
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

 MODULE 3. SIMPLE FILTERS

3.1 INTRODUCTION
Filters are the commands which accept data from standard input, manipulate it and write
the results to standard output. Filters are very important tools of the UNIX system. Many
UNIX files have lines containing fields. Some commands expect these fields to be
separated by a suitable delimiter, which is not a part of the data. The delimiter may be a
space, colon (:), comma (,), pipe (|) etc. In the current study, we will use a file emp.lst as a
database in which fields are delimited by pipe (|).

 $cat emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|director|personnel|05/11/47|7800
5423|n.k. gupta|chairman|admin|08/30/56|5400
1006|chanchal sanghvi|director|sales|09/03/38|6700
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
2476|anil aggarwal|manager|sales|05/01/59|5000
6521|lalit chowdury|director|marketing|09/26/45|8200
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

The above file is used in all the examples of this chapter. In this file, the fields are EmpID,
Name, Designation, Department, Date of Birth and Salary.

3.2 pr: PAGINATING FILES
The pr command prepares a file for printing by adding suitable headers, footers and
formatted text. The command uses filename as an argument as below –

$pr emp.lst

May 06 10:38 1997 emp.lst Page1

2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|director|personnel|05/11/47|7800
5423|n.k. gupta|chairman|admin|08/30/56|5400
1006|chanchal sanghvi|director|sales|09/03/38|6700
…………..
………………
(full file will be displayed)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

Observe that a header includes the date and time of last modification, name of the file and
Page number. The pr command adds five lines of margin at the top and five lines at the
bottom.

NOTE: When you run the above command, if you cannot see the file contents, it means
that the contents of file have been scrolled up. So, you may see the blank lines only. To
avoid this, use the more option as below –
 $ pr emp.lst |more

Now, only few lines at a time will be displayed and you can keep pressing enter – key to
read fully.

3.2.1 pr Options
The pr command uses several options – few of which are listed in Table 3.1.

Option Meaning
-t Suppresses head and footer
-k (where k is an integer) Prints the file contents in k columns
-d Double-line spacing between the lines of file contents
-n Assigns numbers to lines. It is useful in debugging the code
-o n Offsets lines by n spaces and increases left margin of page.

Let us discuss some of these options applied on the output of cat emp.lst.

Ex1.
 $ pr –t -3 emp.lst

2233|a.k. shuk 9876|jai sharm 5678|sumit cha
2365|barun sen 5423|n.k. gupt 1006|chanchal
6213|karuna ga 1265|s.n. dasg …………..
………………………………… (full file will be printed in 3 columns)

As the option –t is used, the header part of the pr command is suppressed. The option -3
indicates that the contents have to be displayed in 3 columns on a standard output device
(monitor). But observe that, each record in the given file is quite big and cannot fit into 3
columns. Hence, some characters from each record are omitted so as to fit 3 columns in
the output display.

Ex2. $ pr –t –d -3 emp.lst

2233|a.k. shuk 9876|jai sharm 5678|sumit cha

2365|barun sen 5423|n.k. gupt 1006|chanchal

6213|karuna ga 1265|s.n. dasg …………..
………………………………… (full file will be printed in 3 columns)

The output is displayed in 3 columns by giving double-line spacing between the lines.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

Ex3.
$ pr -t -n emp.lst

 1 2233|a.k. shukla|g.m.|sales|12/12/52|6000
 2 9876|jai sharma|director|production|03/12/50|7000
 3 5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
 …………..
 ……………….
 15 0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

Each line of the file is numbered here.

Ex4. $ pr -t -o 5 emp.lst
 2233|a.k. shukla|g.m.|sales|12/12/52|6000
 9876|jai sharma|director|production|03/12/50|7000
 5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
 ……..
Here, the contents of the files are displayed by leaving 5 spaces as the left margin.

Note that any combination of various options given in Table 3.1 can be used to combine
the effects.

3.3 head: DISPLAYING THE BEGINNING OF A FILE
The head command is used to display top of the file. By default, it displays first 10 lines of
the file. The -n option can be used with a required line–count to display those many lines.
For example,

$ head -n 3 emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

Here, -n is used with the count 3; hence the top 3 lines of the file will be displayed.

3.4 tail: DISPLAYING THE END OF A FILE
The tail command is opposite to head. That is, it displays last 10 lines by default. By
specifying the count with –n option, we can display only the required number of lines as
below –

$ tail -n 3 emp.lst
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

The tail command can be used to display lines from a specific line number as below –

$ tail -n +14 emp.lst
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

Here, from 14th line, till the last line output is displayed. As there are 15 lines in the file
emp.lst, the above command has displayed two lines.

3.4.1 tail Options
There are various options for tail command. We will discuss two of them here.

 Monitoring File Growth (-f): Many UNIX programs constantly write to the log files
of the system as long as they are running. System admin need to monitor the growth
of these files to view the latest messages. The –f (follow) option of tail is used for
this purpose. The following example is used to monitor the installation of Oracle by
watching the growth of the log file install.log from another terminal.
$tail –f /oracle/app/oracle/product/11.1/orainst/install.log

The prompt doesn’t return even after the work is over, and hence one has to use the
interrupt key (like Ctrl +C) to abort the process.

 Extracting Bytes Rather than Lines (-c): The –c option with tail is used to extract
required number of bytes from the file.
Ex1. $ tail -c -100 emp.lst

|8000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

 Here, the last 100 bytes from the file emp.lst are extracted.

 Ex2. $ tail -c +500 emp.lst

lit chowdury|director|marketing|09/26/45|8200
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

 Here, the data is extracted after skipping first 500 bytes.

3.5 cut: SLITTING A FILE VERTICALLY
The cut command is used in two types:

 Cutting Columns (-c): To extract specific columns, the –c option is used with a list
of column numbers delimited by comma. One can give range of columns using
hyphen. The following example extracts the columns from 6th to 22nd and again from
24th to 32nd from the file emp.lst.

$ cut -c 6-22,24-32 emp.lst
a.k. shukla|g.m.|ales|12/1
jai sharma|directr|product
sumit chakrobartyd.g.m|mar
barun sengupta|diector|per
…………………………………………………….

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

Observe that there is no space before/after comma when you are specifying two lists
of columns.

 Cutting Fields (-f): The –c option is useful for fixed length lines (or fields). But we
cannot expect it to happen for all the files (for example, name of different individuals
cannot contain equal number of characters). Hence, extracting (or cutting) fields
makes sense rather than extracting characters. The –f option makes it possible with
a default delimiter as tab. If the delimiter is any other character than tab, –d option
should be used. Following is an example to extract 2nd and 3rd fields from the file
emp.lst.

$ cut -d \| -f 2,3 emp.lst
a.k. shukla|g.m.
jai sharma|director
sumit chakrobarty|d.g.m
barun sengupta|director
……….

