
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

 MODULE 2. UNIX FILE SYSTEM

2.1 INTRODUCTION
File system is one of the important pillars of UNIX system. UNIX treats everything (even a
user, program, directory etc) as a file. Hence, organizing and managing the file system is
very important topic to study. Here, we will discuss how to create directories, moving
around the file system, listing filenames, various file attributes, security related issues like
file permission, changing the file permission etc.

2.2 THE FILE
The file is a container for storing information. Unlike old DOS files, a UNIX file does not
contain eof (end-of-file) character. It contains only the information stored by the user. All the
attributes of a file are kept in a separate area of the hard disk, which can be accessible by
only the kernel. UNIX treats directories and devices also as files. Even the physical devices
like hard disk, memory, CD-ROM, printer, modem etc. are treated as files.

In UNIX, files are divided into three categories –

 Ordinary file
 Directory file
 Device file

These three types of files are discussed in detail in the following sections –

2.2.1 Ordinary (Regular) File
It is a most common type of file that contains only data as a stream of characters. An
ordinary file can be one among these –

 Text file: contains only printable characters. Source codes of programming
languages like C, Java, C++, Perl, Shell script etc. are all text files. A text file
contains lines of characters where every line is terminated with a newline character
– known as linefeed (LF). Whenever you press [Enter] key while inserting text into a
file, the LF character is appended. One cannot see this character, but it can be
made visible using the command od.

 Binary file: contains both printable and non-printable characters covering entire
ASCII (0 – 255) set. The object codes, executable files etc. created by compiling C
language are binary files. Most of the UNIX commands are binary files.
Image/audio/video files are binary files. Trying to display the contents of such files
using simple cat command would produce unreadable output.

2.2.2 Directory File
A directory contains no data, but it keeps some information about the files and
subdirectories that it contains. The UNIX file system is organized with a number of
directories and subdirectories. A user also can create them, as and when required. Usually,
a group of related files are kept in a single directory. Sometimes, files with same name are
kept in different directories.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

A directory file contains an entry for every file and subdirectory it has. Each such entry has
two components viz. –

 The filename
 A unique identification number for the file or directory (called as the inode

number)

Thus, a directory actually do not contain the file itself, rather, it contains only the file name
and a number.

One cannot write into a directory file. But, the actions like creating a file, removing a file etc.
makes kernel to update the corresponding directory by creating/removing filename and
inode number associated with that file.

2.2.3 Device File
The activities like printing files, installing softwares from CD-ROM, taking backup of files
into a tape/drive etc. are performed by reading or writing the file representing the device.
For example, when you are printing a file in a printer, you are writing a file associated with
printer.

Device filenames are generally found inside a single directory structure, /dev. A device file
is not a stream of characters. In fact, it does not contain anything. The operation of a device
is completely managed by the attributes of its associated file. The kernel identifies a device
from its attributes and then uses them to operate the device.

2.3 WHAT IS IN A FILE NAME?
In most of the UNIX systems now a days, a filename can consists of 255 characters. They
can have any printable and non-printable characters except / and the NULL character. But,
as UNIX uses special characters like $, ?, *, &, ` etc for different purpose, it is better to
avoid certain characters. So, ideally, a filename can contain alphabets, digits and special
characters dot (.), hyphen (-) and underscore (_).

UNIX does not impose any rule for framing the extensions for filenames. Even shell scripts
do not require .sh as extension. It is used only for the convention. But, underlying
programming languages like C requires extension. Hence, in UNIX, a filename can contain
any number of dots – say, a.b.c.d.e is a valid filename in UNIX. A filename can begin/end
with a dot. But, UNIX is case sensitive and same is maintained in naming the files as well.
Thus, test, Test, TEST all are different files.

2.4 THE PARENT – CHILD RELATIONSHIP
All files in UNIX are related to each other. The file system in UNIX is a collection of all types
(ordinary, directory and device files) related files organized in a hierarchical structure. A
UNIX file system has root represented by /, which serves as reference point for all files. The
root is actually a directory and it is different from the user-id root used by the system admin
to log-in.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

The root directory (/) has a number of subdirectories under it. These subdirectories in turn
have more subdirectories and files under them. Figure 2.1 shows an example of UNIX file
system tree structure. Here, bin, dev etc. are directories under root (/). And, mthomas, stu1
are subdirectories under home.

Figure 2.1 The UNIX File System Tree

Every file, apart from root, must have a parent, and there will be a parent-child relationship
path from root to file. In the Figure 2.1, cp is child of bin and bin is child of /. That is, / is
grandparent of cp. Note that, in a parent-child relationship, parent is always a directory.

