
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

 MODULE 5. PROCESS AND SYSTEM
ADMINISTRATION

5.1 PROCESS BASICS
A process is an instance of a running program. A process is said to be born when the
program starts execution and remains alive till the program is active. Once the program
execution is completed, the process is said to die. A process has a name, usually same as
that of the program. For example, when we execute date command, a process name date
is created. But, a process cannot be considered synonymous with a program. Because,
when two users run the same program, there is only one program on the disk, but there will
be two processes in memory.

Processes are managed by kernel. Kernel allocates CPU resources based on time and
priorities attached to each process. That is, CPU scheduling and memory management etc.
are done by kernel. Processes have attributes, stored in a separate structure called as
process table. Two important attributes of a process are –

 Process ID (PID): Each process is uniquely identified by an integer called PID,
which is allotted by the kernel when the process is born. The PID is useful in
controlling the processes, for example, killing it.

 Parent PID (PPID): The PID of the parent process is known as PPID. When a child
process is spawn through its parent, then it will have PPID. When there are several
processes with same PPID, it is ideal to kill the parent rather than each of the
children.

Sometimes, process may not get completed in the expected time. Then, one may need to
suspend it, or move it the background or to kill it. UNIX provides tools for all such actions to
be carried out on processes.

5.1.1 The Shell Process
Whenever we log into UNIX system, the shell process is created, which may be sh (Bourne
Shell), ksh(Korn shell), csh(C Shell) or bash (Bourne again shell). Any command that we
give in UNIX later, will be treated as standard input to the shell process. This shell process
remains alive till we logout.

The shell maintains a set of environment variables like PATH, SHELL etc. The pathname of
shell is stored in SHELL and PID is stored in a special variable $$. So, to check the PID of
the current shell, use the command –
 $ echo $$
 11662

The PID of your login shell cannot change till you are logged in. Once you logout and login
again, it may be different. The lower value of PID indicates that the process was initiated
quite early.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

5.1.2 Parents and Children
Every process has a parent process. If you run the command,
 $ cat emp.lst
then the process representing cat command is created by the shell process. Now, the shell
is said to be parent process of cat. The hierarchy of every process is ultimately traced to
the first process (PID 0), which is set up when the system is booted. It is like the root
directory of the file system.

A process can have only one parent, but multiple children. The following command creates
two processes cat and grep both are spawned by the shell –
 $cat emp.lst | grep ‘director’

5.2 ps: PROCESS STATUS
The ps command is used to display some of the process attributes. This command reads
the data structure of kernel and process tables to fetch the characteristics of processes. By
default, ps display the processes owned by the user running the command. For example –

$ ps
 PID TTY TIME CMD
11703 pts/1 00:00:00 bash
11804 pts/1 00:00:00 ps

After the head, every line shows the PID, terminal (TTY) with which the process is
associated (controlling terminal), the cumulative processor time (TIME) that has been
consumed since the process has been started and the process name (CMD).

5.2.1 ps Options
Some of the options of ps command are discussed hereunder.

 Full Listing (-f): The –f option is used to get detailed listing of process attributes.
$ ps -f
UID PID PPID C STIME TTY TIME CMD
John 11703 11701 0 06:43 pts/1 00:00:00 -bash
John 11857 11703 0 07:27 pts/1 00:00:00 ps -f

It shows the parent (PPID) and the owner (UID) of every process. STIME shows the
starting time of process.

 Displaying Processes of a User (- u): The system admin may need to use –u
option to know the activities by any user, by specifying user name as shown below–

$ ps -u chetana
 PID TTY TIME CMD
11703 pts/1 00:00:00 bash
11894 pts/1 00:00:00 ps

 Displaying all User Processes (-a): This option is to list all the processes by all the
users, excluding the system processes.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

$ ps -a
 PID TTY TIME CMD
11899 pts/1 00:00:00 ps

5.3 MECHANISM OF PROCESS CREATION
There are three major steps in the creation of a process. Three important system calls or
functions viz. fork, exec and wait are used for this purpose. The concept of process
creation cycle will help to write the programs that create processes and helps in debugging
shell scripts. The three steps are explained here –

 Fork: A process in UNIX is created with the help of system call fork. It creates a
copy of the process that invokes it. The process image is identical to that of the
calling process, except few parameters like PID. When a process is forked, the child
gets a new PID. The forking mechanism is responsible for the multiplication of
processes in the system.