Note that in the file emp.lst the delimiter is | (pipe). But, UNIX system uses | symbol
as a pipeline character which is normally used to make output of one command to
be an input for another command. Hence, to avoid UNIX system from
misunderstanding the | as pipeline character, we need to use it as an escape
sequence \|.

An alternative way of providing delimiter character is - within double quotes. In the
following example, the 1st, 4th, 5th and 6th columns are extracted from emp.lst.

$ cut -d "|" -f 1,4- emp.lst
2233|sales|12/12/52|6000
9876|production|03/12/50|7000
5678|marketing|04/19/43|6000
2365|personnel|05/11/47|7800

 …………………

The field specification 1,4- given here indicates 1st field, and 4th field onwards. We
need not specify 1,4,5,6 here. That is, when series of fields required till the last
field, the hyphen will do the job.

3.6 paste: PASTING FILES
The paste command is used to paste the contents into a file vertically. One can view two
files side by side by pasting them. To understand the working of paste command, first let us
create two files by cutting some fields from emp.lst.

The file cutlist1 is created as below, which contains 2nd and 3rd fields (name and
designation) of the file emp.lst.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

$ cut -d \| -f 2,3 emp.lst > cutlist1
$ cat cutlist1
a.k. shukla|g.m.
jai sharma|director
sumit chakrobarty|d.g.m
barun sengupta|director
…………………………………………………

The file cutlist2 is created as below, which contains 1st and 4th to last fields of the file
emp.lst.

$ cut -d "|" -f 1,4- emp.lst > cutlist2
$ cat cutlist2
2233|sales|12/12/52|6000
9876|production|03/12/50|7000
5678|marketing|04/19/43|6000
2365|personnel|05/11/47|7800

 ……………………………………………………………

Now, use paste command to paste two files cutlist1 and cutlist2 vertically as below –

$ paste cutlist1 cutlist2
a.k. shukla|g.m. 2233|sales|12/12/52|6000
jai sharma|director 9876|production|03/12/50|7000
sumit chakrobarty|d.g.m 5678|marketing|04/19/43|6000
barun sengupta|director 2365|personnel|05/11/47|7800
……………………………………………………………

The paste command uses tab as the delimiter between two files. If we wish to give the
delimiter of our choice, -d option should be used. In the below given example, the comma
(,) symbol is used as delimiter between two files.

$ paste -d "," cutlist1 cutlist2
a.k. shukla|g.m. , 2233|sales|12/12/52|6000
jai sharma|director , 9876|production|03/12/50|7000
sumit chakrobarty|d.g.m , 5678|marketing|04/19/43|6000
barun sengupta|director , 2365|personnel|05/11/47|7800
……………………………………………………………………

Though we say that two files should be given as input to paste command, the data for one
file can be given through standard input. For example, if the file cutlist2 doesn’t exist,
provide the character stream by cutting the required fields and then piping it to paste
command as below –

$ cut -d \| -f 1,4- emp.lst | paste -d "|" cutlist1 -
a.k. shukla|g.m.|2233|sales|12/12/52|6000
jai sharma|director|9876|production|03/12/50|7000
sumit chakrobarty|d.g.m|5678|marketing|04/19/43|6000
barun sengupta|director|2365|personnel|05/11/47|7800

 ……………………………………………………………

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

Observe the hyphen after cutlist1 in the above example. The order of pasting can be
reversed by changing the position of hyphen as below –

$ cut -d \| -f 1,4- emp.lst | paste -d "|" - cutlist1
 2233|sales|12/12/52|6000| a.k. shukla|g.m.
 9876|production|03/12/50|7000| jai sharma|director
 5678|marketing|04/19/43|6000| sumit chakrobarty|d.g.m
 2365|personnel|05/11/47|7800| barun sengupta|director
 …………………………………………………………

The –s option of paste command can be used to join lines. For example, assume we have
file addressbook as below –
 $cat addressbook
 Ajay # first person Name
 ajay@gmail.com #email
 9120783220 #phone
 Vijay # second person name
 vijay@yahoo.com
 8034125789

Here, name, email, phone are in different lines, but actually represents single person. The
whole file is having all fields in different lines, instead of one in-front of other. To combine
these lines, we can use –s option as below –
$ paste –s addressbook
Ajay ajay@gmail.com 9120783220 Vijay vijay@yahoo.com 8034125789

Now, again this result is meaningless as all records are put in a single line. But, it would be
better if we keep name, email, phone of every person in one line. For this purpose, we can
use –d option along with –s option as below –
 $ paste –s –d “||\n” addressbook
 Ajay|ajay@gmail.com|9120783220

Vijay|vijay@yahoo.com|8034125789

Here, we have used “||\n” as delimiter. Here, two pipe symbols are acting as delimiter
after joining two lines of the original file. The new-line character is a delimiter after joining
3rd line. In case we put 3 pipe symbols, the result would be different as below –

$ paste –s –d “|||\n” addressbook
 Ajay|ajay@gmail.com|9120783220|Vijay

vijay@yahoo.com|8034125789

3.7 sort: ORDERING A FILE
Sorting is arranging data in ascending or descending order. By default, the sort command
reorders the lines in ASCII collating sequence (white space first, then numerals, uppercase,
lowercase). For example,

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org
mailto:ajay@gmail.com
mailto:vijay@yahoo.com
mailto:ajay@gmail.com
mailto:vijay@yahoo.com
mailto:ajay@gmail.com
mailto:vijay@yahoo.com
mailto:ajay@gmail.com
mailto:vijay@yahoo.com

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

$ sort emp.lst
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
1006|chanchal sanghvi|director|sales|09/03/38|6700
1265|s.n. dasgupta|manager|sales|09/12/63|5600
……………………………………………………………………………………
……………………………………………………………………………………
9876|jai sharma|director|production|03/12/50|7000

3.7.1 Sorting Options
The important options of sort command are given in Table 3.2. Some of the options are
discussed with examples here.

Table 3.2 Options of sort command
Option Description

-tchar Uses delimiter char to identify fields
-k n Sorts on nth field
-k m,n Starts sort on mth field and ends sort on nth field
-k m.n Starts sort on nth column of mth field
-u Removes repeated lines
-n Sorts numerically
-r Reverses sort order
-f Folds lowercase to equivalent uppercase (case-insensitive sort)
-m list Merges sorted files in list
-c Checks if file is sorted
-o fname Places output in file fname

 Sorting on Primary Key (-k): Following is the example to sort the file emp.lst based on

the 2nd field name.

$ sort -t "|" -k 2 emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
2476|anil aggarwal|manager|sales|05/01/59|5000
2365|barun sengupta|director|personnel|05/11/47|7800
1006|chanchal sanghvi|director|sales|09/03/38|6700
……………………………………………………………
……………………………………………………………
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

Here, the 2nd field name is used to sort all the records with the help of –k option. To
identify different fields, the delimiter is | and it is used with –t option.