2.5 THE HOME DIRECTORY
When a user logs into the system, UNIX places him into a directory called as home
directory. It is created by the system when a user account is opened. If you have logged
in with a user name john, then, your home directory would be /home/john. This can be
viewed using the shell variable $HOME as –
 $echo $HOME
 /home/john # the first / represents root directory

The path displayed here is known as absolute pathname, which is a sequence of all
directory names separated by slash (/) starting from root. A file foo located in a home
directory of the user can be referred as $HOME/foo. In some of the shells, it can be
referred as ~/foo. Here, the ~ symbol can be used to refer any other’s file also. For
example, if there is a file called foo in another user richard’s directory also, then it can be
referred as ~richard/foo.

Note that, a ~ (tilde) followed by / refers to one’s own home directory, but when followed by
a string (like ~richard), it refers to home directory represented by that string.

include sbin

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

2.6 pwd: CHECKING YOUR CURRENT DIRECTORY
Once a user logs in to the UNIX system, it places him in a specific directory (usually home
directory) of the file system. Though a user can move from one directory to other, for a
given moment of time, he will be in one directory, known as current directory. To know
current directory, the pwd (print working directory) command is used. The pwd command
displays the absolute pathname as below –
 $pwd
 /home/john

One can navigate the file system using cd command.

2.7 cd: CHANGING THE CURRENT DIRECTORY
The cd command is used to move around the file system by changing the directory. This
command can be used in three different ways –

 If the user john is in his home directory and would like to move to subdirectory
called as progs, then the command should be given as –

 $ cd progs # user is moved to progs directory now
 $ pwd # verify this using pwd
 /home/john/progs

 If the user would like to shift some other directory (but not his own subdirectory),
then absolute path name can be given. For example,

$ pwd #check current directory
 /home/john/progs

$ cd /bin # change directory to /bin
$ pwd # verify new location
/bin

 When cd is used without argument, it will take the user back to his home directory,
that is where he had logged into.
Ex1.

$ pwd #check current directory
 /home/john/progs
 $ cd #no arguments given
 $ pwd
 /home/john #back to home directory

Ex2.
 $cd /home/tony #john moves to tony’s home directory
 $pwd #verify
 /home/tony
 $cd #cd given without argument
 $pwd #john is back to his home directory
 /home/john

NOTE that cd command may fail when you do not have permission to access a directory.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

2.8 mkdir: MAKING DIRECTORIES
A directory can be created using the command mkdir. Various ways of using this command
is listed here.

 The name of the directory to be created has to be given as argument. For example,
$mkdir docs

 One can create more than one directory with a single mkdir command as below –

 $mkdir docs progs db # three directories created

 A directory tree can be created as –
$mkdir test test/prgms test/data

Now, initially the directory test will be created. Then two subdirectories prgms and
data will be created under test. Note that, while creating such directory tree, the
parent directory name has to be given first.

 Sometimes, trying to create a directory may fail and error message may get
displayed as –
 $mkdir myDir
 mkdir: Failed to make directory “myDir”; Permission denied

 The reason may be any of these –

o The directory myDir may already exist
o There may be any ordinary file by that name in the current directory
o The permission is set for current directory so as to not to create new

files/directories within it.

2.9 rmdir: REMOVING DIRECTORIES
To remove (or delete) a directory, the rmdir command is used. Few important points about
this command are discussed here –

 A directory has to be empty before removing it. That is, it should not contain any
files or subdirectories.

 To remove one directory, use statement like –
$rmdir test #removes the directory test

 More than one directory (even in tree structure) can be removed at a time. For
example,

$mkdir test/prgms test/data test

Note that, here prgms and data are two subdirectories under test. They should be
given first and then the parent directory test has to be mentioned.

 To remove a particular directory, you should be hierarchically above that directory.

That is you cannot remove any directory that is above your current directory and
also, you cannot remove your current directory as well.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

 The commands mkdir and rmdir can work only in the directories owned by the

user. But they cannot be implemented on the directories of some other user.

2.10 ABSOLUTE PATHNAMES
A path of a file (or directory) which specifies the complete hierarchy of that file starting from
the root (/) directory is called as absolute pathname of that file (or directory). Most of the
UNIX commands that take file or directory name as arguments will assume that the
specified file exists in the current working directory. That is, if you use the command
 $cat test.sh

it is assumed that the file test.sh is in current directory. If you would like to access the file in
some other directory, you have to give the command by specifying absolute pathname of
that file as –
 $ cat /home/john/test.sh

Here, one can observe that the absolute pathname of a file starts with / (indication for root)
and goes one level down for every appearance of / (as a separator). That is, in the above
example, test.sh is at three levels down from root.