 Exec: A new process created through fork is not capable of running a new program.
The forked child needs to overwrite its own image with the code and data of the new
program. This mechanism is known as exec. The child process is said to exec a
new program.

 Wait: The parent then executes the system call wait for the child process to
complete. It picks up the exit status of the child and then continues with its other
functions. A parent may not need to wait for the death of its child.

For illustration, consider you are running a cat command from the shell. Now, the shell first
forks another shell process. The newly forked shell then overlays itself with the executable
image of cat, and then it starts to run. The parent shell waits for cat to terminate and then
picks up the exit status of the child. This is a number is returned to kernel by the child
process.

When a process is forked, the child has different PID and PPID compared to parent. But, it
inherits most of environment of its parent.

5.4 INTERNAL AND EXTERNAL COMMANDS
From the process point of view, the shell can recognize three types of commands as
below–

 External Commands: The most commonly used UNIX utilities and programs like
cat, ls, date etc. are called as external commands. The shell creates a process for
each of such commands when they have to be executed. And, the shell remains as
their parent.

 Shell Scripts: The shell spawns another shell to execute shell scripts. This child
shell then executes the commands inside the script. The child shell becomes the
parent of all the commands within that script.

 Internal Commands: Some of the built-in commands like cd, echo etc. are internal
commands. They don’t generate a process and are executed directly by the shell.
Similarly variable assignment statements like x=10 does not create a child process.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

5.5 RUNNING JOBS IN BACKGROUND
UNIX is a multitasking system, which allows to run multiple jobs at a time. As there can be
only one process in the foreground, the other jobs must run in the background. There are
two different ways of running the jobs in background – using & operator and using nohup
command. These methods are discussed here.

5.5.1 No Logging out: &
The & operator of shell is used to run a process in the background. The usage is as shown
below –

$ sort –o newlist.lst emp.lst & #terminate line with & symbol
4080 # PID is displayed
$ #prompt is displayed to run another job

The & symbol at the end of the command line will make the job to run in the background.
Immediately, the shell returns PID of the invoked command. And the parent shell will not
wait till the job is completed (or the death of the child process), instead, the prompt is
appeared so that a new job can be executed by the user. However, the shell remains as
the parent of background process. Using & symbol, any number of jobs may be run in the
background, if the system can sustain the load.

5.5.2 Log Out Safely : nohup
Normally, when the background processes are running, the user cannot logout. Because,
shell is the parent of all the background processes and logging out kills the shell. And, by
default when the parent shell is killed, all child processes will also die automatically. To
avoid this, UNIX provides an alternative command nohup (no hangup). When this
command is prefixed with any command, even after logging out, the background process
keeps running. Note that the symbol & has to be used even in this case. For example,

 $nohup sort emp.lst &
 4154
 nohup: appending output to ‘nohup.out’

Here, the shell returns the PID and some shells display the message as shown. When
nohup command is run, it sends the standard output of the command to the file nohup.out.
Now, one can safely logout the system, without aborting the command.

5.6 JOB EXECUTION WITH LOW PRIORITY: nice
In UNIX system, processes are executed with equal priority, by default. But, if high-priority
jobs make demand, then they have to be completed first. The nice command with &
operator is used to reduce the priority of jobs. Then more important jobs have greater
access to the system resources.

To run a job with a low priority, use the command prefixed with nice as shown –

 $nice wc emp.lst
15 31 741 emp.lst

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

If we would like to make it as a background process, use as –
 $nice wc emp.lst &

The nice command is built-in command in C Shell. The value of nice is system dependent
and usually ranges from 1 – 19. Commands execute with a nice value is generally in the
middle of the range, say 10. The higher nice value implies lower priority. The nice
command reduces priority of any process, and hence raising its nice value. The nice value
can be explicitly given using –n option as –
 $nice –n 3 wc emp.lst & #nice value is incremented by 3 units

The priority of a process can be raised only by the super-user.