The –r option can be used to sort in the descending order as below –

$ sort -t "|" -rk 2 emp.lst
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

………………………………………………………………………
2233|a.k. shukla|g.m.|sales|12/12/52|6000

 Sorting on Secondary Key : One can give more than on key for sorting. That is, one
can provide secondary key to sort. If the primary key is the 3rd field (designation), and
the secondary key is 2nd field (name), then the command should be given as –

$ sort -t "|" -k 3,3 -k 2,2 emp.lst
5423|n.k. gupta|chairman|admin|08/30/56|5400
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|director|personnel|05/11/47|7800
1006|chanchal sanghvi|director|sales|09/03/38|6700
9876|jai sharma|director|production|03/12/50|7000
6521|lalit chowdury|director|marketing|09/26/45|8200
4290|jayant Chodhury|executive|production|09/07/50|6000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
2233|a.k. shukla|g.m.|sales|12/12/52|6000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
2476|anil aggarwal|manager|sales|05/01/59|5000
1265|s.n. dasgupta|manager|sales|09/12/63|5600

Observe the output carefully. We need to sort 3rd field as a primary key (3,3 stands for
both starting and ending fields are 3), and then 2nd field as secondary key. The 3rd field
designation with value chairman appears as first record. There are two records with
designation value as d.g.m. Out of these two records, which one has to appear first?
Answer is – to be sorted based on 2nd field, name. Hence, shyam saksena is printed
first and then sumit chakrobarty is printed. The same logic continues for all the
records. Wherever the designation field is same, the records are sorted by name.

 Sorting on Columns: A character position with in a field can be used for sorting the

records. For example, assume we would like to sort the file emp.lst based on year of
birth. Now, year of birth is 7th and 8th column (character) in the 5th field. Hence, the
command should be given as –

$ sort -t "|" -k 5.7,5.8 emp.lst
1006|chanchal sanghvi|director|sales|09/03/38|6700
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
……………………………………………………………………………
1265|s.n. dasgupta|manager|sales|09/12/63|5600

 Numeric Sort (-n): Assume that there is a file numfile containing only the numbers from

1 to 12. Now if we apply sort command on this file, the result will be strange –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

$ sort numfile
1
10
11
12
2
3
………
9

This is because, sort is treating them as strings and as per ASCII collating
sequence, 1 appears before 2. To avoid such behavior, -n (numeric) option has to
be used as below –

$ sort –n numfile
1
2
3
………
10
11
12

 Removing Repeated Lines (-u): The –u (unique) option is used to remove repeated
lines from a file. Following example first cuts the designation field from all the records of
emp.lst and then sorted to find unique designations in the file.

$ cut -d "|" -f3 emp.lst | sort -u
chairman
d.g.m
director
executive
g.m.
manager

3.8 uniq: Locate Repeated and Non-repeated Lines
Whenever two files are concatenated or merges, there is a chance of duplicate entries. The
sort –u option removes such duplicates. But, there is a special UNIX command for this
purpose viz. uniq. The command requires the input file to be sorted. Hence, it is a practice
to sort the file first and then give its output to uniq as input through | symbol.

Various options of uniq command are discussed here –

 Selecting the Non-repeated Lines (-u): To determine the uniquely appearing
record in the file, -u option is used. For example, to check a unique designation in
emp.lst, cut out the 3rd field (designation), then sort it and then pipe it to uniq as
below –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

$cut -d "|" -f3 emp.lst |sort | uniq -u
chairman

Here, output of cut command (3rd field – designation) is given as input to sort
command. Again, output of sort (designation in sorted order) is given as input to uniq
command. The –u option of uniq selects a non-repeated entry out of all
designations, which is chairman in this example.

 Selecting the duplicate Lines (-d): The –d option of uniq command is used to
display one copy of the repeated/duplicate lines in the file. For example,

$ cut -d "|" -f3 emp.lst |sort | uniq -d
d.g.m
director
executive
g.m.
manager

 Counting Frequency of Occurrence(-c): When there are repeated lines, we may

require to know how many times each line is repeated. This is done with –c option
as below -

$ cut -d "|" -f3 emp.lst |sort | uniq -c
 1 chairman
 2 d.g.m
 4 director
 2 executive
 4 g.m.
 2 manager

Here, chairman appeared once, d.g.m. appeared twice and so on.

3.9 tr: Translating Characters
The tr command is used to manipulate individual characters in a line. It translates
characters using one or two compact expressions. The syntax is –
 tr options expr1 expr2 stdinput

Note that tr takes input only from standard input, it doesn’t take a file name as argument.
By default, it translates each character in expr1 to its mapped counterpart in expr2. The first
character in expr1 is replaced by first character in expr2 and so on.

Consider an example where we try to replace the delimiter | symbol in emp.lst with another
character ~ as below –
 $ tr ‘|’ ‘~’ < emp.lst

2233~a.k. shukla~g.m.~sales~12/12/52~6000
9876~jai sharma~director~production~03/12/50~7000
5678~sumit chakrobarty~d.g.m~marketing~04/19/43~6000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

2365~barun sengupta~director~personnel~05/11/47~7800
…………………………………………………

Note that, < is a symbol for input redirection. So, here the content of the file emp.lst is
redirected to standard input and the tr command receives it process further.

In a single command, one can change more than one character. For example, following
command replaces | by ~ and / (used in date of birth field) by –.

 $ tr ‘|/’ ‘~-’ < emp.lst

2233~a.k. shukla~g.m.~sales~12-12-52~6000
9876~jai sharma~director~production~03-12-50~7000
5678~sumit chakrobarty~d.g.m~marketing~04-19-43~6000
…………………………………………………………

The tr command can be used to change the case of the text as below –
 $ cat emp.lst | tr ‘[a-z]’ ‘[A-Z]’

2233|A.K. SHUKLA|G.M.|SALES|12/12/52|6000
9876|JAI SHARMA|DIRECTOR|PRODUCTION|03/12/50|7000
5678|SUMIT CHAKROBARTY|D.G.M|MARKETING|04/19/43|6000
…………………………………………………………………

3.9.1 tr Options
Some of the options of tr command are discussed here –

 Deleting Characters (-d): This option is used for deleting some characters from the file.

For example, if we would like to delete the separator ‘/’ situated in the date of birth field
of emp.lst , we can write as below –

$ tr –d ‘/’ < emp.lst
2233|a.k. shukla|g.m.|sales|121252|6000
9876|jai sharma|director|production|031250|7000
5678|sumit chakrobarty|d.g.m|marketing|041943|6000
………………………………………………………

 Compressing multiple Consecutive Characters (-s): Some of the files may have
additional white spaces, and we may want to remove them. In such situations, the –s
option of tr command is useful. As an illustration, create a file as below –

$ cat > test
Hello how are you?
I am fine

 (Ctrl + c)
 Now, try to remove additional spaces in between as below –

 $ tr –s ‘ ’ < test
 Hello how are you?
 I am fine

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

 Complementing Values of Expression (-c): The –c option complements the set of
characters in the expression. Thus, to delete all characters except the | and /,

 Using ASCII Octal Values and Escape Sequences: The tr command can use octal
values and escape sequences to represent characters. This facility is useful when non-
printable characters are there in the file. The following example is used to display each
field in a separate line by replacing | symbol by new-line character.

