, we need randomly
generated output. This will help in simulating certain scenario. Radom number generation
has important applications in games, noise detection in electronic communication,
statistical sampling theory, cryptography, political and business prediction etc. These
applications require the program to be nondeterministic. There are several algorithms to
generate random numbers. But, as making a program completely nondeterministic is
difficult and may lead to several other consequences, we generate pseudo-random
numbers. That is, the type (integer, float etc) and range (between 0 and 1, between 1 and
100 etc) of the random numbers are decided by the programmer, but the actual numbers
are unknown. Moreover, the algorithm to generate the random number is also known to the
programmer. Thus, the random numbers are generated using deterministic computation
and hence, they are known as pseudo-random numbers!!

Python has a module random for the generation of random numbers. One has to import
this module in the program. The function used is also random(). By default, this function
generates a random number between 0 and 1 (excluding 1). For example –

import random #module random is imported
print(random.random()) #random() function is invoked
0.7430852580883088 #a random number generated
print(random.random())
0.5287778188896328 #one more random number

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

26

Importing a module creates an object. Using this object, one can access various functions
and/or variables defined in that module. Functions are invoked using a dot operator.

There are several other functions in the module random apart from the function random().
(Do not get confused with module name and function name. Observe the parentheses
while referring a function name). Few are discussed hereunder:

 randint(): It takes two arguments low and high and returns a random integer
between these two arguments (both low and high are inclusive). For example,

>>>random.randint(2,20)
 14 #integer between 2 and 20 generated
>>> random.randint(2,20)
 10

 choice(): This function takes a sequence (a list type in Python) of numbers as an
argument and returns one of these numbers as a random number. For example,

>>> t=[1,2, -3, 45, 12, 7, 31, 22] #create a list t
>>> random.choice(t) #t is argument to choice()
 12 #one of the elements in t
>>> random.choice(t)
 1 #one of the elements in t

Various other functions available in random module can be used to generate random
numbers following several probability distributions like Gaussian, Triangular, Uniform,
Exponential, Weibull, Normal etc.

1.4.5 Math Functions
Python provides a rich set of mathematical functions through the module math. To use
these functions, the math module has to be imported in our code. Some of the important
functions available in math are given hereunder –

 sqrt(): This function takes one numeric argument and finds the square root of that
argument.

>>> math.sqrt(34) #integer argument
5.830951894845301

>>> math.sqrt(21.5) #floating point argument
4.636809247747852

 pi: The constant value pi can be used directly whenever we require.
>>>print (math.pi)

3.141592653589793

 log10(): This function is used to find logarithm of the given argument, to the base
10.

>>> math.log10(2)
0.3010299956639812

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

27

 log(): This is used to compute natural logarithm (base e) of a given number.
>>> math.log(2)

0.6931471805599453

 sin(): As the name suggests, it is used to find sine value of a given argument. Note
that, the argument must be in radians (not degrees). One can convert the number of
degrees into radians by multiplying pi/180 as shown below –

>>>math.sin(90*math.pi/180) #sin(90) is 1
1.0

 cos(): Used to find cosine value –

>>>math.cos(45*math.pi/180)
0.7071067811865476

 tan(): Function to find tangent of an angle, given as argument.
>>> math.tan(45*math.pi/180)

0.9999999999999999

 pow(): This function takes two arguments x and y, then finds x to the power of y.
>>> math.pow(3,4)
81.0

1.4.6 Adding New Functions (User-defined Functions)
Python facilitates programmer to define his/her own functions. The function written once
can be used wherever and whenever required. The syntax of user-defined function would
be –

 def fname(arg_list):
 statement_1
 statement_2
 ……………
 Statement_n
 return value

Here def is a keyword indicating it as a function definition.
 fname is any valid name given to the function

arg_list is list of arguments taken by a function. These are treated as inputs to
the function from the position of function call. There may be zero or
more arguments to a function.

statements are the list of instructions to perform required task.
return is a keyword used to return the output value. This statement is optional

The first line in the function def fname(arg_list)is known as function header. The
remaining lines constitute function body. The function header is terminated by a colon and
the function body must be indented. To come out of the function, indentation must be
terminated. Unlike few other programming languages like C, C++ etc, there is no main()

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

28

function or specific location where a user-defined function has to be called. The
programmer has to invoke (call) the function wherever required.

Consider a simple example of user-defined function –

 Observe indentation

Statements outside the
function without indentation.
myfun() is called here.

The output of above program would be –

Example of function
Hello
Inside the function
Example over

The function definition creates an object of type function. In the above example, myfun is
internally an object. This can be verified by using the statement –
 >>>print(myfun) # myfun without parenthesis
 <function myfun at 0x0219BFA8>

>>> type(myfun) # myfun without parenthesis
<class 'function'>

Here, the first output indicates that myfun is an object which is being stored at the memory
address 0x0219BFA8 (0x indicates octal number). The second output clearly shows
myfun is of type function.

