
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

 MODULE 4. AWK AND ADVANCED SHELL
PROGRAMMING

4.1 INTRODUCTION TO awk – AN ADVANCED FILTER
AWK is one of the most prominent text-processing utility. It made its entry into the UNIX
system in 1977. AWK derives its name from its authors – Aho, Weinberger and Kernighan.
It combines the features of several filters. The awk command is a powerful method for
processing or analyzing text files, which are organizes as rows and columns. Unlike other
filters, awk operates at the field level and can easily access, transform and format individual
fields in a line. It can accept extended regular expressions (ERE) for pattern matching. It
has C-type programming constructs, variables and several built-in functions. Simple awk
commands can be run on command line, whereas more complex tasks should be written as
awk programs or awk scripts in files. In Linux, awk is used as gawk (GNU awk).

4.2 SIMPLE awk FILTERING
The syntax of awk command is –

 awk options ‘selection_criteria {action}’ file(s)

Here, the selection_criteria is a form of addressing and it filters input and selects lines. The
action indicates the action to be taken upon selected lines, which must be enclosed within
the flower brackets. The selection_criteria and action together constitute an awk program
enclosed within single quotes. The selection_criteria in awk can be a pattern as used in
context addressing. It can also be a line addressing, which uses awk’s built-in variable NR.
The selection_criteria can be even a conditional expressions using && and || operators.

Consider the following example of awk command to select all the directors in the file
emp.lst.

$ awk '/director/{print}' emp.lst
9876|jai sharma|director|production|03/12/50|7000
2365|barun sengupta|director|personnel|05/11/47|7800
1006|chanchal sanghvi|director|sales|09/03/38|6700
6521|lalit chowdury|director|marketing|09/26/45|8200

Here, the selection criteria is /director/which selects the lines containing director. The
action is {print}. If the selection criteria is missing, then action applies to all the lines. If
action is missing, then entire line is printed.

The print statement prints the entire line, when it is used without any field specifier. It is a
default action of awk.

4.2.1 Splitting a line into fields
The awk command uses special parameter $0 to indicate the entire line. It also uses $1,
$2, $3 etc. to indentify various fields in the line. But, they should be enclosed within single
quotes to avoid shell treating them as positional parameters.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

The awk uses contiguous sequence of spaces and tabs as a single delimiter. But, when the
input file has any other delimiter, we can specify it using –F option.

Ex1. The following command prints 2nd, 3rd, 4th and 6th fields from the lines containing sales
from the file emp.lst.

$ awk -F "|" '/sales/{print $2,$3,$4,$6}' emp.lst
a.k. shukla g.m. sales 6000
chanchal sanghvi director sales 6700
s.n. dasgupta manager sales 5600
anil aggarwal manager sales 5000

Ex2. Regular expressions can be used in awk command to match the pattern as shown
below –

$ awk -F"|" '/sa[kx]s*ena/' emp.lst
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000

The above two examples have used context addressing format to match the pattern. One
can use line-addressing format with the help of built-in awk variable NR.

Ex3. The following command prints 2nd, 3rd and 6th fields of the lines 3 to 6, along with the
line numbers from the file emp.lst.

$ awk -F "|" 'NR==3, NR==6 {print NR, $2, $3,$6}' emp.lst
3 sumit chakrobarty d.g.m 6000
4 barun sengupta director 7800
5 n.k. gupta chairman 5400
6 chanchal sanghvi director 6700

The statement NR==3 is a condition being tested, but not the assignment.

4.2.2 printf: Formatting Output
One can use formatted output with awk just like in C language. For that, printf statement is
available and it uses format specifiers like %d, %s etc. as in C language. For example,

 $ awk -F "|" '/director/ {
 > printf "%3d %-20s %-12s %d\n", NR, $2, $3, $6}' emp.lst
 2 jai sharma director 7000
 4 barun sengupta director 7800
 6 chanchal sanghvi director 6700
 11 lalit chowdury director 8200

Here, the line number is printed with the width of 3. Name and designations are printed in
20 and 12 spaces respectively. These two fields are left justified using – symbol attached
with %s. Note that printf requires \n to print a newline after each line.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

Both print and printf statements can be redirected using > and | symbols. But, the file
name or command after > or | must be enclosed within double quotes.

Ex1. In the following example, the lines containing director are selected. The result of
printf is redirected using | to sort them.

$ awk -F "|" '/director/ {
>printf "%-20s %-12s\n", $2, $3 | "sort"}' emp.lst
barun sengupta director
chanchal sanghvi director
jai sharma director
lalit chowdury director

Ex2. In the below given example, we are trying to store the result of printf in a file nlist by
redirecting the output using > symbol.