We know that, more than one files with a same name may exists in different directories of
UNIX system. But, their absolute pathnames will be different. That is, no two files in the
UNIX file system can have same absolute pathnames.

2.10.1 Using absolute pathnames for a command
All UNIX commands like date, cat, cal etc. are basically files. When we specify any
command for execution, the system has to locate the file from the list of directories
mentioned in the PATH variable, and then execute it. If we know the location of a particular
file, we can use it for running that command. For example, date command resides in /bin
(or /usr/bin). So, we can runt date command as –
 $ /bin/date
 Sun Oct 29 11:52:43 IST 2017

Executing UNIX commands like this will not gain anything, it is just an illustration. But, if
user’s program resides in some other directory and to be executed from somewhere else,
then the absolute pathname will be helpful. For example, your current directory is
/home/john. You would like to run a file test.sh which is in /home/richard. Then you
use the command
 $ sh /home/richard/test.sh

A shell variable PATH includes the list of various pathnames – files in that can be executed
directly. If you want to execute many files within a particular directory, that pathname can
be included in the PATH variable. And each time, one need not use the complete absolute
path for the execution purpose.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

2.11 RELATIVE PATHNAMES
A relative path is defined as the path related to the present working directory. For example,
if we are currently in /home/john and would like to move to /home/john/test, then we
can just give the command as –
 $cd test #this is relative path usage

We can also give the command as
 $ cd /home/john/test #this is absolute path usage

So, one can say that, if the pathname starts with / (root), we can say that it is absolute path.
Otherwise, it is relative path.

2.11.1 Using . and .. in Relative Pathnames
We have discussed in the previous section that one can navigate from one directory to
other using cd command by specifying require absolute pathname. But, when we need to
navigate only within home, we need not use absolute pathname always. We can use
relative pathname as a shortcut. Here, the relative pathname uses either the current or
parent directory as a reference and specifies the path relative to it. For this purpose, a
relative pathname uses following cryptic symbols:

 A single dot (.) – represents current directory
 Two dots (..) – represents parent directory.

Consider an example now. Assume that we are currently placed in
/home/john/progs/data/text and would like to move to /home/john/progs/data
using cd command. We can use two dots (..) for this purpose as shown below.

 $pwd
 /home/john/progs/data/text
 $cd .. #observe space between cd and ..
 $pwd #check now
 /home/john/progs/data

Thus, the usage of .. moves the directory one level up. If we want to move more than one
level up, we can use .. more than once separated by / as shown below –

$pwd
 /home/john/progs/data/text
 $cd ../../.. #moves 3 levels up
 $pwd
 /home/john

Any command which uses the current directory as argument can work with single dot. For
example, to run a shell script (Refer the example Shell1.sh given in Section 1.7.2 of
Module1), we can use ./(dot with slash). Also, the single dot indicating current directory is
useful in copying the files. For example, assume there is a file shell1.sh in the current

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

directory. And, we want to copy it into directory myDir which is within current directory.
Now we can use the command –
 $cp ./shell1.sh ./myDir

2.12 THE UNIX FILE SYSTEM
The structure of UNIX file system is discussed here. The Figure 2.1 given earlier depicts a
sample of UNIX file system. The root (/) directory has many subdirectories under it, but only
few are shown in the diagram. From system administrator point of view, the entire file
system consists of two groups of files. The first group contains the files that are made
available during system installation as given below –

 /bin and /usr/bin: Commonly used UNIX commands (binaries, hence the name bin)
are found here. PATH variable always shows these directories in its list.

 /sbin and /usr/sbin : The commands which can be executed only by system
administrator (but not by a normal user) are kept in this directory. The PATH
variable of system administrator contains these directories.

 /etc : This directory contains the configuration files of the system. Modification of any
text file in this directory may affect the functionality of the system. Login name and
password of users will be stored in the files /etc/passwd and /etc/shadow
respectively.

 /dev : This directory contains all device files. These files do not occupy space on the
disk. There can be more subdirectories like pts, dsk and rdsk in this directory.

 /lib and /usr/lib : This directory contains all library files in binary form. If you want to
run C program, you may need to link those programs with files in these directories.

 /usr/include : Contains standard header files like stdio.h, stdlib.h etc. used
by C programs.

 /usr/share/man : All the man (manual) pages are stored here. There are separate
subdirectories like man1, man2 etc that contain the pages for each section.

The second group contains the files/programs/mails created by the users as shown below –

 /tmp : The directories where users are allowed to create temporary files. These files
are removed regularly by the system.