(NOTE: In fact, in Python every type is in the form of class. Hence, when we apply type on
any variable/object, it displays respective class name. The detailed study of classes will be
done in Module 4.)

The flow of execution of every program is sequential from top to bottom, a function can be
invoked only after defining it. Usage of function name before its definition will generate
error. Observe the following code:

print("Example of function")
myfun() #function call before definition
print("Example over")

def myfun(): #function definition is here
 print("Hello")
 print("Inside the function")

def myfun():
 print("Hello")
 print("Inside the function")

print("Example of function")
myfun()
print("Example over")

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

29

The above code would generate error saying
 NameError: name 'myfun' is not defined

Functions are meant for code-reusability. That is, a set of instructions written as a function
need not be repeated. Instead, they can be called multiple times whenever required.
Consider the enhanced version of previous program as below –

 (5)
 (3)

Execution
 starts here(1)

 (2)

The output is –

Example of function
Inside myfun()
Inside repeat()
Inside myfun()
Example over

Observe the output of the program to understand the flow of execution of the program.
Initially, we have two function definitions myfun()and repeat()one after the other. But,
functions are not executed unless they are called (or invoked). Hence, the first line to
execute in the above program is –

print("Example of function")

Then, there is a function call repeat(). So, the program control jumps to this function.
Inside repeat(), there is a call for myfun(). Now, program control jumps to myfun()and
executes the statements inside and returns back to repeat() function. The statement
print(“Inside repeat()”) is executed. Once again there is a call for
myfun()function and hence, program control jumps there. The function myfun() is
executed and returns to repeat(). As there are no more statements in repeat(), the
control returns to the original position of its call. Now there is a statement
print("Example over")to execute, and program is terminated.

1.4.7 Parameters and Arguments
In the previous section, we have seen simple example of a user-defined function, where the
function was without any argument. But, a function may take arguments as an input from

def myfun():
 print("Inside myfun()")

def repeat(): (4)
 myfun()
 print(“Inside repeat()”)
 myfun()

print("Example of function")
 (6)
repeat()
print("Example over")

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

30

the calling function. Consider an example of a function which takes a single argument as
below –

The output would be –

Example of function with arguments
Inside test()
Argument is hello
Inside test()
Argument is 20
Over!!

In the above program, var is called as parameter and x and y are called as arguments.
The argument is being passed when a function test() is invoked. The parameter receives
the argument as an input and statements inside the function are executed. As Python
variables are not of specific data types in general, one can pass any type of value to the
function as an argument.

Python has a special feature of applying multiplication operation on arguments while
passing them to a function. Consider the modified version of above program –

The output would be –

def test(var):
 print("Inside test()")
 print("Argument is ",var)

print("Example of function with arguments")
x="hello"
test(x)
y=20
test(y)
print("Over!!")

def test(var):
 print("Inside test()")
 print("Argument is ",var)

print("Example of function with arguments")
x="hello"
test(x*3)
y=20
test(y*3)
print("Over!!")

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

31

Example of function with arguments
Inside test()
Argument is hellohellohello #observe repetition
Inside test()
Argument is 60 #observe multiplication
Over!!

One can observe that, when the argument is of type string, then multiplication indicates that
string is repeated 3 times. Whereas, when the argument is of numeric type (here, integer),
then the value of that argument is literally multiplied by 3.

1.4.8 Fruitful Functions and void Functions
A function that performs some task, but do not return any value to the calling function is
known as void function. The examples of user-defined functions considered till now are
void functions. The function which returns some result to the calling function after
performing a task is known as fruitful function. The built-in functions like mathematical
functions, random number generating functions etc. that have been considered earlier are
examples for fruitful functions. One can write a user-defined function so as to return a value
to the calling function as shown in the following example –

The sample output would be –

Enter a number:3
Enter another number:4
Sum of two numbers: 7

In the above example, The function sum() take two arguments and returns their sum to
the receiving variable s.

When a function returns something and if it is not received using a LHS variable, then the
return value will not be available. For instance, in the above example if we just use the
statement sum(x,y)instead of s=sum(x,y), then the value returned from the function is
of no use. On the other hand, if we use a variable at LHS while calling void functions, it will
receive None. For example,
 p= test(var) #function used in previous example
 print(p)

Now, the value of p would be printed as None. Note that, None is not a string, instead it is
of type class 'NoneType'. This type of object indicates no value.

def sum(a,b):
 return a+b

x=int(input("Enter a number:"))
y=int(input("Enter another number:"))

s=sum(x,y)
print("Sum of two numbers:",s)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

32

1.4.9 Why Functions?
Functions are essential part of programming because of following reasons –

 Creating a new function gives the programmer an opportunity to name a group of
statements, which makes the program easier to read, understand, and debug.