$ awk -F "|" '/director/ {
printf "%-20s %-12s\n", $2, $3 > "nlist"}' emp.lst

$ cat nlist #use cat command to see contents of nlist
jai sharma director
barun sengupta director
chanchal sanghvi director
lalit chowdury director

4.3 VARIABLES AND EXPRESSIONS
The awk uses variables and expressions in its programs. Expressions consist of strings,
numbers, variables and the operators. Unlike normal programming languages, awk doesn’t
contain data types like int, char, float etc. Every expression can be interpreted as either a
string or a number. The awk makes the necessary conversion according to the context.

User-defined variables are used in awk, but without declaration. Few points about awk
variables –

 Variables are case-sensitive
 Unlike shell variables, awk variables don’t require $ sign either in assignment or in

evaluation.
 They do not need initialization. They are implicitly initialized to zero or null string,

depending on the context.
 Strings in awk are always double-quoted and contain any character.
 Strings can include escape sequences, octal values, hexadecimal values etc. When

octal and hexadecimal values are used, they are preceded by \ and \x respectively.
 String concatenation does not require any operator. Two strings can be placed side-

by-side to concatenate them. For example,
x= “hello”; y= “world”
print x y #prints helloworld
print x “,” y #prints hello,world

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

4.3.1 The Comparison Operator
The relational operators like greater than (>), less than (<), comparison (==), not equal to
(!=) etc. can be used with awk.

Ex1. The command given below is to select the lines containing director OR (||) chairman.
As the 3rd field of the file emp.lst has the designation, we can compare it directly.

$ awk -F "|" '$3=="director" || $3=="chairman" {
> printf "%-20s %-12s \n", $2, $3}' emp.lst
jai sharma director
barun sengupta director
n.k. gupta chairman
chanchal sanghvi director
lalit chowdury director

Ex2. Using not equal to operator (!=) and AND (&&) operator, we can achieve the negation
of list obtained in Ex1. That is, following command displays all the lines not containing
director and chairman.

$ awk -F "|" '$3 != "director" && $3 != "chairman" {
>printf "%-20s %-12s \n", $2, $3}' emp.lst
a.k. shukla g.m.
sumit chakrobarty d.g.m
karuna ganguly g.m.
s.n. dasgupta manager
jayant Chodhury executive
anil aggarwal manager
shyam saksena d.g.m
sudhir Agarwal executive
j.b. saxena g.m.
v.k. agrawal g.m.

4.3.2 The Regular Expression Operators: ~ and !~
The awk provides two operators for handling regular expressions. The ~ operator is used to
match a regular expression and !~ is used to negate the match. These operators must be
used only with field specifiers like $1, $2 etc.

Ex1. In the below example, the 2nd field ($2) is matched with regular expressions that may
result in any of Chodhury, chowdury, saksena, saxena. Observe the OR (||) operator used.

$ awk -F "|" '$2 ~ /[cC]how*dh*ury/ ||
> $2 ~ /sa[kx]s?ena/ {print}' emp.lst
4290|jayant Chodhury|executive|production|09/07/50|6000
6521|lalit chowdury|director|marketing|09/26/45|8200
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

Ex2. Following example uses !~ operator to not to match director and chairman.
$ awk -F "|" '$3!~ /director|chairman/{print $2, $3}' emp.lst
a.k. shukla g.m.
sumit chakrobarty d.g.m
karuna ganguly g.m.
s.n. dasgupta manager
jayant Chodhury executive
anil aggarwal manager
shyam saksena d.g.m
sudhir Agarwal executive
j.b. saxena g.m.
v.k. agrawal g.m.

4.3.3 Number Comparison
awk can handle both integer and floating type numbers. Relational operators also can be
applied on them. Consider following examples:

Ex1. Listing of all the employees whose salary is more than 7500 can be done as below –

$ awk -F"|" '$6>7500 {printf "%-20s %d\n",$2,$6}' emp.lst
barun sengupta 7800
lalit chowdury 8200
sudhir Agarwal 8000
j.b. saxena 8000
v.k. agrawal 9000

Here, $6 is the 6th field (salary), is being compared with 7500.

Ex2. One can combine regular expression matching and numeric comparison. Following
example lists out the people who have either born in 1945 OR getting the salary more than
8000.

$ awk -F"|" '$6>8000 || $5~/45$/{print $2, $5, $6}' emp.lst
lalit chowdury 09/26/45 8200
j.b. saxena 03/12/45 8000
v.k. agrawal 12/31/40 9000

In the file emp.lst, 5th field is date of birth. In this field, at the end we have year of birth.
Hence, in the above example, $5 is matched with /45$/ indicated 45 is at the end (recollect
meaning of $ in regular expressions).