$ tr '|' '\n' < emp.lst |head -n 10
2233
a.k. shukla
g.m.
sales
12/12/52
6000
9876
jai sharma
director
production

 Observe that, we have used head command to display only 10 lines.

3.10 FILTERS USING REGULAR EXPRESSIONS
In real time scenario, we often need to search a file to check whether a required pattern
exists or not. And we may require to replace certain text with some other text. In UNIX two
important commands grep and sed takes care of most of the search requirements. To
work with these commands for efficient searching, we need to know regular expressions as
well. Here we will discuss these concepts in detail.

3.10.1 grep: Searching for a Pattern
The grep command scans its input for a pattern and displays lines contain the pattern, the
line numbers or filenames where the pattern occurs. The syntax is –

grep options pattern filename(s)

When filename is not specified, the grep searches for pattern in standard input. Following
example is to search the text sales in the file emp.lst.

$ grep "sales" emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
1006|chanchal sanghvi|director|sales|09/03/38|6700
1265|s.n. dasgupta|manager|sales|09/12/63|5600
2476|anil aggarwal|manager|sales|05/01/59|5000

When the specified pattern is not present in the file, the grep command displays nothing as
shown below –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

$ grep president emp.lst #quotes not necessary always
$ #president not found

NOTE that, the pattern need not be put inside double quote always. When the pattern
contains more than one word (with white space in-between), it needs to be put inside
single/double quotes. When special characters in the patter require command substitution
or variable evaluation to be performed, then double quote must be used.

Various options for grep command are given in Table 3.3. They are discussed with suitable
examples below.

Table 3.3 Options for grep command
Option Description

-i Ignores case for matching
-v Doesn’t display lines matching expression
-n Displays line numbers along with lines
-c Displays count of number of occurrences
-l Displays list of filenames only
-e exp Specifies expression with this option. Can use multiple times. Also used

for matching expression beginning with a hyphen
-x Matches pattern with entire line (doesn’t match embedded patterns)
-f file Takes patterns from file, one per line
-E Treats pattern as an extended regular expression (ERE)
-F Matches multiple fixed strings (in fgrep – style)

 Ignoring Case (-i): When we are searching for a pattern, but not sure about the case, -i

option is used. It ignores the case of the text and displays the result. For example,

$ grep -i 'agarwal' emp.lst
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

 Deleting Lines (-v): The –v (inverse) option selects all lines except those containing the

pattern. The following example selects all lines in the file emp.lst except for those
containing the term director.

$ grep -v 'director' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
5423|n.k. gupta|chairman|admin|08/30/56|5400
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
2476|anil aggarwal|manager|sales|05/01/59|5000
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

 Displaying Line Numbers (-n): This option displays the line numbers containing the
pattern along with the actual lines. For example,

$ grep -n 'marketing' emp.lst
3:5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
11:6521|lalit chowdury|director|marketing|09/26/45|8200
14:2345|j.b. saxena|g.m.|marketing|03/12/45|8000
15:0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

 Counting Lines Containing Pattern (-c): A pattern may be present in a file multiple

times. If we would like to know how many times it has appeared, -c option can be used.
The following example shows how many times the pattern director has appeared in the
file emp.lst.

$ grep -c 'director' emp.lst
4

 Displaying Filenames (-l): The –l (el) option is used to display the names of files

containing the pattern. Assume there are there are two more files test.lst and testfile.lst
along with emp.lst. Now, let us check in which file(s) the pattern manager is present.

$grep –l ‘manager’ *.lst
emp.lst
test.lst

 Matching Multiple Patterns (-e): When we would like to search for multiple patterns in

a file, we can use –e option. For example,
$ grep -e "Agarwal" -e "aggarwal" -e "agrawal" emp.lst
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

 Taking Patterns from a File (-f): If various patterns are stored in a file each in different

line, then –f option can be used by giving that filename as one of the arguments. For
example, assume there is a file pattern.lst as –

$cat >pattern.lst
manager
executive

 Then, give the command as –
 $grep –f pattern.lst emp.lst

1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

3.11 BASIC REGULAR EXPRESSIONS (BRE)
A regular expression (regex) is defined as a pattern that defines a class of strings. Given a
string, we can then test if the string belongs to this class of patterns. Regular expressions
are used by many of the UNIX utilities like grep, sed, awk, vi etc. A regular expression is a
set of characters that specify a pattern. Regular expressions are used when we want to
search for specify lines of text containing a particular pattern. Regular expressions search
for patterns on a single line, and not for patterns that start on one line and end on another.

The regular expression uses meta-character set as given in Table 3.4.

Table 3.4 Character subset for BRE
Symbol/

Expression
Matches

* Zero or more occurrences of the previous character
g* Nothing or g, gg, ggg etc
. A single character
.* Nothing or any number of characters
[pqr] A single character p, q or r
[c1-c2] A single character within the ASCII range represented by c1 and c2
[1-3] A digit between 1 and 3
[^pqr] A single character which is not p, q or r
[^a-zA-Z] A non-alphabetic character
^pat Pattern pat at the beginning of line
pat$ Pattern pat at end of line
^pat$ pat as only word in line
^$ Lines containing nothing

Regular expressions may belong to one of the two categories – basic and extended. The
grep command supports basic regular expressions (BRE) by default and extended regular
expressions (ERE) with –E option. The sed command supports only BRE set. Initially, we
will discuss BRE.

3.11.1 The Character Class
A regular expression lets to specify a group of characters enclosed within a pair of
rectangular brackets []. The match is performed for a single character in the group. For
example, the expression [ra] matches either r or a.

In the previous section, we have seen that grep with –e option is used to compare multiple
patterns. Now, let us write the regular expression for searching different spellings of
agarwal in emp.lst.

$ grep "[aA]g[ar][ar]wal" emp.lst
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

In the above example, the character class [aA] matches the letter a in both lowercase and
uppercase. The model [ar][ar] matches any of the four patterns –
 aa ar ra rr

The pattern [a-zA-Z0-9] matches a single alphanumeric character. While giving range of
characters, make sure that the character on the left of the hyphen has lower ASCII value
than the character at right.

Regular expressions use the ^ symbol to negate the character class. When the character
class begins with this character, all characters other than the ones grouped in the class are
matched. So, [^a-zA-Z] matches a single non-alphabetic character string.

3.11.2 The *
The * refers to the immediately preceding character. It matches zero or more occurrences
of the previous character. Hence, the pattern g* matches null string or following strings –
 g, gg, ggg, gggg ………

As the * can match even a null string, if you want to search a string beginning with g, do not
give pattern as g* , instead give as gg*.

