
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

 MODULE 1. INTRODUCTION OF UNIX AND SHELL

1.1 INTRODUCTION
UNIX is one of the oldest operating systems, which is a multi-user and multi-tasking
system. The UNIX OS is basically written in C programming language. Under UNIX, the
operating system consists of many utilities along with the master control program, called as
the kernel. The kernel provides services to start and stop programs, handles the file
system and other common "low-level" tasks that most programs share, and schedules
access to avoid conflicts when programs try to access the same resource or device
simultaneously. To mediate such access, the kernel has special rights, reflected in the
division between user space and kernel space. The user interacts with a UNIX system
through a command interpreter known as the shell.

1.2 HISTORY
In the mid – 1960’s, the Massachusetts Institute of Technology (MIT), Bell Labs,
and General Electric (GE) were trying to develop a time-sharing OS called as Multics
(Multiplexed Information and Computer Services) for GE-645 mainframe. Because of the
complexity of intended OS Multics, they dropped the project. But, few researchers like
Dennis Ritchie, Ken Thompson, Brian Kernighan decided to redo the work in a smaller
scale. They initially named it as Unics (Uniplexed Information and Computer Services), and
eventually, it was renamed as UNIX.

In 1972, the UNIX was re-written in C language, migrating from assembly level language.
This helped UNIX for serving more computing environments. During late 1970’s and early
1980’s, UNIX became available for commercial purposes apart from earlier scientific
environment. It kept on taking different forms over the years, and in 1990’s many UNIX –
like systems came into existence, such as Linux.

1.3 ARCHITECTURE
The UNIX system is supported by several simple but useful components. The important
components which embody UNIX OS architecture are discussed here.

1.3.1 Division of Labor: Kernel and Shell
UNIX OS distributes its major jobs into two agencies viz. kernel and shell.

 Kernel: The kernel is also known as operating system. It interacts with the hardware
of the machine. The kernel is the core of OS and it is a collection of
routines/functions written in C. Kernel is loaded into memory when the system is
booted and communicates with the hardware. The application programs access the
kernel through a set of functions called as system calls. The kernel manages
various OS tasks like memory management, process scheduling, deciding job
priorities etc. Even if none of the user programs are running, kernel will be working in
a background.

 Shell: The shell interacts with the user. It acts as a command interpreter to
translate user’s command into action. It is actually an interface between user and the
kernel. Even though there will be only one kernel running, multiple shells will be

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

active – one for each user. When a command is given as input through the
keyboard, the shell examines the command and simplifies it and then communicates
with the kernel to see that the command is executed. The shell is represented by sh
(Bourne Shell), csh (C Shell), ksh (Korn shell), bash (Bash shell).

The relationship between kernel and shell is shown in Figure 1.1.

Figure 1.1 The Kernel – Shell Relationship

1.3.2 The File and Process
The file and the process are two simple entities that support UNIX.

 File: A file is an array of bytes and it can contain any data. Various files are related
to each other by a hierarchical structure. Even a user (user name) is placed in this
file system. UNIX considers directories and the devices also as the members of file
system. In UNIX, the major file type is text and the behavior of UNIX is controlled
mainly by text files. UNIX provides various text manipulation tools through which the
files can be edited without using an editor.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

 Process: A processing a program under execution. Processes are also belonging to
separate hierarchical structure. A process can be created and destroyed. UNIX
provides tools to the user to control the processes, move them between foreground
and background and to kill them.

1.3.3 The System Calls
System calls are used to communicate with the kernel. There are more than thousand
commands in UNIX, but they all use few set of function called as system calls for
communication with kernel. All UNIX flavors (like Linux, Ubuntu etc) all use the same
system calls. For example, write is a system call in UNIX. C programmer in UNIX
environment can directly use this system call to write data into a file. Whereas, the C
Programmer in Windows environment may need to use library function like fprintf() to write
into a file. A system call open in UNIX can be used to open a file or a device. Here, the
purpose is different, but the system call will be same. Such feature of UNIX allows it to
have many commands for user purpose, but only few system calls internally for the actual
work to be carried out in association with the kernel.

1.4 UNIX ENVIRONMENT
As UNIX is a multiuser system, to facilitate several users at a time, terminals are provided.
A terminal is combination of a monitor and a keyboard. User sitting at a terminal will login to
his account through his user ID and does his job. Once he finishes his work, he can logout.
There will be multiple users working like this and all are accessing same CPU.