5.7 KILLING PROCESSES WITH SIGNALS
The UNIX system (in fact, any OS) needs to communicate with a process about the
occurrence of any event. Such communication is done by sending signal to the process.
Each signal is identified by a number, and has a specific meaning/functionality. Every
signal is represented by their symbolic names with a prefix SIG. The kill command is used
to send specific signal to the process.

If a program is running longer than expected, we may need to terminate it. So, we may
press interrupt key. This action sends the SIGINT (with number 2) signal to process. By
default, this will kill the process. A process may ignore a signal or it may execute a user-
defined code to handle that signal. But, there are two signals viz. SIGKILL and SIGSTOP,
which are never ignored by a process.

5.7.1 Premature Termination of a Process: kill
The kill command sends a signal with the intention of killing one or more processes. It is an
internal command in most of the shells. The external command /bin/kill is executed only
when the shell lacks the kill capability. One or more PID are given as arguments to kill
command and by default, it uses the SIGTERM (number 15) signal.

 $kill 12815

The above command kills the process with PID as 12815. If you don’t know the PID, use
ps command and then kill required process.

When there are more than on jobs (either in the background or in different windows), all of
them can be killed with a single kill command by specifying their PIDs as below –

 $kill 12815 23165 22810 22845

If all these processes have same parent, we can just kill the parent and the child processes
will be automatically gets killed. However, any job is running in the background with the
help of nohup, the parent cannot be killed as init has acquired its parentage. Then each
process has to be killed individually.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Killing the last background job: In most of the shells, the system variable $! stores the
PID of the last background job. So, without giving actual PID, it can be killed. For example,
 $sort –o new.lst emp.lst & #running in background
 23166
 $ kill $! # background process will be killed.

Using kill with other signals: By default, kill uses SIGTERM signal to terminate the
process. But, some processes may ignore it and continue execution. In such situations, the
process can be killed with SIGKILL (number 9) signal. It is done as below –
 $kill –s KILL 23165 #process with PID 23165 is killed

5.8 EXECUTE LATER: at AND batch
The user can schedule a job to run at a specific time of a day. When system is loaded with
many jobs, it is ideal to run low-priority (or less urgent) jobs whenever system overhead is
low (that is, when system is considerably free). There are two commands at and batch for
job scheduling in UNIX.

5.8.1 One-Time Execution: at
The at command takes one argument as the time specifying when the job has to be
executed. For example,

$ at 10:44 #press enter by giving time
at> ls –l > out.txt #Give the command to be executed
at> <EOT> #Press [CTRL+d]
job 10 at 2018-01-01 10:44

The job goes to the queue and at 10.44 on Jan 1st, 2018 the command ls –l will be
executed and the output would be stored in the file out.txt. One can check this file later
for the output.

5.8.2 Execute in Batch Queue: batch
The batch command schedules the job when the system overhead reduces. This
command does not use any arguments, but it uses internal algorithm to determine the
actual execution time. This will prevent too many CPU-hungry jobs from running at the
same time.

$ batch < evalEx.sh #evalEx.sh will be executed later
job 15 at 2007-01-09 11:44

Any job scheduled with batch goes to special at queue from where it will be taken for
execution.

5.9 RUNNING JOBS PERIODICALLY: cron
The cron is a software utility (NOT a command) which behaves as a time-based job
scheduler. Certain jobs in OS need to be executed in regular intervals of time. For example,
system maintenance or administration may need to download/update general purpose
utilities at regular intervals. Instructions (or commands) to be executed like this are stored

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

in a control file (crontab file) in the path - /var/spool/cron/crontabs. The cron
utility is usually will be in a sleeping status. It wakes up every minute and checks the above
control file whether any command has to be executed. User may keep a crontab file named
after his/her name (like /var/spool/cron/crontabs/john) and the format of the entry
would be like –

00-10 17 * 3,6,9,12 5 cat emp.lst

There are six fields in the above line:
1st Field : It specifies the number of minutes after the hour when the command is to be

executed. It may range from 00 to 59. In the above example, 00-10 indicates
that execution should happen every minute in the first 10 minutes of the hour.