Now check the following example, where all three types of spellings of agarwal can be
searched.

$ grep "[aA]gg*[ar][ar]wal" emp.lst
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

3.11.3 The Dot (.)
The dot (.) matches a single character. For example, the pattern 2… matches a four-
character pattern beginning with a 2. The combination of * and dot (.*) constitutes a very
useful regular expression. It signifies any number of characters or none. For example,
when you are not sure about the initial of saxena, you can give the expression as -

$ grep ".*saxena" emp.lst
2345|j.b. saxena|g.m.|marketing|03/12/45|8000

3.11.4 Specifying Pattern Locations (^ and $)
When we need to search for a pattern either at the beginning or at the end of a line, we can
use ^ and $ respectively. For example, following command searches all the employees
whose employee ID starts with 2.
 $ grep "^2" emp.lst

2233|a.k. shukla|g.m.|sales|12/12/52|6000
2365|barun sengupta|director|personnel|05/11/47|7800
2476|anil aggarwal|manager|sales|05/01/59|5000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

Similarly, if you would like to search all the employees whose salary is between 7000 and
7999, use the following statement –

$grep “7…$” emp.lst
9876|jai sharma|director|production|03/12/50|7000
2365|barun sengupta|director|personnel|05/11/47|7800

Here, three dots indicate three positions after 7.

To select only those lines where employee ID do not begin with 2, use the command as
below –
 $ grep “^[^2]” emp.lst

9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
5423|n.k. gupta|chairman|admin|08/30/56|5400
1006|chanchal sanghvi|director|sales|09/03/38|6700
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
6521|lalit chowdury|director|marketing|09/26/45|8200
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

Observe the regular expression “^[^2]” carefully. Here, [^2] indicates all characters except 2
(as per Table 3.4). Then the ^ in the beginning indicates all records starting with those
numbers (except 2). Similarly, the following command extracts all lines where employee ID
does not start with any of 2, 3, 5, and 9.

$grep “^[^2359]” emp.lst
1006|chanchal sanghvi|director|sales|09/03/38|6700
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
6521|lalit chowdury|director|marketing|09/26/45|8200
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

We will see one more use-case of ^ symbol. As we know, there is no command in UNIX to
list only directories. So, if we want to list only directories, we can use grep as below –
 $ ls –l | grep “^d”

drwxrwxr-x 2 chetana chetana 4096 Feb 6 2007 myDir

NOTE:
 When the ^ symbol is placed at the beginning of character class (Ex. [^a-z]) it negates

every character of the class.
 If ^ symbol is placed outside the character class and at the beginning of the expression

(Ex. ^2…), the pattern is matched at the beginning of the line.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

 If ^ symbol appears at any other position (Ex. a^bc), then it is treated as a part of
pattern itself and matched with itself.

3.12 EXTENDED REGULAR EXPRESSIONS (ERE)
Extended regular expressions make it possible to match dissimilar patterns with a single
expression. It uses some additional characters as shown in Table 3.5. In some of the
versions of UNIX, the syntax of ERE works with grep command with –E option. If this is not
working, then egrep command must be used.

Table 3.5 Characters used in Extended Regular Expression
Expression Description

ch+ Matches one or more occurrences of character ch
ch? Matches zero or one occurrence of character ch
exp1 | exp2 Matches exp1 or exp2
(x1 | x2)x3 Matches x1x3 or x2x3

3.12.1 The + and ?
The ERE set includes two special characters + and ?, whose meaning is as below –

 The + matches one or more occurrences of the previous character
 The ? matches zero or one occurrence of the previous character.

Thus, the expression b+ matches any of b, bb, bbb etc. And b? matches either single
instance of b or nothing.

Consider the following example –

$ egrep "[aA]gg?arwal" emp.lst
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000

3.12.2 Matching Multiple Patterns - |, (and)
The pipe symbol can be used as a delimiter for multiple patterns. For example,

$ egrep 'sengupta|dasgupta' emp.lst
2365|barun sengupta|director|personnel|05/11/47|7800
1265|s.n. dasgupta|manager|sales|09/12/63|5600

UNIX provides even better alternative using parentheses as shown below –

$ egrep '(sen|das)gupta' emp.lst
2365|barun sengupta|director|personnel|05/11/47|7800
1265|s.n. dasgupta|manager|sales|09/12/63|5600

The combination of BRE and ERE is a very powerful regular expression.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

3.13 sed: THE STREAM EDITOR
The sed command is a multipurpose tool which combines the work of several filters. It
performs non-interactive operations on a data stream. It allows selecting lines and running
instructions on them.

An instruction combines an address for selecting lines, with an action to be taken on them.
The sed command uses such instructions. The syntax is –

 sed options ‘address action’ file(s)

The address and action are enclosed within single quotes. Addressing in sed is done in two
ways –

 Line Addressing: Here, address specifies either one line number to select a single
line or a set of two numbers to select a group of contiguous lines.

 Context Addressing: Here address is specified as a pattern enclosed within a pair
of slash (/) (like /From:/): It uses one or two patterns for line selection.

The action component is drawn from a set of internal commands of sed as shown in Table
3.6. The action can be a simple display or an editing function like insertion, deletion,
substitution etc. These actions are referred as commands. The sed processes several
instructions in a sequential manner. Each instruction operates on the output of the previous
instruction.

Table 3.6 Internal Commands of sed command
Command Description

i, a, c Inserts, appends and changes text
d Deletes line(s)
10q Quits after reading the first 10 lines
P Prints line(s) on standard output
3,$p Prints lines 3 to end (-n option required)
$!p Prints all lines except last line (-n option required)
/begin/,
/end/p

Prints lines enclosed between begin and end (-n option required)

q Quits after reading up to addressed line
r flname Places contents of file flname after line
w flname Writes addressed lines to file flname
= Prints line number addressed.
s/s1/s2/ Replaces first occurrence of expression s1 in all lines with

expression s2
10,20s/-/:/ Replaces first occurrence of – in lines 10 to 20 with a :
s/s1/s2/g Replaces all occurrences of expression s1 in all lines with

expression s2
s/-/:/g Replaces all occurrences of – in all lines with a :

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

3.13.1 Line Addressing
In line addressing, the instruction 3q can be broken into the address 3 and the action q
(quit). So, to display only first 3 lines, (similar to head –n 3) use the following statement –

$ sed '3q' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000

In the above example, 3 lines will be displayed and then quits.

Generally, the p (print) command is used to display lines. But, this command behaves
strange – it prints selected lines as well as all lines. Hence, the selected lines will appear
twice. To suppress this feature of p, the –n option has to be used. The following example
selects the lines 5 through 7.