UNIX user can have his own workstation. That is, one can have dedicated CPU with RAM,
hard disk etc for individual purpose. This is also known as desktop PC. Sometimes, many
workstations can be connected to server via network. In such situations each workstation
provides a terminal emulation facility, which will help a workstation to behave as a simple
terminal. Now, the workstation will share the resources (CPU, memory etc) of the server for
most of the tasks. Its own resources are used only for running terminal emulation software.
When the workstation is acting like a terminal (that is, when emulation software is running),
then all files created will be stored in a server and, the programs being run will use server’s
memory and CPU.

Logging in: A large set of networked systems is maintained by system administrator. He
is responsible for creating and maintaining user accounts, maintaining file systems, taking
data backups, managing disk space etc. Every user of UNIX will have a separate account
which has to be accessed by giving appropriate login-id or username and password. The
account of system administrator is called as root. A program called shell will be always
running behind and it facilitates logging process as well. It is a command interpreter
between the user and the UNIX kernel.

For logging in, the prompt displayed would be –
 login:
or
 username:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

Then the user has to provide his login id. Immediately after that, he will be asked to enter
the password. And, typed password will not be hidden. For example, if the login id is
chetana, you would see –
 login: chetana (press enter key)
 password: ******* (invisible)

If any one of the login id and password is entered incorrectly, then following error message
will be displayed.
 login incorrect
 login:

If the entered values are correct, then one may see –
 Last login: Thu Aug 17 15:38:33 on tty2
 $ _

The message displayed here indicates the last time the user logged in. The prompt
displayed here is $ followed by a cursor blinking (the underscore _).

Various shells like Bourne Shell (bsh), Bourne again shell (bash), Korn Shell (ksh), C Shell
(csh) etc., the prompt is $ for any normal user. For the administrator, usually the prompt
would be %. Some shells shows the users current directory as –
 [home/chetana]

On the other hand, the Linux systems will display some informative prompts instead of % or
$. The information at the prompt will be like machine name, username and current
directory. For example,
 [chetana@localhost chetana]$

Logging out: It is a regular practice to log out of the system when the user finishes all the
jobs. The procedure for logging out of the system will be depending on the shell used. The
appearance of the text ‘login:’ confirms that the user has successfully logged out.
Following are the various possibilities:

 [ctrl – d] (pressing the keys ctrl and d together, and then press enter key)
login:

 logout (the command logout and then press enter key)
login:

 exit (the command exit and then press enter key)
login:

The C shell uses the command logout and the [ctrl-d] and exit are used by other shells.

1.5 FEATURES OF UNIX
As UNIX is an OS, it obviously possesses features of any other OS. But, it has its own
unique features as discussed in the following sections.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

1.5.1 A Multiuser System
UNIX is basically a multiprogramming system. Here, either

 Multiple users can run separate jobs or
 Singe user can run multiple jobs

In UNIX, many processes are running simultaneously. And, the resources like CPU,
memory and hard disk etc are shared between all users. Hence, UNIX is a multiuser
system as well.

The Unix system breaks up one time unit into several segments and each user is allotted
one segment. At any point of time, the machine will be doing the job of one user. When the
allotted time expires, the job is temporarily suspended and next user’s job is taken up. This
process continues till all processes gets one segment each and once again the first user’s
job is taken up. The kernel does this task several times in one second such a way that the
users will never come to know about it and users cannot make out the delay in between.

1.5.2 A Multitasking System
Unix is a multitasking system, wherein a single user can run multiple jobs concurrently. A
user may edit a file, print a document on a printer and open a browser etc – all at a time. In
multitasking environment, a user can see one job running in the foreground and all other
jobs run in the background. The jobs can be switched between background and
foreground; they can be suspended or terminated.

1.5.3 The Building-Block Approach
Unix is a collection of few hundred commands, each of which is designed to perform one
task. More than one command can be connected via the | (pipe) symbol to perform multiple
tasks. The commands which can be connected are called as filters because, they filter or
manipulate data in different ways. Many Unix tools are designed such a way that the output
of one tool can be used as input to another tool. For this reason, UNIX commands do not
generate lengthy or messy outputs. If a program is interactive, then user’s response to it
may be different. In such situations, the output of one command cannot be made as input
to another command. Hence, UNIX programs are not interactive.