 /var: It is a variable part of the file system. Contains all printable jobs and
outgoing/incoming mails.

 /home: Home directories of all the users are stored here.

2.13 ls: LISTING DIRECTORY CONTENTS
We have discussed the command ls in previous chapter (Section 1.6.3 of Module 1), that it
used to list the files and directories in the current working directory. This command is
discussed here with more details and some of the options.

When ls command is used to display the files, one can observe that (in most of UNIX
systems, but not always in Linux) the files will be displayed in alphabetical (rather ASCII)
order. That is, files starting with numeric first, then uppercase letters and then lowercase
letters. This is known as ASCII collating sequence. The files and directories are listed as

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

a single column (older versions of ls do so) and, if you are using Linux systems, then they
might be showed up in different colors.

To check whether a particular file exists in a directory or not, one can give the file name
along with ls command. For example,
 $ ls test #checking whether the file test is there
 test #file name is displayed if it exists

Here, the file name is displayed if that file exists in that directory. Otherwise, an error
message will be displayed as shown below –

$ ls test
test: No such file or directory

2.13.1 ls Options
The command ls has multiple options for various purposes. Some of them are discussed
here.

 Output in Multiple Columns (–x) : When there are many files, it is better to display
them in multiple columns. Modern versions of ls do that by default (without any
options), but if it doesn’t happen in your system, you can use –x option as –

$ ls –x
Thesis Shell1.sh Shell2.sh ShellPgms
Emp.txt cmd.c helpdir

 Identifying Directories and Executables (–F) : The ls command displays files as

well as directories. To know which of them are directories and executable files, one
can use –F option. When –F option is combined with –x, it produces multicolor
output.

$ ls –Fx
Thesis/ Shell1.sh* Shell2.sh* ShellPgms/
Emp.txt cmd.c helpdir/

Here, the symbols * and / are type indicators. The * indicates that the file contains
executable code, and / refers to a directory.

 Showing Hidden Files Also (–a): If we want to see hidden files also, we use –a

(all) option for ls. There are certain hidden files starting with a dot, which normally
don’t get displayed with just ls command.

$ ls –a
. .. .exrc Thesis
.emacs .gnome2 Shell1.sh

Note that, the first two files displayed are . and .. indicating current and parent
directories.

 Listing specific directory contents: If you want to display the contents of only

specific subdirectories, you can give the name along with ls as shown below –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

$ ls ACMPaper ShellPgms
ACMPaper:
acm.aux acm.bib acm.pdf runtex
acm.tex sig.pdf

ShellPgms:
caseEx.sh first.sh menu.sh test
hello.c

In the above example, ACMPaper and ShellPgms are directory names. When they
are given along with ls command, the files within them are displayed separately.

 Recursive Listing (–R): This option lists all files and subdirectories in a directory
tree. That is, contents of subdirectories also will be displayed recursively till there is
no subdirectory is left out.

$ ls –R
.:
Thesis Shell1.sh Shell2.sh ShellPgms
Emp.txt cmd.c

./Thesis:
Chap1.aux Chap1.bib Chap1.tex Chap1.pdf
Annex.aux Annex.pdf

./ShellPgms:
caseEx.sh first.sh menu.sh test
hello.c

./ShellPgms/helpdir:
Test.c here.sh try.sh

One can observe that, the –R option starts display with the current directory (.).
Then it displays the contents of all subdirectories under current directory. Later it
goes one level down and so on.

2.13.2 ls –l option: Listing File Attributes
The –l option of ls command is used for listing the various attributes like permissions, size,
ownership etc. of a file. The output of ls –l is referred to as the listing. The –l option can be
combined with other options for displaying other attributes, or ordering the list in a different
sequence. The command ls use inode of a file to fetch its attributes. Consider the following
example of ls –l which displays seven attributes of all files in the current directory.

$ ls -l
total 144
-rw-rw-r-- 1 john john 280 Jan 30 09:56 caseEx.sh
-rw-rw-r-- 1 john john 104 Feb 3 06:40 cmdArg.sh

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

-rw-rw-r-- 1 john john 199 Jan 29 10:58 ifEx.sh
-rw-rw-r-- 1 john john 217 Jan 19 09:25 logfile
drwxrwxr-x 2 john john 4096 Feb 6 05:48 myDir
-rwxrwxr-x 1 john john 29 Jan 22 10:04 myFirstShell
-rw-rw-r-- 1 john john 43 Jan 22 10:44 second.sh

The output of ls –l starts with total 144, indicates that a total of 144 blocks are occupied
by these files on disk. The 7 types of attributes/fields displayed by the command are
discussed below –

 File Type and Permissions: The first column shows the type and permissions
associated with each file. If the first character in this column is – (hypen), then it is
an ordinary file. On the other hand, if the first character is d, then it is a directory.
Then, there is a series of r, w, x and – (hyphen) indicating file permissions read,
write and execute. The hyphen indicates absence of particular permission.