4.3.4 Number Processing
Arithmetic operators like +, -, *, /, % etc can be used with awk. As an illustration, consider
an example of calculating total salary of employees in the file emp.lst.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Let us assume that 6th field in the file emp.lst is a basic salary. And, every person get DA as
40% of basic and HRA as 15% of basic. The total salary of an individual is basic+DA+HRA.
Now consider the command as shown –

$ awk -F "|" '$3=="director" {printf
> "%-20s %-12s %d %d %d\n", $2, $3,$6, $6*0.4, $6*0.15}' emp.lst
jai sharma director 7000 2800 1050
barun sengupta director 7800 3120 1170
chanchal sanghvi director 6700 2680 1005
lalit chowdury director 8200 3280 1230

Here, the arithmetic operator * indicating multiplication has been applied on field specifier
$6.

4.3.5 Variables
User defined variables can be used with awk. The following example counts the number of
directors whose salary is more than 7000.

$ awk -F "|" '$3=="director" && $6>=7000 {
> count++
> printf "%d %-20s %-12s %d\n", count, $2, $3, $6}' emp.lst
1 jai sharma director 7000
2 barun sengupta director 7800
3 lalit chowdury director 8200

Observe that the variable count is directly used without any initialization. Note that, in awk
variables do not need declaration. And they will be initialized to zero or null (depending on
whether it is numeric or string in the context used). Hence, in the above example, count is
incremented each time when one director is encountered whose salary is >=7000.

Note that, in awk, the arithmetic operators are applied on variables just similar to C
language. Hence, the shorthand operator ++, -- etc. indicates increment/decrement by one.

4.4 THE –f OPTION
As we have discussed in the beginning of this chapter, an awk program can be of single
line or can constitute multiple lines. When there are multiple lines are there in the program,
it is better to put them into a file. One can create an awk program with the help of cat
command. The filename usually will have the extension as .awk. Then, to run this file, -f
option is used.

Consider the program discussed in Section 4.3.5, which will select all the directors with
salary more than 7000. Initially, create the file containing required code as below –

$ cat >payroll.awk
$3=="director" && $6>=7000 {
printf "%d %-20s %-12s %d\n", ++count, $2, $3, $6}

 [Press Ctrl+c]

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

Now, run the file payroll.awk using the following statement –

$ awk -F "|" -f payroll.awk emp.lst
1 jai sharma director 7000
2 barun sengupta director 7800
3 lalit chowdury director 8200

Observe that the code inside payroll.awk is not enclosed with single quotes.

4.5 THE BEGIN AND END SECTIONS
The awk statements are usually applied on all lines selected by address (selection criteria).
But, if we want to print something before the processing starts or after completing the
process, then BEGIN and END sections are useful.

The BEGIN and END sections are optional and have syntax as –
 BEGIN{ action}
 END { action}

The usage of these sections are depicted in the below given example. Here, in the BEGIN
section we will print the heading for the columns and in the END section, we will print
average basic pay. Let us first create a file newPayroll.awk (either using vi editor or cat
command) as shown below –

newPayroll.awk

Note that, after the BEGIN section, we will write the selection criteria ($6>7500) and then
the action within a pair of curly braces (flower brackets) as per the syntax of awk
commands.

Now, run the file using the command –
 $awk –F “|” –f newPayroll.awk emp.lst

BEGIN {
 printf "SlNo \t Name \t\t Salary\n"
}
$6>7500{
 count++
 total += $6
 printf "%3d %-20s %d\n", count, $2, $6
}
END{
 printf "\nThe average salary is: %d\n", total/count
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

SlNo Name Salary
 1 barun sengupta 7800
 2 lalit chowdury 8200
 3 sudhir Agarwal 8000
 4 j.b. saxena 8000
 5 v.k. agrawal 9000

The average salary is: 8200

NOTE:

 The awk command can read from standard input, when filename is not given.
 Unlike expr command, awk can be used to perform floating point arithmetic. For

example,
$awk ‘BEGIN{printf “%f\n”, 22/7}’
3.142857

4.6 BUILT – IN VARIABLES
There are several built-in variables in awk as shown in Table 4.1. They all have their own
default values, but it is possible for a user to assign different values to them.

Table 4.1 Built-in Variables of awk
Variable Significance

NR Cumulative number of lines read
FS Input Field Separator
OFS Output Field Separator
NF Number of fields in current line
FILENAME Current input file
ARGC Number of arguments in command line
ARGV List of arguments

Some of the built-in variables are explained here –

 NR: It is used to count number of lines read from the input file. Its usage has been
shown in some of the previous examples.

 FS: As we have discussed earlier, the awk treats a contiguous array of spaces as
the default delimiter between the fields. When some other character is a delimiter in
out input file (for ex, emp.lst has | as the delimiter), we need to specify it using –F.
An alternative way is to use FS variable and setting it within BEGIN section as –

BEGIN { FS= “|”}
 Now, while running awk, -F is not necessary.