1.5.4 The UNIX Toolkit
Unix contains diverse set of applications like text manipulation utilities, compilers and
interpreters, networked applications, system administration tools etc. The Unix kernel does
many tasks with the help of these applications. Such set of tools are constantly varying with
every release of UNIX. In every release, new tools are being added and old tools are either
removed or modified. Most of these tools are open-source utilities and the user can
download them and configure to run on one’s machine.

1.5.5 Pattern Matching
Unix has very sophisticated pattern matching features. The character like * (known as a
metacharacter) helps in searching many files starting with a particular name. Various
characters from a metacharacter set of Unix will help the user in writing regular
expressions that will help in pattern matching.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

1.5.6 Programming Facility
The Unix shell is a programming language as well. It provides the user to write his/her own
programs using control structures, loops, variables etc. Such programs are called as shell
scripts. Shell scripts can invoke Unix commands and they can control various
functionalities of Unix OS.

1.5.7 Documentation
Unix provides a large set of documents to understand the working of every command and
feature of it. The man command can be used on an editor to get the manual about any
Unix command. Moreover, there are plenty of documents, newsgroups, forums and FAQ
(Frequently Asked Questions) files available on internet, where one can get any information
about Unix.

1.6 BASIC COMMANDS
The UNIX system is command-based. That is, various tasks are carried out based on the
input command by the user. All UNIX commands are case-sensitive and most of them are
in lower case. Some of the basic commands in UNIX are discussed here.

1.6.1 date
The date command in UNIX is used to display the current date and time of the system. The
UNIX system maintains an internal clock that runs continuously. When the system is
shutdown, the battery backup keeps the clock ticking. This clock actually stores the number
of seconds elapsed since 1st January 1970. A 32-bit counter store these seconds and it is
expected to overflow sometime in 2018.

The format of the date command is “Day Month date hr:min:sec IST year”. For example –
 $date

Mon Jun 30 11:35:32 IST 2017

This command will display the output as shown above, and will not allow the user to modify
the current system date. When the system administrator uses the same command, apart
from displaying the date, it allows to modify the date and time. This is possible because of
the privileges given to system admin.

Suitable format specifiers can be used as an argument to date command to get the
date/month/year etc. in required format. The format specifier is preceded by a + symbol,
followed by the % operator and a single character describing the format. Following are
some of the formats –

 To display only the month, one can use +%m as a specifier. For example,
$date +%m
10 //indicates October.

 To display month name, use +%h as below –
$date +%h
Oct

 +%d for day of month (1 – 31)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

 +%y for last two digits of the year
 +%H, +%M and +%S indicates hour, minute and second respectively.
 One can combine more than one option by enclosing them in double quotes, and

keeping + symbol outside the quote. For example, combination of month and month
name –

$date +”%h %m”
Oct 10

1.6.2 passwd
This is the command used for changing the password of a user. When this command is
entered in the terminal, the system will ask for the existing password. After entering the
current password correctly, the system asks for new password to enter. The new password
entered must satisfy the rules framed for proper password in that system. Then system will
then ask for reentering the password for confirmation purpose. When everything goes
correctly, the $ prompt is returned. Next time, when this user logs in, he/she has to give the
newly set password. The following is the example showing working of passwd command in
Linux.

[chetana@server4 ~]$ passwd
Changing password for user chetana.
Changing password for chetana
(current) UNIX password:*******
New UNIX password:**********
Retype new UNIX password:**********
passwd: all authentication tokens updated successfully.
[chetana@server4 ~]$

Note that the above set of instructions and statements is just an example and the behavior
of passwd command is heavily depending on the system.

Depending on the system how it is configured, certain checks are made on the string
(password) that you enter. Some of the common messages are –

 UX: passwd: ERROR: Passwords must differ by at least 3
positions

 passwd (SYSTEM): The first 6 characters of the password must
contain at least two alphabetic characters and at least one
numeric or special characters.

 passwd (SYSTEM): Password too short – must be at least 6
characters

 BAD PASSWORD: it does not contain enough different characters
 BAD PASSWORD: it is based on a dictionary word
 BAD PASSWORD: it too similar to the old one.

This indicates that one cannot choose any password that he/she wishes. One has to abide
by the rules set by the system.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

When a user enters the password, that string is encrypted by the system, and it is stored in
a file shadow in the /etc directory. Even if a user sees this encryption, one cannot decrypt
it.