 Links: The second column indicates the number of links associated with the file. It is
a number of filenames maintained by the system of that file. Usually for ordinary
files, it will be just 1. But for directories, it will be number of files contained within that
directory (including current directory).

 Ownership: The creator of the file would be its owner. In the third column, it shows
john as the owner. The owner has full authority to modify the contents and
permissions of a file. Similarly, the owner of a directory can create modify or remove
files in that directory.

 Group Ownership: While opening a user account, a system administrator assigns
the user to some group. The fourth column represents the group owner of that file.

 File Size: Size of the file in bytes is shown as fifth column. The size is only a
character count of the file, but not the amount of space it occupies in the disk.

 Last Modification Time: The 6th, 7th and 8th columns indicate the last modification
time of the file. A file is said to be modified only if its contents have changed. If you
change only the permission or ownership of the file, its last modification time field will
not get affected.

 Filename: The last field is the name of the file, usually in ASCII collating sequence.

2.13.3 ls –d option: Listing Directory Attributes
If we want to list the attributes of only the directory, but not its contents, we can use –d
option as below –
 $ ls –ld myDir

drwxrwxr-x 2 john john 4096 Feb 6 05:48 myDir

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

2.14 FILE OWNERSHIP
The person who creates a file will be the owner of that file. The login name of that person
will be showed as the owner when ls –l option is used. The group to which the person
belongs to, will be the group owner of the file. If you copy someone’s file, you will be the
owner only for that copy. One cannot create files in other’s home directory, because one
may not have permission to do so.

Several users may belong to a single group. The files created by group members will have
the same group owner. However, the privileges of the group are set by the owner of the file,
but not by group members.

When the system administrator creates a user account, he has to assign the following
parameters to the user:

 The user-id (UID) – both its name and numeric representation
 The group-id (GID) – both its name and numeric representation

The file /etc/passwd maintains the UID (both name and number) and GID (only the
number). The file /etc/group contains the GID (both name and number). To know your
UID and GID, the id command can be used as –
 $id
 uid=821(chetana) gid=822(STAFF)

2.15 FILE PERMISSIONS
UNIX has a simple and well-defined system of assigning permissions to files. UNIX follows
three-tiered file protection system to determine a file’s access rights. Consider the ls –l
command to view the permissions of few files:
 $ ls –l chap02 dept.lst shell1.sh
 -rwxr-xr-- 1 john richard 20500 Sep 29 11:53 chap02
 -rwxr-xr-x 1 john richard 850 Oct 02 10:12 dept.lst
 -rw-rw-rw- 1 john richard 48 Nov 07 08:03 shell1.sh

Observe the first column representing permission for the file chap02. Here, the first
character says whether the file is ordinary file or directory. So, leaving it apart, consider
next 9 characters as a group of 3 characters each –

rwx r-x r--

Each group represents a category viz. owner, group owner and others (or world)
respectively. Every group contains any of the characters r, w, x and -. The meaning of
these is as below –

 r: indicates read permission – means, cat command can display the file
 w: indicates write permission – file can be edited with an editor
 x: indicates execute permission – the file can be executed as a program
 -: indicates absence of the corresponding permission

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

Usually, the owner of a file will have all the three permissions. In the above example, the
group owner of the file chap02 has only read and execute permissions. The public or others
or world has only read permission.

Note that the owner of the file is also termed as user.

2.16 chmod: CHANGING FILE PERMISSIONS
A file or directory is created with a default set of permissions. Generally, in the default
setting, write permission is not given to group and others. That is, only the user (owner) the
file can write a file. But, read permission will be given to all. The chmod (change mode)
command is used for assigning/removing different permissions to/from category (user,
group, others). This command can be run only by the user (owner) and the super-user
(admin). The chmod command can be used in two ways –

 In a relative manner by specifying the changes to the current permissions
 In an absolute manner by specifying the final permissions

Consider the permissions of an existing file test as below –
 $ls –l test
 -rw-r--r-- 1 john richard 853 Sep 5 23:38 test

It is observed here that, by default the execute permission is not there even for the user
(owner). Keeping this status of the file test as a base, let us discuss different ways of using
chmod command.