 Functions can make a program smaller by eliminating repetitive code. If any
modification is required, it can be done only at one place.

 Dividing a long program into functions allows the programmer to debug the
independent functions separately and then combine all functions to get the solution
of original problem.

 Well-designed functions are often useful for many programs. The functions written
once for a specific purpose can be re-used in any other program.

For the Curious Minds (Something beyond the syllabus)

Special parameters of print() – sep and end :
Consider an example of printing two values using print() as below –

>>> x=10
>>> y=20
>>> print(x,y)
10 20 #space is added between two values

Observe that the two values are separated by a space without mentioning anything
specific. This is possible because of the existence of an argument sep in the print() function
whose default value is white space. This argument makes sure that various values to be
printed are separated by a space for a better representation of output.

The programmer has a liberty in Python to give any other character(or string) as a
separator by explicitly mentioning it in print() as shown below –

>>> print("18","2","2018",sep='-')

18-2-2018

We can observe that the values have been separated by hyphen, which is given as a value
for the argument sep. Consider one more example –

>>> college="RNSIT"
>>> address="Channasandra"
>>> print(college, address, sep='@')

RNSIT@Channasandra

If you want to deliberately suppress any separator, then the value of sep can be set with
empty string as shown below –

>>> print("Hello","World", sep='')
HelloWorld

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

33

You might have observed that in Python program, the print() adds a new line after printing
the data. In a Python script file, if you have two statements like –

 print(“Hello”)
 print(“World”)

then, the output would be
 Hello
 World

This may be quite unusual for those who have experienced programming languages like C,
C++ etc. In these languages, one has to specifically insert a new-line character (\n) to get
the output in different lines. But, in Python without programmer’s intervention, a new line
will be inserted. This is possible because, the print() function in Python has one more
special argument end whose default value itself is new-line. Again, the default value of this
argument can be changed by the programmer as shown below (Run these lines using a
script file, but not in the terminal/command prompt) –

print(“Hello”, end= ‘@’)
 print(“World”)

The output would be –

 Hello@World

In fact, when you just type print and open a parentheses in any Python IDE, the intelliSense
(the context-aware code completion feature of a programming language which helps the
programmer with certain suggestions using a pale-yellow box) of print() will show the
existence of sep and end arguments as below –

The above figure clearly indicates that the sep and end have the default values space and
new-line respectively.

(NOTE: You can see two more arguments file and flush here. The default value sys.stdout
of the argument file indicates that print() will send the data to standard output, which is
usually keyboard. When you are willing to print the data into a specific file, the file-object
can be given as a value for file argument. The flush argument with True value makes sure
that operations are successfully completed and the values are flushed into the memory
from the buffer. The default value of flush is False, because in most of the cases we need
not check whether the data is really got flushed or not – as it would be happening even
otherwise. While printing the data into a file (that is, when a file is open for write purpose),
we may need to make sure whether the data got flushed or not. Because, someone else in
the network trying to read the same file (trying to open a file for read purpose) when write
operation is under progress may result in file corruption. In such situations, we need to set
flush argument as True. Indeed, this is just a basic vague explanation of flush argument
and it has much more meaning in real.)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Python Application Programming (Open Elective - 15CS664)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

34

Formatting the output:
There are various ways of formatting the output and displaying the variables with a required
number of space-width in Python. We will discuss few of them with the help of examples.

 Ex1: When multiple variables have to be displayed embedded within a string, the

format() function is useful as shown below –
>>> x=10
>>> y=20
>>> print("x={0}, y={1}".format(x,y))

x=10, y=20

While using format() the arguments of print() must be numbered as 0, 1, 2, 3, etc. and they
must be provided inside the format() in the same order.

 Ex2: The format() function can be used to specify the width of the variable (the number

of spaces that the variable should occupy in the output) as well. Consider below given
example which displays a number, its square and its cube.

for x in range(1,5):

 print("{0:1d} {1:3d} {2:4d}".format(x,x**2, x**3))

Output:

1 1 1
2 4 8
3 9 27
4 16 64

Here, 1d, 3d and 4d indicates 1-digit space, 2-digit space etc. on the output screen.

 Ex3: One can use % symbol to have required number of spaces for a variable. This will

be useful in printing floating point numbers.
>>> x=19/3
>>> print(x)
6.333333333333333 #observe number of digits after dot
>>> print("%.3f"%(x)) #only 3 places after decimal point
6.333

>>> x=20/3
>>> y=13/7
>>> print("x= ",x, "y=",y) #observe actual digits

x= 6.666666666666667 y= 1.8571428571428572
>>> print("x=%0.4f, y=%0.2f"%(x,y))

x=6.6667, y=1.86 #observe rounding off digits

To know more about possibilities with format(), read –

https://docs.python.org/3/tutorial/inputoutput.html

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
https://docs.python.org/3/tutorial/inputoutput.html