When the passwd command is used by the system admin, its behavior will be different and
it is discussed in later chapters.

1.6.3 ls
The ls command (meaning – list) displays all files and directories in the current directory.
For example,
 $ls
 mytest.c

test1.c
Thesis
Demo

One can observe that here there are two files and two directories under the current
directory. The ls command has many other options and usage which will be discussed in
later chapters.

1.6.4 mkdir
This is the command used to create a new directory. Directories can be used to have a
collection of files under a common name.
 $mkdir docs
 $_
The mkdir command has created directory viz. docs. But, the command has not shown any
output, but just displays the prompt. Many a times, UNIX commands do not display any
output, but does the job internally. Here, mkdir has created the directory and that can be
confirmed using ls command.

Note that, UNIX internally treats a directory also as a file.

1.6.5 pwd
Present Working Directory can be displayed using the command pwd. For example –
 $pwd
 /home/chetana

The above output indicates that there is a directory with your login name, and it is within
home directory. In UNIX, when a new user account is created, a directory is automatically
created with that login name.

1.6.6 cd
To move from current working directory to a new directory, the cd (change directory)
command is used. After using cd command, the pwd command can be used to verify the
new location. For example,
 $cd docs

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

 $pwd
 /home/chetana/docs

The above output is the pathname of current working directory starting from the root
directory /.

1.6.7 echo
The basic job of echo command is to display the string passed to it as an argument. For
example,
 $ echo hello
 hello

The echo command can be used to evaluate a variable given to it as an argument. For
example,
 $ x=5
 $ echo $x
 5
Note that, here, to initialize a variable, we will just use variable name. But, to evaluate and
display its value, the $ symbol must be attached with the variable name.

The output of echo command can be used to create a new file as well. For example,

 $echo Hello World > file1
 $cat file1
 Hello World

Here, in the first line, echo command is used to create file1 with the content Hello World.
Then, cat command is used to display the contents of file1.

1.6.8 wc
The command wc is used for counting number of lines (in fact, total number of new-line
characters), words and characters in a file. For example –
 $wc file1
 1 2 12 file1

The above output indicates that file1 contains one line, two words (Hello and World) and 12
characters (including space and new-line character).

1.6.9 cal
This command is used to display the calendar of current month. Various arguments can be
given to cal command as listed below –

 $cal Dec 2017 : Displays December month calendar of the year 2017
 $cal 2017: Displays the calendar for all months of 2017.

For example,
 $cal

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

 May 2017
 Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6

7 8 9 10 11 12 13
 14 15 16 17 18 19 20
 21 22 23 24 25 26 27
 28 29 30 31

1.6.10 calendar
This command is a useful in setting reminders. It is available only in UNIX, but not in Linux.
A user has to create a file named calendar with all the tasks he would like to remember.
Then, when this command is used, it invokes all the tasks listed for today (current system
date) and tomorrow. While creating a task list in a file, one has to be careful about the date
format that can be recognized by the system. Consider an example –
 $cat calendar
 Meeting with principal on Oct 23
 October 24 – call for staff meeting
 Give notes to students on Oct 24th
 Car service – Oct 23, 2017
 Oct 25 – Krupa birthday

Here, a file has been created with a name calendar and with some five lines of contents.
Now, assume that today is October 23, 2017 and we are running the command as –
 $calendar

Meeting with principal on Oct 23
 October 24 – call for staff meeting
 Car service – Oct 23, 2017

It has displayed the output containing the tasks to be done on 23rd and 24th October 2017.
Observe that, it didn’t display one task mentioned as ‘Oct 24th”. Because, it is not in a
recognizable format for the system.

Note that, by default, the calendar command assumes the current year, when the year is
not mentioned in the file. Also, when the current date is a Friday, then it displays the
activities of Monday (the next working day), including the weekend days - Saturday and
Sunday.

1.6.11 bc
UNIX provides two types of calculators – a graphical (GUI) calculator (similar to the one
available in windows OS) and a character based bc command. A visual calculator can be
available using xcalc command and it is available only on X Window system, but not on
command-line based terminals.

The calculator available through bc command is a very powerful, but sadly a most
neglected tool in UNIX. When bc command is invoked without any argument, it does

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

nothing but waits for the input from the keyboard. Once the job is done, ctrl+d has to be
pressed to release the command and to get a prompt.