 OFS: When we use print statement with comma-separated arguments, each
argument will be separated by a space. It is the default field separator in awk. If we
want some other character to be a field separator, OFS is used in BEGIN section
as–

BEGIN { OFS= “~”}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

 NF: This variable is useful in checking whether all the lines in the input file have
required number of fields or not. For example, assume few lines in emp.lst file do not
contain all the 6 fields (empno, name, designation, department, date of birth and
salary). Then, NF variable is used to check the lines which are not containing all 6
lines. Assume we have an input file errEmp.lst in which few lines do not contain all 6
fields of emp.lst. Then verify it using the below given command –

$ awk 'BEGIN { FS="|"}
> NF !=6 {
> print "Record No ", NR, "has ", NF, " fields"}' errEmp.lst
Record No 6 has 4 fields
Record No 10 has 5 fields
Record No 14 has 3 fields

 FILENAME: It stores the name of the current file being processed. By default, awk
doesn’t print the filename. One can print it using the statement like –

‘$6<4000 {print FILENAME, $0}’

 Here, $0 indicates entire line.

4.7 ARRAYS
Array is a variable that can store a set of elements. Each element is accessed by a
subscript called index. Arrays in awk are different compared to other programming
languages as given –

 Arrays are not formally defined. An array is considered as declared the moment it is
used.

 Array elements are initialized to zero or an empty string unless it is initialized
explicitly.

 Arrays expand automatically
 The index need not be just integer. It can be anything, even a string.

Let us consider the salary field (6th field) of emp.lst as basic salary. Assume every person
has DA as 25% of basic, HRA as 50% of basic. The gross salary of an individual would be
sum of basic, DA and HRA. The question is to select employees who are either working at
sales department or at marketing department. And, then print the average of basic, DA,
HRA and gross salary.

In the below given program, we are using array tot. In this array, first element tot[1] is used
to store basic salary, second element tot[2] is used for DA, 3rd element tot[3] is for HRA,
and 4th element tot[4] is used to store Gross salary. The variable c is used as a count of
number of selected employees.

The BEGIN section is used to print the heading and to set the field separator FS. The END
section is used to display the average values of basic, DA, HRA and Gross.

Store the following file as avgSal.awk.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

Now, run the above file as –

 $ awk -f avgSal.awk emp.lst
 Basic DA HRA Gross

 Average 6812 1703 3406 11921

4.7.1 Associative (Hash) Arrays
Arrays in awk are associative – means the information is stored as a pair of key and value.
Even if we use integers as subscripts, the awk doesn’t treat array indexes as integers. The
array index is the key, which is saved internally as a string. In the following example, when
we assign mon[1]="jan” , the awk converts number 1 to a string. Therefore, the index
“1” is different from the index “01”. Hence, there is no specific order in which the array
elements are stored.

BEGIN{
 FS= "|"
 printf "%50s\n", "Basic DA HRA Gross"

}/sale|marketing/{
da=0.25*$6
hra = 0.5*$6
gross = $6 + hra +da

tot[1] += $6
tot[2] += da
tot[3] +=hra
tot[4] += gross
c++

}
END{

printf "\t Average %5d %5d %5d %5d\n", tot[1]/c, tot[2]/c,
 tot[3]/c, tot[4]/c

}

BEGIN{
 Dir["N"]= “North”
 Dir["E"]= “East”
 printf "N is %s and E is %s\n", Dir["N"], Dir["E"]

 mon[1]="jan"
 mon["1"]="January"
 mon["01"]= "JAN"
 printf "mon[1] is %s\n", mon[1]
 printf "mon[01] is also %s\n", mon[01]
 printf "mon[\"1\"] is also %s\n", mon["1"]
 printf "But mon[\"01\"] is %s\n", mon["01"]
 }

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

Run the above program as –
$ awk -f hashArry.awk
N is North and E is East
mon[1] is January
mon[01] is also January
mon["1"] is also January
But mon["01"] is JAN

The points to be observed from the output of above program –

 Setting the index as “1” has over-written the setting of 1 done before. Hence,
mon[1] is printed as January. This is because awk treats 1 also as string “1”.

 Accessing elements mon[1]and mon[01]both indicates with the subscript “1”.
 The elements mon["1"] and mon["01"] are different.
 In the program, as printf uses double quotes, we need to escape the array indices

like mon["1"] mon["01"] and using back-slash.

4.7.2 The Environment Array: ENVIRON[]
The array ENVIRON[] stores all environment variables. That is, it is helpful in knowing the
name of the user who is running the program, home directory etc. Consider the following
example –

$ awk 'BEGIN {
> print "Home = " ENVIRON["HOME"]
> print "Path = " ENVIRON["PATH"]
> }'
Home = /home/john
Path = /usr/lib64/qt-3.3/bin:/usr/kerberos/bin:/usr/local/bin:/bin:

 /usr/bin:/hon

4.8 FUNCTIONS
There are several built-in functions in awk for performing arithmetic and string operations
as shown in Table 4.2. Most of these functions behave similar to that in C programming.
The arguments of the function are enclosed within parentheses and separated by comma.
These functions are explained hereunder:

 int(x): This function calculates the integral portion of a number, without rounding it
off. For example,