2.16.1 Relative Permissions
When changing permissions in a relative manner, chmod changes only the permissions
specified in the command line and leaves the other permissions unchanged. The syntax is–

chmod category operation permission filenames

The argument for chmod is an expression consisting of some letters and symbols
describing user category and type of permission being assigned/removed. The expression
contains three components:

 User category (user: u, group: g, others: o, All: a)
 The operation to be performed (assign: +, remove: –, assign absolute permission: =)
 The type of permission (read: r, write: w, execute: x)

Now, consider the example of the file test taken before, and assign execute permission to it
as below –

$ chmod u+x test #assign(+) x(execute) to u(user)
$ ls –l test
-rwxr--r-- 1 john richard 853 Sep 5 23:38 test

Now, the user john got permission to execute the file test. If you want to assign execute
permission on file test to group and others also, then use the command as –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

$ chmod ugo+x test #assign(+) x to u(user, group, others)
$ ls –l test
-rwxr-xr-x 1 john richard 853 Sep 5 23:38 test

The string ugo can be replaced by a indicating all as shown below –

$ chmod a+x test #assign(+) x to a(all)
$ ls –l test
-rwxr-xr-x 1 john richard 853 Sep 5 23:38 test

When you are willing to assign a particular permission to all, then even the character a can
be omitted as below –

$ chmod +x test #assign(+) x to all

When same set of permissions has to be assigned to more than one file, then we can give
multiple files separated with space as –
 $ chmod u+x test test1 test2

To remove a permission, the – (hyphen or minus) operator is used. For example, to remove
read permission from group and other, we can do as below –

$ ls –l test #check current status
-rwxr-xr-x 1 john richard 853 Sep 5 23:38 test

$ chmod go-r test #remove r permission from group & others

$ ls –l test #verify
-rwx—x--x 1 john richard 853 Sep 5 23:38 test

Multiple expressions separated by comma can be given to chmod command. For example,
to remove the execute permission from all and then to assign read permission to group and
others, a single statement can be used as –

 $ chmod a-x, go+r test
 $ ls –l test

-rw-r--r-- 1 john richard 853 Sep 5 23:38 test

More than one permission can also be set as below –

$chmod o+wx test
$ ls –l test
-rw-r--rwx 1 john richard 853 Sep 5 23:38 test

Here, write and execute permissions are set to others.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

2.16.2 Absolute Permissions
Irrespective of existing permissions for a file, we may need to assign a new set of
permissions. That is, we wish to set all nine permission bits explicitly. This is known as
absolute permissions. For this purpose, chmod uses a string of three octal numbers.
Various permissions are given a specific digit as below –

 Read permission – 4
 Write permission – 2
 Execute permission – 1

Every possible combination of three different permissions is shown in binary representation
in Table 2.1.

Table 2.1 Digits used for absolute pathnames
Binary Octal Permission Significance

000 0 - - - No permission
001 1 - - x Execute only
010 2 - w - Write only
011 3 - wx Write and execute
100 4 r- - Read only
101 5 r – x Read and execute
110 6 rw- Read and write
111 7 rwx Read, write and execute

Now, let us see some examples of using the absolute permissions with the help of octal
digits.

Ex 1. Assigning read and write(4+2=6) permissions to all –
 $ chmod 666 test
 $ ls –l test

-rw-rw-rw- 1 john richard 853 Sep 5 23:38 test

Ex 2. To remove the write permission from group and others:
 $ chmod 644 test
 $ ls –l test

-rw-r--r-- 1 john richard 853 Sep 5 23:38 test

Note that, there is nothing like removing some permission. It is just reassignment of new
set of permissions to all.

Ex 3. To assign all permissions to owner, read and write permissions to group and only
execute permission to others –

 $ chmod 761 test
 $ ls –l test

-rwxrw---x 1 john richard 853 Sep 5 23:38 test

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

2.16.3 Using chmod Recursively (–R)
The chmod command can be used to apply required permissions on all files (and files
within subdirectory) in a given directory. It is done using –R option as below –
 $chmod –R a+x ShellPgms

This makes all files and subdirectories found in the tree-walk (starting from ShellPgms
directory, includes all files in subdirectories) executable by all users. One can provide
multiple directory and filenames for this purpose. If chmod has to be applied on home
directory tree, one can use any one of the following –
 $chmod –R 755 . #works on hidden files also
 $chmod –R a+x * #leaves out hidden files

2.17 CHANGING FILE OWNERSHIP
It has been discussed that the creator of a file will be the owner. And the group to which
user belongs to, will be the group owner. But, except the owner, other group members
cannot alter the permissions of any file. UNIX provides two commands for changing the
ownership of a file or directory viz. chown and chgrp. The usage of these commands
differs from system to system. On BSD – based systems, only the system administrator can
change the ownership of a file using chown. On the other systems, only the owner can use
chown and chgrp.