The usage of bc command is illustrated here with examples.

 Basic operations:
$bc
3+5
8
5*6
30
6-10
-4
[ctrl+d]

 To perform more than one operation in a single line:
$bc
2^4; 3+6 //using semicolon as a separator
16
9
[ctrl+d]

 Setting scale for required precision during division operation:
By default, bc performs truncated division (or integer division). For example,

$bc
9/5
1

Here, the output 1, instead of 1.8. To avoid such truncation, one can set the
precision after the decimal point. For example,
 $bc
 scale=2
 9/5
 1.80
 22/7
 3.14

 Converting numbers from one base to the other:
One can change the base of a number by setting ibase (input base) or obase
(output base). For example –
 $bc
 ibase=2 //setting input base as 2
 1100
 12 //decimal equivalent of 1100
 11001110
 206 //decimal equivalent of 11001110

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

The reverse is possible through obase as shown below –
 $bc
 obase=2 //setting output base as 2
 14
 1110 //binary equivalent of 14
 308
 100110100 //binary equivalent of 308
 obase=16 //setting output base as 16 (hexa)
 14
 E //hexadecimal equivalent of 14

 Storing variables:
One can store values in variables and then use them. But, bc supports only single
lowercase letters (a-z) and hence, one can use only 26 variables at a time. For
example –
 $bc
 a=5; b=3; c=2
 p=a+b*c
 p //use variable name to display the result
 11

Note that, bc is a pseudo-programming language that supports arrays, functions,
conditional structures (if) and looping structures (for and while). It also supports library of
some scientific functionalities. It can handle very large numbers. If the result of some
calculation is 900 digits, the bc command shows every digit of it!!

1.6.12 who: To know users of the system
Normally a UNIX system is used by multiple users at a time. One user may needs to know
the list of other users who are using the system currently. The who command is used for
this purpose. This command displays name of the users (login ID used to log in), name of
the terminal and date and time of login. For example –
 $who
 root :0 Sept 04 10:12

chetana tty01 Sept 04 11:11
 raghu tty02 Sept 04 12:35
 ram tty03 Sept 04 14:08

Here the first column shows the user-ids of four users who are currently logged in. In the
second column, tty01 etc. are name of the terminals and the last column shows date and
time of their respective login. This indicates that currently (while giving who command), four
users have logged in. The term tty indicates teletype. The machine identifies a person with
his/her username. So, user will be the owner of file he has created. When a file created by
one user, say chetana is sent to another user, the machine will inform the recipient that a
mail has arrived from chetana.

 Some of the systems display as below when who command is used –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

 $who
 chetana pts/1 Sept 04 11:11

Here, pts/1 is the name of the terminal. The term pts stands for pseudo-terminal slave.
Most of the UNIX/Linux systems have software implementation as an interface to interact
with real terminal. It is called as pseudo-terminal or pseudo-teletype represented by pty.
The pts is a slave part of pty.

The header option –H can be used along with –u option to get more information on the who
command.

$who –Hu
NAME LINE TIME IDLE PID COMMENT
root :0 2007-01-12 04:49 ? 5595
chetana pts/1 2007-01-13 05:39 . 24081 (172.16.4.205)

Here, first three columns are same as before. The fourth column IDLE indicates from how
long the user is idle. The dot (.) indicates the respective user was active in the last one
minute. The question mark (?) indicates that the user is idle from quite a long time, which is
unknown. The fifth column PID (process identifier) will be discussed in later chapters. The
comment line indicates some special comment, if any. In the above example, for the user
chetana, it is showing the IP address of the machine.

It is possible to have multiple user names for a single user. So, sometimes, a user would
like to know who he/she is – that is, with which user name he/she logged in. For this
purpose, who am i command is used. For example,

 $who am i
 chetana tty01 Sept 04 11:11

The additional terms am i used with who are known as arguments. The arguments change
the behavior of UNIX commands and there are many UNIX commands with arguments that
will be discussed in later chapters.

1.6.13 tty: Knowing terminal name
The command tty (teletype) is used to know name of the terminal. For example,
 $tty
 /dev/tty01
The above statement indicates that tty01 is the name of the terminal and it is within the
directory dev. The dev is under root directory.

NOTE that, UNIX treats all devices as files, and tty01 is one of the files under file system.
In UNIX, just like users, even terminals, disks and printers also have the name and all
these are treated as files. Even the commands are also files in UNIX.