2nd Field : Indicates the hour in 24-hour format. It may range from 1 to 24. In the above
example, 17 indicates 5pm.

3rd Field : It is day of the month. Here, * means every day. Hence, the command has to
be executed every minute for the first 10 minutes starting at 5pm every day.

4th Field : Specifies month (can be 1-12). Here, 3, 6, 9 and 12 indicates months March,
June, September and December.

5th Field : Indicates day of the week (Sunday is treated as 0. Hence, values can be 0
to 6). In the above example, 5 indicates Friday.

6th Field : The actual command to be executed.

One can observe that 3rd field and 5th field are contradictory here. Because, 3rd fields says
‘execute every day’ and 5th field says ‘execute on every Friday’. But, 5th field appears after
3rd field and hence it overrides 3rd field. Thus, meaning of above statement would be –
execute the command cat emp.lst on every Friday for 10 minutes after 5 pm (ie. 5pm to
5:10pm) on the months March, June, September and December of every year.

5.10 TIMING PROCESSES: time
The time command is used to determine the duration of execution of a particular
command/program. This required to check how efficiently the system resources are being
used by the programs. The time command executes the program and also displays the
time usage. For example,

$ time ls
avgSal.awk elist.lst myf1 Shell1.sh test.bak
caseEx.sh emp1.lst myfile Shell2.sh test.lst
cmdArg.sh emp.lst myFirstShell t1 test.sh

real 0m0.004s
user 0m0.000s
sys 0m0.000s

Here, we are checking execution time required for ls command. It first executes ls (displays
all files/directories) command and then displays time. The real time is the clock elapsed
time from invocation of the command until its termination. The user time is the time spent
by the program in executing itself. The sys time is the time required by the kernel in doing

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

work on behalf of the user process. Ideally, the sum of user time and sys time must be
equal to CPU time. But, due to system load (multiple tasks running at a time), it may differ.

5.11 ESSENTIAL SYSTEM ADMINISTRATION
A system administrator (or super user or root user) has vast powers and access to almost
everything in UNIX system. The stability of any UNIX installation depends on the
effectiveness of system admin. System admin is responsible for managing entire system
like maintaining user accounts, security, disk space, backups etc.

5.11.1 The System Admin’s Login: root
In every UNIX system, the system admin has a special login name called as root. It is
automatically available in every system, and no need to create exclusively. The password
is set during system installation.
 login: root
 password: ******* [press enter]
 #

The prompt for root is # in most of the systems. After logging in, the system admin is placed
in root’s home directory (either / or /root).

5.11.2 Acquiring Superuser Status
Any user can acquire the status of superuser, if he/she knows the root password. For
example the user john may become superuser using the command su as shown –

 $ su
 password: ******* #give root’s password
 # pwd #working directory unchanged
 /home/john

Observe that current working directory has not changed for the user john but, he will get the
privileges of superuser now onwards. If he wishes to enter root’s home directory, the su –l
command must be used.

Whenever a program stops running in a user’s machine, the admin tries to run it in a
simulated environment. The following command recreates the user’s environment without
using user’s login-password –
 $ su – john

This executes john’s .profile file and temporarily creates john’s environment. The su
command runs a separate sub-shell and can be terminated either using [Ctrl+d] or exit.

5.12 THE ADMINISTRATOR’S PRIVILEGES
Following are some of the important privileges of a system administrator:

 Changing contents or attributes (like permission, ownership etc) of any file. He/she
can delete any file even if the directory is write-protected.