$ sed -n '5,7p' emp.lst
5423|n.k. gupta|chairman|admin|08/30/56|5400
1006|chanchal sanghvi|director|sales|09/03/38|6700
6213|karuna ganguly|g.m.|accounts|06/05/62|6300

The $ symbol can be used to print only the last line as below –

$ sed -n '$p' emp.lst
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

The sed command can be used to select multiple groups of lines. In that case, each
address has to be given in a different line, but enclosed within a single pair of quotes as
shown below –

$ sed -n '1,2p
> 7,9p
> $p' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

The sed command uses ! (exclamatory mark) as a negation operator. Assume, we would
like to select first 2 lines of the file. Note that, selecting first two lines means – not selecting
3rd line to end. So, the command can be used as below –

$ sed -n '3,$!p' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000

Here, ! is for p indicating not to print lines from 3 to end.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

Using Multiple Instructions (-e and –f) : In the previous section, we have seen that
when multiple groups of lines have to be selected, the pattern should be given in different
lines with a line-break in-between. To avoid that, sed uses –e option. This option allows to
enter as many instructions as you wish, in a single line, where each instruction is preceded
by the option –e. For example, the following command selects multiple lines (1 to 2, 7 to 9
and last line) –

$ sed -n -e '1,2p' -e '7,9p' -e '$p' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

When we have too many instructions to use or when we have a set of a common
instructions that are executed often, better to store them in a file. And, then use –f option
with sed command to read from that file and to apply the instructions on input file. Consider
the example given below. Here, we have created a file instr.dat containing required
instructions. Then use the sed command.

 $ cat >instr.dat

 1,2p
 7,9p
 $p

 $ sed –n –f instr.dat emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

NOTE:

 The –f option can be used to read instructions from multiple files. For example, if
you have two files instr1.dat and instr2.dat containing instructions, then use –

$sed –n –f instr1.dat –f instr2.dat emp.lst

 Both -e and –f options can be used with a single sed command. For example,
$sed –n –e ‘3,4p’ –f instr.dat emp.lst

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

3.13.2 Context Addressing
Context addressing allows to specify one or two patterns to locate the lines. The patterns
must be bounded by a / on both the sides. When a single pattern is specified, all lines
containing the pattern are selected. The following example is for selecting all the lines
containing the pattern director.

$ sed -n '/director/p' emp.lst
9876|jai sharma|director|production|03/12/50|7000
2365|barun sengupta|director|personnel|05/11/47|7800
1006|chanchal sanghvi|director|sales|09/03/38|6700
6521|lalit chowdury|director|marketing|09/26/45|8200

One can give a comma-separated list of context addresses to select a group of lines. For
example, to select all the lines between dasgupta and saxena use the following statement –

$ sed -n '/dasgupta/,/saksena/p' emp.lst
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
2476|anil aggarwal|manager|sales|05/01/59|5000
6521|lalit chowdury|director|marketing|09/26/45|8200
3212|shyam saksena|d.g.m|accounts|12/12/55|6000

One can mix line addressing and context addressing. If we want to select all lines from 1st
line till dasgupta, use the command as below –

$ sed -n '1,/dasgupta/p' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|director|personnel|05/11/47|7800
5423|n.k. gupta|chairman|admin|08/30/56|5400
1006|chanchal sanghvi|director|sales|09/03/38|6700
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600

Regular expressions can be used as a part of context address. For example, the following
command selects different spellings of agarwal.

$ sed -n '/[aA]gg*[ar][ar]wal/p' emp.lst
2476|anil aggarwal|manager|sales|05/01/59|5000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

One more example of sed command including regular expression is given below. It selects
all lines containing saksena, saxena, and gupta. Note that, here also two different patterns
should be given on different lines.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

$ sed -n '/sa[kx]s*ena/p
> /gupta/p' emp.lst
2365|barun sengupta|director|personnel|05/11/47|7800
5423|n.k. gupta|chairman|admin|08/30/56|5400
1265|s.n. dasgupta|manager|sales|09/12/63|5600
3212|shyam saksena|d.g.m|accounts|12/12/55|6000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000

The characters ^ and $ also can be used as a part of regular expression with sed
command. Following example shows the people born in 1950. Note that, the five dots after
50 in the expressions indicate 5 characters (a delimiter | and 4 characters indicating salary)
present before the end of line ($).

$ sed -n '/50.....$/p' emp.lst
9876|jai sharma|director|production|03/12/50|7000
4290|jayant Chodhury|executive|production|09/07/50|6000

3.13.3 Writing Selected Lines to a File (w)
The lines selected through line addressing or context addressing can be stored in a
separate file using w (write) command. Following example selects all lines containing
director from the file emp.lst and then writes them into a new file dlist.

$ sed -n '/director/w dlist' emp.lst
$ cat dlist
9876|jai sharma|director|production|03/12/50|7000
2365|barun sengupta|director|personnel|05/11/47|7800
1006|chanchal sanghvi|director|sales|09/03/38|6700
6521|lalit chowdury|director|marketing|09/26/45|8200

Lines selected based on different patterns can be stored in different files as shown below.
Here, the lines containing director, manager and executive will be stored in files dlist, mlist
and elist respectively.

$ sed -n '/director/w dlist
> /manager/w mlist
> /executive/w elist' emp.lst

The similar result can be achieved in line addressing as well. The lines from 1 to 7 will be
written into e1.lst and lines from 8 to 15 are written into e2.lst using the following
command–

$ sed -n '1,7w e1.lst
> 8,15w e2.lst' emp.lst

 $ #use cat command to see e1, e2

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

3.13.4 Text Editing
The sed command provides some text editing commands as a part of its action component.
One can use i (insert), a (append), c (change) and d (delete) for doing appropriate action
on the file. Since sed is a stream editor, the effect of these commands is on every line of
the input file by default. If we want the command to be applied on a specific line, then the
line number (termed as address) should be specified. The input file will be usually opened
for reading. But, the actions like insert, append etc. are writing jobs. It is obvious that a file
cannot be opened for reading as well as writing at a time. Hence, the output of these
actions must be redirected to a temporary file first. The contents of temporary file must be
moved to the input file to modify it using mv command.

For understanding i, a, d and c commands, let us use a file test.lst as below –
 $cat test.lst
 Manager
 Director
 Executive

Insertion: Use the command i to insert any number of lines into a file at a required
position. We will consider different examples to understand the working of i command.

Ex1: Using i without any address inserts the given line(s) before every line of the file. For
example,
 $sed ‘i Engineer’ test.lst
 Engineer
 Manager
 Engineer

Director
 Engineer
 Executive

One can observe that Engineer has been included before every line of the file. But, if you
check the contents of the file test.lst, it will be unmodified –
 $cat test.lst
 Manager
 Director
 Executive

This happens because, the sed command could able to open the input file test.lst only for
read mode and the insert requires it to be opened in write mode. Hence, the modified
contents has to be redirected to a temporary file and then moved to test.lst as shown
below–

$sed ‘i Engineer’ test.lst >temp #redirecting to temp
$mv temp test.lst #moving temp to test.lst

$cat test.lst #display test.lst

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

26

 Engineer
 Manager
 Engineer

Director
 Engineer
 Executive

But, in reality, we don’t want to insert Engineer at every line. We want it to be inserted in a
particular position. The following example inserts the string Engineer into 2nd position.