(NOTE: Berkeley Software Distribution (BSD) was a Unix operating system derivative
developed and distributed by the Computer Systems Research Group (CSRG) of the
University of California, Berkeley, from 1977 to 1995.)

2.17.1 chown: Changing File Owner
The syntax of chown command in BSD-based systems is –
 chown options owner [:group] files

To use chown command in BSD-based systems, we need the super-user permission. For
that, the su command is used as below –
 $su
 Password: ******** (this is root password)
 #_ (This is another shell)

The command su lets us to acquire superuser status (Note that # is the prompt for admin).
Now, try to change the ownership of a file note which is currently owned by john as below–
 # ls –l note
 -rwxr----x 1 john metal 347 May 10 20:30 note
 # chown ricky note
 # ls –l note
 -rwxr----x 1 ricky metal 347 May 10 20:30 note
Here, the ownership of the file note has been changed from john to ricky. The file
permissions previously assigned to john will now be of ricky. Now onwards, john is not the
owner of this file and he cannot read/write this file.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

2.17.2 chgrp: Changing Group Owner
By default, the group owner of a file is the group to which the owner belongs to. But, the
chgrp command changes a file’s group owner. A user can be a member of more than one
group. So, in BSD – based systems, group can be changed only among the set of groups
for which the user is a member.

Assume that john is a member of two groups metal and dba. And he has created a file
dept.txt in metal group. He can change the group owner as below –
 $ls –l dept.txt
 -rw-r--r-- 1 john metal 129 Jun 8 16:42 dept.txt
 $chgrp dba dept.txt
 -rw-r--r-- 1 john dba 129 Jun 8 16:42 dept.txt

When the user is not a member of particular group, he cannot change the group owner of
any file to that group. Only superuser can do so.

2.18 SECURITY AND FILE PERMISSIONS
There are certain security issues while using chmod command. Consider removing all the
permissions for a file as below –
 $chmod 000 test
 $ls –l test
 ---------- 1 john richard 830 May 10 20.30 test

Now the file is virtually useless, as no one can do anything with it. But, user can still delete
this file. At the same time, one must be aware that giving all permissions to everyone is
dangerous. That is, having the following statement makes the file
readable/writable/executable for everyone.
 $chmod 777 test
So, anyone can modify the contents of the file and it is a threat on security.

2.19 MORE FILE ATTRIBUTES
Every file is associated with a table that contains various attributes of a it, except its name
and contents. This table is called as inode (index node) and accessed by the inode
number. The inode contains following attributes of a file –

 File type (ordinary, directory, device etc)
 File permissions
 Number of links
 The UID of the owner
 The GID of the group owner
 File size in bytes
 Date and time of last modification
 Date and time of last access
 Date and time of last change of the inode
 An array of pointer that keep track of all disk blocks used by the file

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

Observe that neither the name of the file nor the inode number is stored in the inode. The
directory stores these details along with the filename. When you use any command with
filename as an argument, the kernel first locates the inode number of the file from the
directory and then reads the inode to fetch data relevant to the file.

The ls command uses inode to fetch the attributes of a file. The –i option with ls command
can be used to check inode number of a file.

 $ls –il test
 9059 –rw-r--r-- 1 john Richard 839 Jan 31 11:23 test

The first entry in the above output is the inode number of the file test. No other file in the
same file system can have this inode number. Once the file is removed, the inode number
can be assigned to some other file.

2.20 HARDLINKS
We have seen in the previous section that, the inode table does not contain the name of a
file. Reason is – a file can have multiple names. In that case, we say that the file has more
than one link. Multiple names provided to one single file are all having same inode number.
The link count is displayed when ls –l is used. It is usually one.

A link can be created to a file using ln command. The following command is used to create
hard link for an existing file emp.lst with a non-existing file employee:

 $ln emp.lst employee
 $ ls –li emp.lst employee
 29314 –rwxr-xr-x 2 john metal 915 May 5 03:34 emp.lst
 29314 lrwxr-xr-x 2 john metal 915 May 5 03.34 employee

Observe that both the files emp.lst and employee have same inode number, and the link
count is 2. One can link one more file say, emp.dat as below –

$ln emp.lst emp.dat
 $ ls –li emp*
 29314 –rwxr-xr-x 3 john metal 915 May 5 03:34 emp.lst
 29314 -rwxr-xr-x 3 john metal 915 May 5 03.34 employee
 29314 -rwxr-xr-x 3 john metal 915 May 5 03.34 emp.dat

Now the link count is 3.