 Initiate or kill any process.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

 Change any user’s password without knowing the existing password
 Set the system clock using date command.
 Communicate with all users at a time using wall command.
 Restrict the maximum size of files that users can create, using ulimit command.
 Control user’s access to the scheduling services like at and cron.
 Control user’s access to various networking services like FTP, SSH (Secured Shell)

etc.

Some of the above jobs of admin are discussed hereunder.

5.12.1 Setting the System Date: date
The date command – when used by the system admin – allows to set the system date. It
takes the argument, usually as 8-character string in the form of MMDDhhmm, optionally
followed by a 2 or 4 digit year as shown –

 # date 01032124
 Thu Jan 3 21:24 IST 2017

5.12.2 Communicating with Users: wall
The wall command is used to communicate with all users who are currently logged in. In
most of the systems (except Linux), this command can be run only by the admin. Example
of this command would be –
 # wall #command
 This server will shutdown at 4pm today. #message
 [Ctrl+d]

Now, the message given here will be broadcasted to all the users who are currently logged
into the system.

5.12.3 Setting Limits on File Size: ulimit
Sometimes, programs may grow rapidly (due to negligence or error in the program) and
consume much space on the disk. Hence, the admin can use ulimit command to restrict
the maximum possible size that can be consumed by a user created file. By default, size of
the user file may be unlimited in most of the machines. The restrictions can be imposed as–

 #ulimit 20963260

Here, the number indicates the size of file in bytes. The admin can keep the above line in
/etc/profile of every user.

5.12.4 Controlling use of at and cron
The use of at and batch is restricted and controlled by the files at.allow and at.deny in
/etc/cron.d (/etc in Linux). If the file at.allow is present, only the users listed in it
are permitted to use at and batch commands. If this file is not present, the system checks

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

at.deny file for the users who are barred from using these commands. If both of these
files are not present, only system admin is permitted to use these commands.

The cron scheduler is used by the admin to make commands like find and du (disk usage)
compile useful information about the system or for automating the backup operations. To
control the authorization, two files cron.allow and cron.deny available in
/etc/cron.d are used.

5.13 STARTUP AND SHUTDOWN
Whenever the system is about to start or about to shutdown, series of operations are
carried out. We will discuss few of such operations here.

 Startup: When the machine is powered on the system looks for all peripherals and
then goes through a series of steps that may take some time to complete the boot
cycle. The first major event is the loading of the kernel (/kernel/genunix in
Solaris and /boot/vmlinuz in Linux) into memory. The kernel then spawns init,
which in turn spawns further processes. Some of these processes monitor all the
terminal lines, activate the network and printer. The init becomes the parent of all
the shells.

A UNIX system boots to any one of two states (or mode) viz. single user mode or
multiuser mode. This state is represented by a number or letter called as run level.
The default run level and the actions to be taken for each run level are controlled by
init. The two states are discussed here –

o Singer-user Mode: The system admin uses this mode to perform
administrative tasks like checking and backing up individual file systems.
Other users are prevented from working in single-user mode.

o Multiuser Mode: Individual file systems are mounted and system daemons
are started in this mode. Printing is possible only in multiuser mode.

The who –r command displays the run level of our system:

$ who -r
 . run-level 3 2007-01-06 11:10 last=S

The machine which runs at level 3 supports multiuser and network operations.

 Shutdown: While shutting down the system, the administrator has certain roles. The
system shutdown performs following activities –

o Through the wall command notification is sent to all the users about system
shutdown and asks to logout.

o Sends signals to all running processes to terminate normally.
o Logs off the users and kills remaining processes
o Un-mounts all secondary file systems.
o Writes file system status to disk to preserve the integrity of file system
o Notifies users to reboot or switch-off, or moves the system to single-user

mode.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

5.14 MANAGING DISK SPACE
In the due course of time, the system disk space gets filled up by various files. If not
managed properly, the whole disk many become full. So, the system admin must regularly
scan the disk and identify the files which are no longer in use. Then such files may be
deleted to create a space in disk. For doing these jobs, admin needs three commands df,
du and find. These commands can be used by even any normal user.