$awk 'BEGIN{ print int(3.7)}'
3

 sqrt(x): It is used to compute the square root of the number x.
$awk 'BEGIN{ print sqrt(25)}'
5

 length: It determines the length of its argument. If no argument is present, the entire
line is assumed to be the argument. One can use it to locate the lines whose length
exceeds a specific number of characters. The following example lists all the lines
from the file emp.lst where number of characters is more than 50.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

$awk -F"|" 'length>50' emp.lst
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|director|personnel|05/11/47|7800
4290|jayant Chodhury|executive|production|09/07/50|6000
6521|lalit chowdury|director|marketing|09/26/45|8200
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

The length function can be used with argument also. Following example lists all the
employees whose name (second field, $2) has less than 12 characters.

$awk -F"|" 'length($2)<12' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
5423|n.k. gupta|chairman|admin|08/30/56|5400
2345|j.b. saxena|g.m.|marketing|03/12/45|8000

Table 4.2 Built-in Functions in awk

Function Description
int(x) Returns integer value of x
sqrt (x) Returns square root of x
length Returns length of complete line
length(x) Returns length of x
substr(stg, m, n) Returns portion of string of length n, starting from position m in

string stg
index(s1, s2) Returns position of string s2 in string s1
split(stg, arr, ch) Splits string stg into array arr using ch as delimiter and returns

number of fields
system(“cmd”) Runs UNIX command cmd and returns its exit status

 index(s1, s2): It determines the position of a string s2 within a larger string s1. This
function is usually helpful in validating single character fields. Consider the following
examples:

Ex1. Checking for the character b in text abcde. The result displayed is 2.

$awk 'BEGIN{
> x=index("abcde", "b")
> print x}'
2

 Ex2. Checking for substring cd, whose position is 3.

$ awk 'BEGIN{
> x=index("abcde", "cd")
> print x}'
3

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

 Ex3. Checking for substring p, which is not present. Result would be 0.

$ awk 'BEGIN{
> x=index("abcde", "p")
> print x}'
0

 substr(stg, m, n): This function extracts a substring of size n characters from a

string stg starting from the position m. For example, following code extracts 3
characters from the string hello how are you? starting from 7th character.

$ awk 'BEGIN{
> x=substr("hello how are you?", 7,3)
> print x}'
how

This function can be used to select those people who have born between 1945 and
1951 using the following code –

$awk -F "|" 'substr($5, 7,2)>45 && substr($5,7,2)<52' emp.lst
9876|jai sharma|director|production|03/12/50|7000
2365|barun sengupta|director|personnel|05/11/47|7800
4290|jayant Chodhury|executive|production|09/07/50|6000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

 split(stg, arr, ch): This function breaks up a string stg on the delimiter ch and stores
the fields in an array arr[]. The following example uses space (given within double
quotes as a 3rd argument to split function) as a delimiter and stores each word of the
string hello how are you? in the array arr.

$ awk 'BEGIN{
split("hello how are you?", arr, " ")
printf "%s\n%s\n%s\n%s\n",arr[1],arr[2],arr[3],arr[4]}'
hello
how
are
you?

 system: This function can be used for running UNIX commands within awk. For
example,

$ awk 'BEGIN{
> system("date")
> system("pwd")}'
Mon Jan 1 08:54:14 IST 2007
/home/john

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

4.9 CONTROL FLOW
Just like any higher programming languages, the awk supports conditional structures like if
statement and looping structures while and for. All these will execute a set of statements
depending on the success or failure of the control command (or condition).

4.9.1 The if Statement
The syntax of if statement is as below –
 if(condition is true) {
 statements
 } else {
 Statements
 }

When there is a single statement, curly brackets are not necessary. The following example
selects people whose salary is more than 8000. Note that, selection criteria is not given in
the below command. Instead, the action part itself contains the condition to select the
required records.

$ awk -F "|" '{
> if ($6>8000)
> printf "%s\t%d\n", $2, $6}' emp.lst
lalit chowdury 8200
v.k. agrawal 9000

The if statement can take the condition involving regular expressions, relational operators
like &&, || etc.

Ex: The code given below extracts the record only if the salary is greater than 8000 and the
designation is director.

$ awk -F"|" '{
> if($6>8000 && $3=="director")
> printf "%s\t %s\n", $2, $6}' emp.lst
lalit chowdury 8200

Ex: Regular expressions are used below to match the name as different spellings of
choudhury and saxksena.

$ awk -F"|" '{
> if($2~/[cC]ho[wu]dh?ury|sa[xk]s?ena/)
> printf "%s\t%s\n", $2, $3}' emp.lst
lalit chowdury director
shyam saksena d.g.m
j.b. saxena g.m.

Ex: Showing usage of else part –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

$ awk 'BEGIN{
> a=10
> b=20
> if(a>b)
> print "a is greater"
> else
> print "b is greater" }'
b is greater

4.9.2 Looping with for
The for loop in awk has two formats. First one is similar to that in C programming language.
Consider the example given below to display numbers from 1 to 5.