Ex2:

$sed ‘2i Engineer’ test.lst >temp #redirecting to temp
$mv temp test.lst #moving temp to test.lst
$cat test.lst #display test.lst

 Manager
 Engineer

Director
 Executive

Ex3: One can insert more than one string at a required position using single command.
Following example inserts 3 strings into 2nd position of the file.

 $sed ‘2i\ #Give \ before pressing enter key
 >Software Engineer\ #except for the last line
 >Test Engineer\
 >CEO’ test.lst > temp #Copy result into temporary file

$ mv temp test.lst #Move temp file to test.lst
 $ cat test.lst #Check the contents of test.lst

Manager
Software Engineer
Test Engineer

 CEO
 Director
 Executive

Ex4: Using single command, multiple strings can be inserted at multiple positions as shown
below –

$sed ‘2i Engineer #press enter key
> 3i CEO’ test.lst >temp #redirecting to temp
$mv temp test.lst #moving temp to test.lst
$cat test.lst #display test.lst

 Manager
 Engineer

Director
CEO

 Executive

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

27

Append: The command a is used to append any number of lines at specified position. We
will consider various situations of using a.

Ex1. By default, the command a appends the given string after every line of the input file.
For example,
 $sed ‘a Engineer’ test.lst > temp

$ mv temp test.lst
 $ cat test.lst

Manager
Engineer

 Director
 Engineer
 Executive
 Engineer

Ex2. To append the string at required position, use the address (line number) as shown
below. Here, the string will be appended after 2nd line of test.lst.

$sed ‘2a Engineer’ test.lst > temp
$ mv temp test.lst

 $ cat test.lst
Manager

 Director
 Engineer
 Executive

Ex3. The append command can be used to add line-spacing between the lines of given
file–

$sed ‘a\ #press enter key
> ’ test.lst > temp #close single-quote without any text
$ mv temp test.lst

 $ cat test.lst
Manager

Director

 Executive

In the above example, we have pressed enter-key after giving the command a. The enter-
key here acts a as new-line character and it is treated as a string to be appended. Hence it
induces one blank-line between every line of the input file.

Change: Use the command c to change a particular line by required string. By default, the
command c will change all the lines when address is not given. For example,

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

28

Ex1.
$sed ‘c Engineer’ test.lst > temp
$ mv temp test.lst

 $ cat test.lst
Engineer
Engineer

 Engineer

Here, we can observe that all the lines of the file test.lst got changed to Engineer.

Ex2. Change only the required line by specifying the address as below –

$sed ‘3c Deputy Managaer’ test.lst > temp
$ mv temp test.lst

 $ cat test.lst
Manager

 Director
Deputy Manager #Note the change here

Delete: The delete (d) command can be used to delete any line by specifying either the line
number (address) or the pattern. Various situations are explained with examples here.

Ex1. When d is used without any address or pattern, it deletes all the lines in the file as
shown below –

$sed ‘d’ test.lst > temp #redirect output to temp
$cat temp #display contents of temp
$ #nothing is displayed as temp is empty

Ex2. To delete a particular line, give the line number with d.
 $sed ‘2d’ test.lst > temp #delete the 2nd line in test.lst
 $mv temp test.lst #move temp to test.lst
 $cat test.lst #display test.lst
 Manager #2nd line Director is deleted
 Executive

Ex3. One can use context addressing and specify the required pattern to be deleted. In the
following example, all the lines containing the pattern Director will be deleted and the output
is stored in the file olist.lst.

$sed '/director/d' emp.lst > dlist.lst
$cat dlist.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
5423|n.k. gupta|chairman|admin|08/30/56|5400
6213|karuna ganguly|g.m.|accounts|06/05/62|6300
1265|s.n. dasgupta|manager|sales|09/12/63|5600
4290|jayant Chodhury|executive|production|09/07/50|6000
2476|anil aggarwal|manager|sales|05/01/59|5000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

29

3212|shyam saksena|d.g.m|accounts|12/12/55|6000
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
2345|j.b. saxena|g.m.|marketing|03/12/45|8000
0110|v.k. agrawal |g.m.|marketing|12/31/40|9000

The above result can also be achieved by using the following command –

 $sed –n '/director/!p' emp.lst > dlist.lst

3.13.5 Substitution (s)
The command s (substitution) allows to replace a pattern in the input file with something
else. The syntax is –
 [address] s / expr1 / expr2 / flags

Here, the expr1 is replaced by expr2 in all the lines specified by address. When address is
not specified, the substitution is performed for all matching lines in the file. Consider an
example –

$ sed 's/|/:/' emp.lst
2233:a.k. shukla|g.m.|sales|12/12/52|6000
9876:jai sharma|director|production|03/12/50|7000
5678:sumit chakrobarty|d.g.m|marketing|04/19/43|6000

 ………………………………………………………………………………

Here, our expr1 is pipe symbol and expr2 is colon. We are instructing to replace all pipes
by colon in the file emp.lst. But, when we observe the output, only the first (left-most)
occurrence of pipe in every line is replaced by colon. To replace all the pipes in a line, we
need to use the flag g (global). For example,

$ sed 's/|/:/g' emp.lst
2233:a.k. shukla:g.m.:sales:12/12/52:6000
9876:jai sharma:director:production:03/12/50:7000
………………………………………………………………

We can choose the number of lines on which the replacement should happen. In the below
example, the pipe is replaced by colon only for first two lines –

$ sed '1,2s/|/:/g' emp.lst
2233:a.k. shukla:g.m.:sales:12/12/52:6000
9876:jai sharma:director:production:03/12/50:7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|director|personnel|05/11/47|7800
………………………………………………………………………………………

One can replace a string with another string. In the following example, the string director is
replaced by member only in first 5 lines.