5.14.1 Reporting Free Space: df
The df command is used to check the amount of free space available in every file system.

$ df
 Mounted on
Filesystem 1K-blocks Used Available Use% /dev/mapper/

 16663980 6490020 9313800 42% /
/dev/hda3 101105 13684 82200 15% /boot
tmpfs 891796 0 891796 0% /dev/shm
none 891796 40 891756 1% /var/lib

This command displays file system, number of total blocks, used blocks, available space (in
blocks and percentage) and in which directory, the file system is mounted.

5.14.2 Disk Usage: du
Usually, the user will be interested in the space consumption of a specific directory, rather
than entire file system. The du command is used to check the usage of space in a specific
directory recursively.

$ du /home/john
16 /home/john/.kde/Autostart
24 /home/john/.kde
16 /home/john/myDir
8 /home/john/.mozilla/extension
8 /home/john/.mozilla/plugins
24 /home/john/.mozilla
548 /home/john

This command lists the disk usage of each sub directory and finally gives the summary. If
the list of sub-directories is very large and if we are interested only in the summary, -s
option can be used as –

$ du -s /home/john
548 /home/john

If the system admin would likes know the space consumed by all the users, use the
command as –
 $du –s /home/*

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

5.15 A BACKUP PROGRAM: cpio
Taking backup of the system in regular intervals is very important safety measure to be
carried out by the system admin. There are two backup programs cpio and tar. Both of
these programs combine a group of files into an archive, with suitable headers preceding
the contents of each file. The backup device can be a magnetic (or cartridge) tape, floppy
disk or even a disk file.

The cpio (copy input-output) command copies files to and from a backup device. It uses
standard input to take the list of file names. Then the files are copied along with their
contents and header to standard output. Later, from standard output it is redirected to a file
or a device. The cpio command uses two options viz. -o for output and –i for input, of which
any one of them must be used.

5.15.1 Backing Up Files (-o)
The following example uses the ls command to generate list of all filenames as an input to
cpio command. Then –o option is used to create archive on the standard output, which
needs to be redirected to a device file.
 # ls | cpio –ov > /dev/fd0
 caseEx.sh
 test.lst
 emp.lst
 here.sh
 tputEx.sh
 4 blocks #total size of the archive

The –v option displays each filename on the terminal while it is being copied. The above
command compresses the files listed and stores the compressed file into /dev/fd0.

5.15.2 Restoring Files (-i)
Compressed files can be restored using –i option as shown below –
 # cpio –iv < /dev/fd0
 caseEx.sh
 test.lst
 emp.lst
 here.sh
 tputEx.sh

4 blocks

While restoring the subdirectories, the cpio command maintains the same subdirectory
structures in the hard disk.

NOTE: In above examples, the backup is stored in floppy drive (/dev/fd0). But, one can
store anywhere by specifying proper path.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

5.16 THE TAPE ARCHIVE PROGRAM: tar
The tar is a tape archive command that was being used before the emergence of cpio. It
can create archives on tapes and floppy drives. Some features are –

 It doesn’t use standard input to obtain a file list
 It accepts file and directory names as arguments
 It copies one or more directory trees, in a recursive manner
 It can append to an existing archive, without overwriting.

The tar has three important options, viz. –c (copy), -x (extract) and –t (table of contents).
The –f option has to be specified for mentioning the device name where the backup has to
be stored. And just as in cpio, the –v option can be used to view the files being processed.

5.16.1 Backing Up Files (-c)
The illustration of tar command for archiving files is –
 # tar –cvf /dev/fd0 /home/john/*.sh
 a /home/john/test.sh 1 tape blocks
 a /home/john/caseEx.sh 1 tape blocks
 a /home/john/evalEx.sh 5 tape blocks

The above command indicates that all the files with extension .sh in /home/john are
archived into /dev/fd0. The character a at every line of output indicates the files are
being appended into the device.