$ awk 'BEGIN{
> for(i=1;i<=5;i++)
> printf "%d\t", i }'
1 2 3 4 5

The second form of for loop has the following syntax –
 for(k in arr)
 statements

Here, k is the subscript of the array. As the subscript of an array can be a string, one can
use this form of array for various purposes. Following example is used to print various
values of ENVIRON array (which is built-in array in awk):

$ awk 'BEGIN{
> for(k in ENVIRON)
> print k "=" ENVIRON[k]}'

Following example counts number of people belonging to each of distinct designations in
the file emp.lst.

$ awk -F"|" '{count[$3]++}
> END {for (desig in count)
> print desig, count[desig]}' emp.lst
d.g.m 2
director 4
executive 2
manager 2
g.m. 4
chairman 1

In this example, the array count takes the designations like director, manager etc. as
index. So, when each line of the file emp.lst is processed, the respective designation count
is incremented.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

4.9.3 Looping with while
The while loop is iterated till the condition remains true. The following example prints the
values from 0 to 4.

$ awk 'BEGIN{
> while(k<5)
> { printf "%d\t", k
> k++
> }
> }'
0 1 2 3 4

Note that, the variable k is initialized to zero automatically.

4.10 ADVANCED SHELL PROGRAMMING
It has been discussed earlier (in Module 1, Section 1.7) that the shell is an interpreter and
also a scripting language. Shell is a process too, through which it makes itself available to
programs. So, it is necessary to understand the environmental changes that take place
when the shell executes a program (a shell script). One should know how to change these
environmental parameters. Most of such advanced shell programming is needed for a
system administrator.

4.10.1 The sh Command
When a shell script is executed, the shell spawns (a child process created by parent
process is known as spawning) a sub-shell and this sub-shell actually executes the script
(Read Section 1.7.2 from the Module 1 for more explanation). When the script execution is
completed the child shell is terminated and the control is returned to the parent shell.

One can explicitly invoke a sub-shell using sh command to execute a shell script. The
syntax would be –
 $sh filename.sh

A shell script that runs with the help of sh (or ksh, bash) need not have execute
permission.

Note that, usage of above line creates a sub-shell (child process), which is of same type as
that of login shell. And, the interpreter line written inside the script will be ignored. Hence, if
the script is written in ksh and the login shell is bash, then there might be unexpected
result.

4.10.2 Exporting Shell Variables
The values stored in the shell variables are local to the shell and they are not passed on to
the child shell. But, one can use export command to pass the variables used in the parent
shell into the child shell. To understand the concept, consider the following illustration.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

Step1. Create a file ex.sh as below –
 $ cat > ex.sh
 echo “The value of x is $x”
 x=20
 echo “The value of x is $x”

Step2. Now, assign a value 10 to x in the prompt and then run the above script ex.sh.
Observe the output.
 $ x=10 #x is 10 on a parent shell
 $ sh ex.sh #child shell is spawned to execute ex.sh
 The value of x is #nothing got printed for x
 The value of x is 20 #x is 20 inside the script

Here, on the command line we are assigning a variable x with a value 10. Hence, now the
parent shell has a variable x. Then, we are executing the file ex.sh, using sh command.
This will create a child shell. The first line in the file is to print variable x. But, we can
observe through output that it displays nothing. This assures that the variable x in the
parent shell did not pass to child shell. Later, in the script file, we are creating x again with a
value 20, which will be printed by the script without any issues.

Now, to pass the parent-shell-variable into the child, use the export command.

Step3. Assign 10 to x in the prompt, then use export command and then run the script.

$ x=10 #x is 10 on a parent shell
$ export x #parent x is exported to child

 $ sh ex.sh #child shell is spawned to execute ex.sh
 The value of x is 10 #value 10 got printed for x
 The value of x is 20 #x is 20 after new assignment

The above exercise clearly indicates that the variable declared in the login shell is local. To
make it globally available to all child shells, the export command is essential.

Note that, the variable declared inside child shell cannot be made available to parent shell.
To ensure this, we can just print value of x again (after doing above exercise) in the prompt
as –
 $ echo $x
 10 #value available with parent shell is printed

4.11 CONDITIONAL PARAMETER SUBSTITUTION
We know that to evaluate a variable in shell scripts, we will use $ symbol. We have also
discussed earlier (Section 1.7.11 of Module1) that the expr command is used for evaluation
of expression. But, Shell provides an interesting format to evaluate a variable depending on
whether the variable has some defined value or a null value. This is known as parameter
substitution. The syntax is as given –
 ${<var>: <opt> <stg>}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

Here, var is a variable to be evaluated
 opt can be any one of the symbols +, -, = or ?
 stg is a string

The behavior of the parameter substitution can be better understood based on the symbols
with which it is used as discussed hereunder.