NOTE:

1. Links provide protection against accidental deletion, especially when they exist in
different directories. Assume that a file emp.lst is in /home/data directory and
you have created a link for it in /home/imp_files directory. The deletion of the file
in one directory will not remove the file in the other directory and hence, you can
always get the file back.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

2. Having multiple names for a single file is NOT same as having multiple copies of
single file. When a copy of one file is created, those two copies will have different
inode numbers, and their link count will be one. But, when a file is linked, then all
such files will have unique inode numbers and their link count will be more than one.

2.21 SYMBOLIC LINK
The hard links discussed in the previous section has certain limitations –

 One cannot have two linked filenames in two file systems. That is, one cannot link a
filename in the /usr file system to another in /home file system.

 One cannot link a directory even within the same file system.

The symbolic links or soft links will overcome these limitations. The symbolic link can be
thought of as a fourth type of a file (apart from 3 types discussed till now – ordinary,
directory and device). Unlike the hard link, a symbolic link doesn’t have the file’s contents.
But, it simply provides the pathname of the file that actually has the contents. Shortcut
keys in windows are the best examples for symbolic links.

The ln command with –s option is used to create symbolic link as below –
 $ ln –s note note.sym
 $ ls –li note note.sym
 9948 –rw-r--r-- 1 john metal 915 May 5 03:34 note
 9952 lrwxrwxrwx 1 john metal 4 May 5 03:34 note.sym->note

Compared to hard links, one can find following differences in the listing of symbolic link file–

 Original file and symbolic linked file have different inode numbers.
 File type of note.sym shows l (el) indicating it is not an ordinary file, but a symbolic

link file.
 Size of the file note.sym is just 4 – which is the length of the pathname it contains

(note).
 The pointer notation at the end note.sym->note indicates that note.sym

contains the pathname for the filename note.

When we use cat command on note.sym, we are not opening the symbolic link file, but
the original note file. Removing note.sym will not affect much, because we can always
create a link again. But, if we remove note, we would lose the file containing data. In this
case, note.sym would point to a non-existent file and become a dangling symbolic link.

2.22 umask: DEFAULT FILE AND DIRECTORY PERMISSIONS
When you create files and directories, the permissions assigned to them depend on the
default setting of the system. The UNIX system has the following default permissions for all
files and directories –

 rw-rw-rw- (octal 666) for ordinary files
 rwxrwxrwx (octal 777) for directories

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

This default setting is transformed by subtracting the user mask from it to remove one or
more permissions. To understand this, we should know the current value of mask by using
umask command without arguments as –
 $umask
 0022

This is an octal number which has to be subtracted from the system default to obtain the
actual default. Hence, the actual default of files will be –

 666 – 022 = 644 for ordinary files
 777 – 022 = 755 for directories

Hence, when we create a new file on this system, the default permission of it would be –
 rw-r--r--

The umask is a shell built-in command, though it exists as an external command. A user
can use this command to set a new default. For example,
 $umask 000

The above command sets the umask to 000 and hence, any new file created will have the
permissions as 666-000 = 666 permission. That is, it would be rw-rw-rw-, which is
dangerous because anyone can write the file.

Similarly, if you set
 $umask 666

Then, all files created will have permission as 666-666 =000, and it will be a useless file.
So, the mask has to be set carefully.

2.23 find: LOCATING FILES
The find command is one of the powerful tools of the UNIX system. It recursively examines
a directory tree to search for files matching some criteria, and then takes some action on
the selected files. The syntax of this command is –

 find path_list selection_criteria action

The working of find command is as below –

 Initially, it recursively examines all files in the directories specified in path_list
 Then it matches each file for one or more selection_criteria
 Finally, it takes some action on those selected files.

Consider an example to understand working of find command –

$ find /home/john -name "*.sh" -print
/home/john/Shell2.sh
/home/john/caseEx.sh
/home/john/cmdArg.sh

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

/home/john/test.sh
/home/john/test2.sh
/home/john/ifEx.sh
/home/john/test1.sh
/home/john/Shell1.sh
/home/john/myDir/Shell1.sh
/home/john/second.sh

In the above example, path_list to be searched for is /home/john. The
selection_criteria is –

-name "*.sh"

The criteria for selection has certain options (read UNIX manual page to know more
options), each one starting with – (hyphen). In the above example, it means that name of
the files having pattern *.sh have to be searched. That is, all files with .sh as extension
have to be searched in the given path. Then, the action to be taken is just –print.
Hence, all the files with extension .sh are printed in the given path /home/john.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