5.16.2 Restoring Files (-x)
Files archived in specific device are restored using –x option. When file/directory name is
not specified, all the files from the backup device are restored.
 # tar –xvf /dev/fd0
 x /home/john/test.sh 1 tape blocks
 x /home/john/caseEx.sh 1 tape blocks
 x /home/john/evalEx.sh 5 tape blocks

5.16.3 Displaying the Archive (-t)
The –t option is used to display the contents of the device in a long format (similar to ls –l).
 # tar –tvf /dev/fd0
 rwxr-xr-x 203/50 472 Jun 4 10.23 2017 ./test.sh
 rwxr-xr-x 203/50 583 Jun 4 11.51 2017 ./caseEx.sh
 rwxr-xr-x 203/50 87 Jun 4 9.37 2017 ./evalEx.sh

Observe that file names are displayed as relative paths.

5.17 CUSTOMIZING THE ENIVIRONMENT
Interaction with the OS takes much time of the user. The user has to constantly change
directories, list of files, edit/compile programs, repeating previous commands etc. For all
such tasks, the environmental settings must be pleasant. UNIX environment can be

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

customized by manipulating the settings. The commands can be made to change their
default behavior.

5.18 ENVIRONMENT VARIABLES
There are two types of shell variables: local and environment variables. PATH, HOME,
SHELL etc. are environment variables, because they are available in user’s environment.
The user’s environment constitutes sub-shells which run the shell scripts, main commands
and editors. The local variables are local to the scope. For example, set the local variable
DOWNLOAD_DIR as –

 $ DOWNLOAD_DIR=/home/john/download
 $ echo DOWNLOAD_DIR
 /home/john/download

Now, spawn a child shell and then check the value of DOWNLOAD_DIR variable –
 $ sh
 $ echo DOWNLOAD_DIR
 #prints nothing
 $

The above example shows that the scope of local variable DOWNLOAD_DIR is limited to
only that shell, but not available to even a child shell.

But, environment variables like PATH will be available everywhere. The set statement
displays all the variables available in current shell. The env command displays only the
environment variables. The following is a partial list of environment variables.

 $ env
 HOME=/home/henry
 IFS= ‘

’
 LOGNAME=john
 MAIL=/var/mail/john
 MAILCHECK=60
 PATH=/bin:/usr/bin:.:/usr/ccs/bin
 PS1= ‘$’
 PS2= ‘>’
 SHELL=/usr/bin/bash
 TERM=xterm

The PATH variable instructs the shell about the route it should follow to locate any
executable command. The current value of PATH can be displayed by using env command
or using the statement echo $PATH. To add any directory, say, /usr/test to existing
path, reassignment is possible as below –

 $ PATH=$PATH:/usr/test

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

Note that various directories in PATH are separated by colon. Hence, while appending any
other directory, we must use that.
The HOME is another important environment variable. When any user logs in the UNIX
places him/her in a directory named after the user’s login name. This directory is called as
home directory or login directory. This is available in environment variable HOME.
 $ echo $HOME
 /home/john

The system admin can set $HOME in /etc/passwd. This setting looks like –
 john:x:208:50::/home/john:/bin/ksh

Here, 208 is userID and 50 is GroupID.

5.19 ALIASES
The bash and ksh supports aliases (alternative names), which lets the user to assign any
shorthand names to frequently used commands. This is done with the command alias.

The ls –l command is used many times in UNIX. So, alias can be set for this command
as –
 $ alias el=‘ls –l’

Now onwards, in place of ls –l, user can use el. Note that, there must not be a space
before and after = symbol in the above statement.

When we need to use cd command frequently to change directory to some long pathname
as /home/john/ShellPgms/Scripts, then alias can be set as –

 $ alias cdSys=“cd /home/john/ShellPgms/Scripts”

So, we can just use cdSys to change the directory.

The alias set once can be revoked using the command unalias. So, to unset the alias
cdSys, use the statement as –
 $ unalias cdSys

5.20 COMMAND HISTORY
In the Bourne shell, the command has to be retyped when it has to be re-executed. This
drawback is overcome in bash and ksh using the command history. It is a feature that
treats the previous command as an event and associates it with an event number. Using
this event number, one can recall the previous commands (executed even in previous
sessions, that is, even after logging out the system) and execute them.