The + Option: If the var contains a defined value and not null, then it evaluates to stg.
This can be understood in the following examples:

 Ex1: Assign a variable x with 10 and test for parameter substitution as shown –
$x=10
$echo ${x: + “x is defined”}
x is defined

 As the value of x is not null, the string (stg) part in the expression got evaluated.

 Ex2: Check for a non-existing variable, or the one with null value.
$echo ${y: + “y is defined”}

Observe that as the variable y is not assigned any value before (or it contains a null
value), the string (stg) is not evaluated.

 Ex3: Checking whether directory is empty or not.
$found=`ls` #ls within back-quotes
$echo ${found: + “This directory is not empty”}
This directory is not empty

Here, we have initialized the variable found with the command ls using back-
quotes. Hence, if there are some files/sub-directories in the current working
directory, the variable found will not be null.

The – Option: This is quite opposite to + option. Here if the var do not contains a defined
value and it is null, then it evaluates to stg. This is useful in setting default value for a
variable/filename when user forgets to provide the value. But, the default value provided
with – option is only for that moment, and var will not be assigned with that value.
Consider following examples:

 Ex1: Use an un-assigned variable x and give it a default value.
$echo ${x: - 10}
10

 $echo $x
 #prints nothing
 $

Here, the variable x was unassigned before. So, as it is null, value 10 will be
assigned. But, in the prompt if we check its value now, it is still null only.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

 Ex2: Consider a shell script test.sh –
$ cat > test.sh
echo “Enter a file name:”
read fname
fname=${fname: - emp.lst}
echo fname
[Ctrl+C]

 Run the above script as –
 $ sh test.sh
 Enter a file name:
 #do not provide any filename
 fname= emp.lst

We are running the script and not providing filename when it is asked. Hence,
fname will be null. Now, fname takes the value emp.lst from parameter
substitution. As we have used assignment operator with parameter substitution, the
value of fname would be emp.lst now onwards.

The = Option: This option goes one step ahead of – option, where it assigns the value to
the variable. If we use = option inside the parameter substitution, then explicit assignment
is not required.

 Ex:
$echo ${x:=10} #10 is assigned to x permanently
10
$echo $x #verify value of x
10

The = option is useful in loops. For example, the while-loop used as below
 x=1
 while [$x –le 10]

can be re-written as –
 while [${x:=1} –le 10]

The ? Option: It evaluates the parameter if the variable is assigned and not null.
Otherwise, it echoes a string and kills the shell. Consider the following script –

$ cat > test.sh
echo “Enter a file name:”
read fname
${fname: ? “No file name entered”}
echo fname
[Ctrl+C]

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

 Run the above script as –
 $ sh test.sh
 Enter a file name:
 #do not provide any filename
 No file name entered
 $ #shell aborted

4.12 SHELL FUNCTIONS
One can create user-defined functions in shell. A function is a collection of statements to
perform a particular task. The syntax would be –
 function_name(){
 statements
 return value
 }

The return statement is optional. When return is used, it returns a value representing the
success or failure of the function.

The functions in shell support command line arguments and usual notations like $1, $2, $*,
$# etc are supported. While defining a function, we use parentheses (), but while invoking
the function, it is not used. A function with arguments is also invoked without parentheses.

Consider a function definition on the prompt as –

$ fun(){
> ls -l $* | more
> }

Now call a function as –

$ fun
total 352
-rw-r--r-- 1 john STAFF 296 Jan 25 2007 avgSal.awk
-rw-rw-r-- 1 john john 280 Jan 30 2007 caseEx.sh
-rw-rw-r-- 1 john john 104 Feb 3 2007 cmdArg.sh
-rw-r--r-- 1 john STAFF 326 Jan 5 2007 cutlist1
-rw-r--r-- 1 john STAFF 415 Jan 5 2007 cutlist2
-rw-r--r-- 1 john STAFF 207 Jan 10 2007 dlist
-rw-r--r-- 1 john STAFF 534 Jan 18 2007 dlist.lst
-rw-r--r-- 1 john STAFF 342 Jan 10 2007 e1.lst
-rw-r--r-- 1 john STAFF 399 Jan 10 2007 e2.lst
-rw-r--r-- 1 john STAFF 110 Jan 10 2007 elist

Observe that the fun is called without arguments. Hence, $* inside the body of the function
is not effective. Thus, ls –l is executed on a current directory. We can give argument to
function as –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

$ fun test.*
-rw-r--r-- 1 chetana STAFF 216 Jan 25 2007 test.awk
-rw-rw-r-- 1 chetana chetana 15 Jan 19 2007 test.bak
-rw-r--r-- 1 chetana STAFF 60 Jan 18 2007 test.lst
-rwxrwxr-x 2 chetana chetana 22 Jan 21 2007 test.sh
-rw-rw-r-- 1 chetana chetana 33 Jan 19 2007 test.txt
-rw-rw-r-- 1 chetana chetana 30 Jan 19 2007 test.txt.bak

The argument to fun is test.* . Hence, inside the function, the statement is treated as –
 ls –l test.*

Hence, all the files whose name is test (with all possible extensions) will be displayed.