$ sed '1,5s/director/member /' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|member |production|03/12/50|7000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

30

5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|member |personnel|05/11/47|7800
5423|n.k. gupta|chairman|admin|08/30/56|5400
1006|chanchal sanghvi|director|sales|09/03/38|6700
………………………………………………………………………………………

Regular expressions can be used for patterns while doing substitution. For example, all
different spellings like agarwal, aggarwal and agrawal can all be replaced by one simple
string Agarwal as shown below –

$ sed 's/[Aa]gg*[ar][ar]wal/Agarwal/g' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
…………………………………………………………………………
2476|anil Agarwal|manager|sales|05/01/59|5000
………………………………………………………………………………………
3564|sudhir Agarwal|executive|personnel|07/06/47|8000
………………………………………………………………………………………….
0110|v.k. Agarwal |g.m.|marketing|12/31/40|9000

The anchoring characters ^ and $ can also be used to indicate beginning and ending of the
line in a file. For example, the following statement adds 2 as a prefix to every employee id
in the file –

$ sed 's/^/2/' emp.lst
22233|a.k. shukla|g.m.|sales|12/12/52|6000
29876|jai sharma|director|production|03/12/50|7000
25678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
………………………………………………………………………………………

The salary of every employee can be suffixed with .00 using $ symbol as below –

$ sed 's/$/.00/' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000.00
9876|jai sharma|director|production|03/12/50|7000.00
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000.00
2365|barun sengupta|director|personnel|05/11/47|7800.00
………………………………………………………………………………………

Using a single command, multiple strings can be substituted. For example, we would like to
replace director by member, executive by Execom and d.g.m by DGM. Then use the
command as –

$ sed 's/director/member/g #press enter key
> s/executive/Execom/g #press enter key
> s/d.g.m/DGM/g' emp.lst
………………………………………………………………………………………….
9876|jai sharma|member|production|03/12/50|7000
5678|sumit chakrobarty|DGM|marketing|04/19/43|6000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

31

2365|barun sengupta|member|personnel|05/11/47|7800
…………………………………………………………………………………………
4290|jayant Chodhury|Execom|production|09/07/50|6000
……………………………………………………………………………………………………

3.14 BASIC REGULAR EXPRESSIONS REVISTED
We have discussed grep and sed command and also the characters used in regular
expressions. But, the BRE set contains few more characters. Here we will discuss various
characters in regular expressions and three types of expressions as below –

 The repeated pattern uses single symbol - & to make the entire source pattern
appear at the destination also.

 The interval regular expression (IRE) uses the characters { and } with a single or a
pair of numbers between them.

 The tagged regular expression (TRE) groups the patterns with (and), and
represents them at the destination with numbered tags.

In IRE and TRE, the meta-characters needs to be escaped.

3.14.1 The Repeated Pattern (&)
There are some situations where the source pattern also occurs at the destination. The
special character & is used to represent it. Consider an example –

To replace director by executive director, we can use the sed command as –
 $sed ‘s/director/executive director/’ emp.lst

But, here the destination string executive director contains the source string director also.
Hence, we can used the repeated pattern & in the command as –

$ sed 's/director/executive &/' emp.lst
2233|a.k. shukla|g.m.|sales|12/12/52|6000
9876|jai sharma|executive director|production|03/12/50|7000
5678|sumit chakrobarty|d.g.m|marketing|04/19/43|6000
2365|barun sengupta|executive director|personnel|05/11/47|7800

 ………………………………………………………………………………………

The symbol & (known as repeated pattern) here expands to the entire source string.

3.14.2 Interval Regular Expression (IRE)
We have used ^ and $ symbols to match a pattern at the beginning and end of a line in sed
and grep commands. But how to match a pattern at any position of the line? The answer is
– interval regular expression. IRE uses integer(s) to specify the number of characters
preceding a pattern for matching any pattern in the line. It takes one of the three forms as
below –

 ch\{m\} - The meta-character ch can occur m times
 ch\{m,n\} – ch can occur between m and n times

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

32

 ch\{m,\} – ch can occur at least m times

Here, the character ch can be a single character, or a dot, or a character class. The values
of m and n should not exceed 255.

For understanding the IRE, let us use the input file teldir.txt as given below –
 $cat teldir.txt

jai sharma 26703289
chanchal singvi 97381356722
anil agarwal 8456012983
shyam saksena 28608110
lalit chowdury 23245194

The above file is a telephone directory containing five records, of which two records contain
mobile numbers (10 digits) and three records are of land-line numbers (8 digits). Now use
the following regular expression with grep command to select the records with mobile
numbers.

 $grep ‘[0-9]\{10\}’ teldir.txt

chanchal singvi 97381356722
anil agarwal 8456012983

Here, \{ and \} are the flower brackets with escape sequence character \. We are
instructing to search for the pattern containing digits 0-9 (using character class) and the
character would have appeared 10 times.

Consider one more example – listing all the files in the current directory whose write (w) bit
is set for either group or others.

$ ls -l | sed -n '/^.\{5,8\}w/p'
-rw-r--rw- 1 john john 280 Jan 30 2007 caseEx.sh
-rw-rw-r-- 1 john john 104 Feb 3 2007 cmdArg.sh
-rw-rw-rw- 1 john STAFF 741 Jan 3 2007 emp.lst
-rw-r--rw- 1 john john 199 Jan 29 2007 ifEx.sh
-rw-rw-r-- 1 john john 217 Jan 19 2007 logfile

Let us understand command step-by-step. Here, the output of ls –l is sent as input to sed
command. In the sed command we are using p (at the end) to print the selected lines and
the option –n is used to avoid p from printing all the lines apart from the selected lines.
Now, let us concentrate on remaining portion of the regular expression –

'/^.\{5,8\}w/p'

 / in the beginning and at the end (before p) is used as if we use it in context
addressing to enclose the pattern.

 ^ indicates we are searching from the beginning of a line.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

33

 Dot indicates any character
 \{ and \} indicates flower brackets with escape sequence, which is the syntax of IRE.
 5, 8 indicates there may be 5 to 8 dots.
 w indicates that after 5 to 8 dots, there must be the character w.

Now, try to recollect that in the output of ls –l, the w position for group appears after 5
characters and w position for others appears after 8 characters. Thus, the above regular
expression instructs to select the lines in which w is present either at 6th position or at 9th
position. As we are not bothered about other permissions like r and x, we are just using
dots to skip those characters.

3.14.3 Tagged Regular Expression (TRE)
Tagged regular expressions are most complex regular expressions. It suggests breaking up
a line into groups and then extracting one or more of these groups. It requires two regular
expressions one each for the source and target pattern. The working of TRE is explained
here –

1. Identify the segments of a line that you would like to extract and enclose each
segment with a matched pair of escaped parentheses. For example, if you need to
extract a number, represent it as \([0-9]*\). A sequence of non-alphabetic characters
are represented as \([^a-zA-Z]*\).

2. Every grouped pattern automatically acquires the numeric label n indicating nth
group from the left.

3. To reproduce a group at the destination, use the tag \n. For example, \1 indicates
first group and so on.

Let us consider one example of TRE. Let us use the file teldir.txt used in the previous
section, which contains 5 records. In this file, records are organized as –
 Firstname Lastname PhoneNo

Let us write the regular expression (TRE) which alters the file such that the name of the
people in the file will appear as –
 Lastname, Firstname PhoneNo

The command used is as below –

$sed ‘s/\([a-z]*\) *\([a-z]*\)/\2, \1/’ teldir.txt
sharma, jai 26703289
singvi, chanchal 97381356722
agarwal, anil 8456012983
saksena, shyam 28608110
chowdury, lalit 23245194

Now, let us understand the working of the given command in detail. Let us observe every
character (or group of characters) used in the above command.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