The history command in bash displays all commands that are previously executed, and in
ksh, it displays last 16 commands. One can mention how many commands he/she would
like to see, by giving the number as an argument to history command as –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

 $ history 5 #in bash
Or $ history -5 #in ksh
The output of above command shows 5 recent commands along with the event number –

 $ history 5
 999 du -s /home/*
 1000 exit
 1001 emacs emfile
 1002 clear
 1003 history 5

By default, the bash stores all previous commands in $HOME/.bash_history. Once we
know the previous command with event number, we may need to re-execute it, either as it
is or with modification. Some of such tasks can be done as discussed below:

 Accessing Previous Commands by Event Numbers (! And r) : The ! symbol (in ksh,

we should use r) is used to repeat the previous command. To repeat the immediate
previous command, use –

$!! #it repeats previous command and executes.

 The same job can be done with r in ksh.

 If one needs to execute the specific command, the event number must be attached as –
 $!35 # executes command with event number 35

Note that, the above format executes the 35th command from the history. If we would like
know the actual command, before really executing it, the p (print) modifier has to be
used as –
 $!67:p
 clear #67th command in history is clear

Relative addressing of event numbers is possible. That it, when we would like to execute
3rd previous command from now, use the statement as –
 $!-3 # in bash
Or $ r-3 # in ksh

 Executing Previous Commands by Context: It is quite difficult for any user to
remember the event number of all the previous commands he/she used in past. But,
there is a chance that he/she will be remembering first character/string of the command.
The ! or r will help the user to recollect the commands by giving the specific character
as below –
 $!g #executes last command which started with g (in bash)

 Or $ r g # same task, in ksh

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

 Substitution in Previous Commands: Frequently, user may need to execute any of

the previous commands only after some modification in them – say changing the pattern
in grep command, changing the string etc. This is possible with the help of modifier :s
and the / as the delimiter between old and new patterns.

Consider an example – assume that, we had executed the echo command as –
 $ echo $HOME $PATH

This would display the environment variables HOME and PATH. Now, we would like to
replace PATH by SHELL. This can be done using the following command –
 $!echo:s/PATH/SHELL

echo $HOME $SHELL
/home/john /bin/bash

Here, the command has the meaning – “in the previous echo command, replace PATH
by SHELL”

 Using Last Argument to Previous Command ($_): Frequently we use several

commands on the same file. In such situations, instead of specifying filename every
time, we can use $_ as the abbreviated filename. The $_ indicates that last argument to
previous command. For example, if we create a directory Test using mkdir command
and then we would like to change the directory to this new directory, we can use the
command as –

 $ mkdir Test # create new directory Test
 $ cd $_ # change directory to Test
 $ pwd # verify
 /home/john/Test

 The History Variables: The behavior of history mechanism depends on few
environment variables. The HISTFILE variable determines the filename that saves the
history list. The .bash_history is a default history file in the home directory. The history
list is maintained in memory as well. For this purpose, it uses two variables HISTSIZE
and HISTFILESIZE for setting the size of history in the memory and on the disk. For
example,

HISTSIZE=500
HISTFILESIZE=1000

Based on the disk space of one’s machine, the user can set these values to keep more
data in these files.

5.21 IN-LINE COMMAND EDITING
The command line (of terminal) in bash and ksh provides editing of the command using the
characters similar to that used in vi editor. For this purpose, one need to do the following
setting:
 $ set –o vi

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

Now onwards, the command line of our terminal can be used as if we are using vi editor
(with command mode, insert mode etc). Switching between the modes is done by pressing
Esc key. And one can use the commands like i (insert), a(append), r(replace), x(delete),
3x(delete 3 characters), dd(delete entire line) etc. (It is assumed that the student knows
these commands in vi editor).

To exit the in-line editing mode, reset it using –
 $ set +o vi

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