Some the systems may display the statement as below when tty command is given –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

$tty
/dev/pts/1

Here, pts/1 is the name of the terminal.

1.6.14 Knowing Shell and Terminal Type
 It is known that, there are different types of shells. If a user would like to know the shell on
which he/she is working, one can use $SHELL argument with echo command. The basic
feature of echo is to simply display the string argument passed to it. The term $SHELL is a
variable used by UNIX to know name of the shell.
 echo $SHELL
 /bin/bash
Here, bash is name of the shell stored in bin folder. In UNIX, all commands are files and
shell is also a file. Shell variables have values associated with them just like programming
variables. The echo command is used here to evaluate the value of the variable by using $
symbol attached with SHELL.

Another variable TERM is used for knowing type of the terminal being used. Terminal type
or emulation specifies how your computer and the host computer (server) exchange the
information. Terminal type of one’s computer has to be set properly so that both terminal
and the server can communicate in a same way. Otherwise, your terminal will not have
enough information to perform actions like clearing the screen, moving the cursor, placing a
character etc.

 $echo $TERM
 vt220

The type of terminal may be vt100, vt220, xterm etc. Each one has different meaning and
feature, which is beyond the scope of this study.

1.6.15 stty
 This command is used to set terminal characteristics. The terminal is a device with which
user communicates. Each terminal is configured differently depending on the user’s choice.
For example, a user can decide

 what should be the abort key (like Ctrl+c or Delete key etc),
 whether a character has to be deleted or not when backspace key is used
 what should be the end-of-file character when cat command is used (like Ctrl+d or

Ctrl+a etc)

The stty command helps the user in setting all such characteristics and also to revoke
existing characteristics.

NOTE that the setting users does may not be effective in some terminals (especially on
Linux machines).

The command stty shows the output as given below –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

$stty
 speed 9600 baud; line = 0;

-brkint -imaxbel

Initially it displays baud rate of the terminal as 9600. The number of characters that a
terminal can transmit per second is known as baud rate. The line indicates the line
discipline of Unix terminal. It does the input processing in the kernel. The brkint indicates
that whether or not (with – or without –) an interrupt signal has to be generated when
there is a break in the script. The imaxbel indicates to beep and do not flush a full input
buffer on a character.

The –a (all) option with this command will display the current settings as shown below –
$stty –a
speed 9600 baud; rows 24; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol =
<undef>;
eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z;
rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts -cdtrdsr
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl
ixon –ixoff -iuclc -ixany -imaxbel -iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0
bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop
–echoprt echoctl echoke

In the first line, we can see number of rows (24) and number of columns (80) that a terminal
can display at a time. After this, there are many settings, which are shortcut keys for certain
tasks. In this terminal, the interrupt key is Ctrl+C, the erase character is Ctrl+?, the kill
character is Ctrl+u, the end-of-file is Ctrl + d etc. There are some keywords in the above
display, where some are with – (hyphen) symbol and some without that. If an option is
without – (hyphen) symbol means, it is turned on. One can use stty to on or off these
options. Some of the examples are discussed here.

 Whether backspacing should erase character (echoe): You might have observed
that in some of the terminals, the backspace key will not erase the characters. This
is the behavior of echoe option available in stty command. If you want the
backspace to remove the character, use –

$stty echoe
 If you want the backspace to not to remove a character, use –
 $stty –echoe

 NOTE that, this option is not effective in Linux.

 Entering a Password through a Shell Script (echo): The option echo has to be
set to let shell programs to accept a password – like string (invisible characters). By
default, the option is turned on, but one can turn it off using –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

$stty –echo

After using this command in a terminal, every character/text what you write will be
invisible in terminal. To make characters visible, set as –
 $stty echo
Note that, this sentence is invisible, but subsequent commands will be visible.

1.6.16 uname
The command uname is a short-form for UNIX name, which displays the details like name
and version of the machine and OS currently running. It can display various details based
on the option given to it as an argument. Consider following situations:

 $uname
Linux
The command without any options displays the name of underlying OS.

 $uname –a
Linux server4 2.6.18-128.el5xen #1 SMP Wed Dec 17 12:01:40
EST 2008 x86_64 x86_x
This has displayed details like kernel name, node name, kernel release, kernel
version etc.