4.13 EVALUATING TWICE: eval COMMAND
The eval command will take an argument and construct a command out of it, which will be
executed by the shell. The eval statement tells the shell to take eval’s arguments as
command and run them through the command-line.

To understand the concept, let us first define few strings and then try to display the value of
string with a numbered variable.

 $ text1= “Emp ID:”
 $ text1= “Name:”

$ text1= “Designation:”
$ x=1
$ echo $text$x

 1 #output

Here, we expect the output to be Emp ID: because, $x is 1 and $text$x would be
text1. But, the shell evaluates the command line from left to right. So, it first encounters
$text which is not defined at all. Then it evaluates $x. Hence we will get the output as 1.

The eval statement evaluates a command line twice. In the first pass, it suppresses some
evaluation and performs it only in the second pass. This is what we want in our previous
example. So, if we escape the first $ symbol in $text$x, then the first pass evaluates only
$x. So, we will get only text1. In the second pass, we have to evaluate it using eval as
shown below –
 $eval echo \$text$x
 Emp ID: #displayed value of text1

Consider one more example in which we have a variable x assigned as 10 and another
variable y which is assigned as x. Here, we would like to retrieve the value of x through y as
shown below –

 $ x=10
 $ y=x

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

 $ echo $y #it prints just x, but not 10
 x
 $ eval echo \$$y #escape first $ using \
 10 #to get 10

In the above example, when we use the statement,

$ eval echo \$$y

the first $ symbol is escaped using slash. So, only $y is evaluated to get x. Then eval is
used to evaluate value of x and result would be 10.

4.14 THE exec STATEMENT
Usually, when we run a command in UNIX, a new process is spawned (using fork system
call). But, the forking just creates a child process and it is not enough to run a new
program. To do that, the forked child needs to overwrite its own image with the code and
data of the new program. This is done with exec internally. (Details are discussed in
Module 5)

When exec command is used with another command externally on the command line, a
new process is not spawned. Instead, the current process is overlaid with the new
command. In other words, the exec command is executed in place of the current shell
without creating a new process. This is useful for shell programmers when they need to
overwrite the current shell itself with the code of another program. When the exec is
preceded with any UNIX command, that command overwrites the current process – most of
the times the shell. As the shell is overwritten by some other command, the user will be
logged out immediately after the completion of that command.

Consider the following example –
 $ exec date
 Tue Jan 28 21:25:53 IST 2017
 login:

Observe that, after displaying the date, login prompt is appeared. This indicates that the
user is logged out because the exec has made the date command to overwrite the shell
itself.

Sometimes, the system administrator what the user to run only one program automatically
after logging in and the user should be logged out after completion of that program. That
means, the user is denied to use the shell as per his/her wish. In such situations, the
system admin can place the command in the file .profile preceded by exec. The shell
overlays itself the code of the program to be executed, and when command execution is
complete, the user is logged out – as there is not shell waiting for it.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

NOTE: The following topic is mentioned in Module 1 as per the syllabus. But, as it requires
the knowledge of regular expressions, it is discussed here. Students are suggested to read
this topic as a part expr command given in Section 1.7.11 in Module 1.

String Handling:
The expr command uses two expressions separated by colon for manipulating strings. The
string to be manipulated is placed on the left side of the colon (:) and a regular expression
is placed on its right. Depending on the composition of the expression, the expr command
can perform three important string functions as explained hereunder:

 Determining Length of the String: The length of the string can be computed using

expr command along with the help of regular expression (.*). This indicates that the
number of character matching pattern must be extracted.

$ expr “abcdefgh” : ‘.*’
8

 Note that there must be space on both sides of colon symbol.

 Extracting a Substring: A substring can be extracted with the help of escaped
characters \(and \). For example,

$ var=2017
$ expr “$var” : ‘..\(..\)’
17

The pattern group \(..\) here is actually the TRE (tagged regular expression) used by
sed command. But, this is used with different meaning here. The two dots in the
beginning indicate that two characters should be ignored in the beginning and two dots
later indicate that two characters should be extracted.

Consider one more example –

$ var= “hello how are you?”
$ expr “$var” : ‘.\(....\)’
ello

Here the first character (h) is ignored with the help of one dot. Later, 4 characters are
extracted using 4 dots.

 Locating Position of a Character: To locate the first occurrence of a character in a
given string, we need to count number of other characters which have appeared before
the specific character. In the following example, we are trying to locate first occurrence
of the character d. So, we need to count number of characters which are not d, and
then there must be a d. Hence, the command should be –

$ var= “abcdefgh”
$ expr “$var” : ‘[^d]*d’

 4

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