 $uname –n
server4
When your system is connected to network, it prints the name of the machine in
network. This name is required while copying the files from remote machine
using ftp command.

1.6.17 printf
The printf command can be used as an alternative to echo command. Several usages of
printf are explained here with suitable examples.

 $printf “Hello World”

Hello World$
Note that, printf has printed the string and the prompt got displayed immediately after
the string without inserting a newline character (Whereas, echo adds a newline
character). To have a newline character, one can use the escape sequence \n as
below –
 $printf “Hello World\n”
 Hello World
 $

 printf can be used without double quotes. But, printf terminates when a space is
encountered. For example –

$printf Hello World
Hello$

 Note that the term World didn’t get printed here.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

 Just like printf() function of C language, in UNIX also, printf command can use format
specifiers like %s, %d, %f, %o, %x etc. And, the values of variables can be displayed
along with printf command. For example,

$printf "Current shell is %s \n" $SHELL
Current shell is /bin/bash

Observe that, there is no comma separator between the string to be printed and the
variable.

 The format specifiers can be used to convert the numbers as below –

$printf "Value of 138 is %x in Hexa and %o in Octal\n" 138 138
Value of 138 is 8a in Hexa and 212 in Octal

1.6.18 script
The script command is used to record the session in a file. When you have are doing
some important work, and would like to keep a log of all your activities, you should use
script command immediately after logging in. For example,
 $script
 Script started, file is typescript
 $
Now onwards, whatever you type, that will be stored in the file typescript. Once the
recording is over, you can terminate the session by using exit command.
 $exit
 Script done, file is typescript
 $
To view the file typescript, one can use cat command.

Note that, the usage of script command overwrites any existing file with name typescript. If
you want to append the new content to existing file, then use –a as below –
 $script –a
Now, the previous typescript will be appended with the activities of this session.

If you want to create your own file instead of typescript file, then give the required filename
as –
 $script mylogfile

Now, the activities of this session will be stored in the file mylogfile.

NOTE that, some activities like the commands used in the full-screen mode like vi editor
will not be recorded properly when we record session using script command.

1.6.19 spell and ispell
The spell command is used to check the spelling in a text file. When the name of a file is
given an argument to this command, it lists out all the mistakes (words without proper

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

meaning as per the understanding of UNIX). To understand this command, let us first
create a file as below –
 $cat >test.txt

hello hw are yu?
Im doin fine

Now, apply spell command on the file test.txt as shown –
 $ spell test.txt

doin
hw
Im
yu

One can observe that the words with spelling mistakes have been displayed in the order.
Now, if you want to correct these words, ispell command can be used. ispell is actually an
interactive editor, which displays various suggestions for a mistaken word. Then, user has
to choose one of the possible suggestions listed and the mistaken word will be replaced by
the corrected word. For example,

$ispell test.txt

Figure 1.2 Showing suggestions for spelling mistakes

Observe in Figure 1.2 that, the word hw is highlighted and the options are shown. Here, we
wanted the word how, which is suggestion number 7 in the editor. So, one has to type 7 in
front of the question mark displayed at the end. Immediately, the word hw will be replaced

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

by how and the next mistake will be highlighted with suitable suggestions as shown in
Figure 1.3.

Figure 1.3 Correction made as per user’s selection

The procedure continues till all mistakes are rectified. You can also observe that, there are
few other options like Ignore, Ignore All, Replace, Replace All etc. User can take decision
accordingly for every mistaken word.

1.6.20 clear and tput
The command clear is used to clear the screen and to keep the cursor at top left corner of
the screen. The usage is –
 $clear

The command tput also clears the screen, but only by giving clear argument to it. That is,
 $tput clear

The about command will clear the screen and keep the cursor at top left corner of the
screen.

The tput command can be used to keep the cursor at a required position by using cup
argument. For example,
 $tput cup 10 20

This will keep the cursor at 10th row and 20th column of the screen. This is usually used in
shell script to display the text message in a required position. For example, in a shell script,

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

if the above command is used before an echo command, then the text to be displayed
through echo will appear at 10th row and 20th column position.

The command tput uses the argument smso to render the text in reverse combination of
background and foreground colors. The term smso indicates “Start Mode Stand-Out”.
Assume that background color of the terminal is white and foreground color of the text is
black. When the argument smso is set using tput, the further entries in the command
prompt will appear as – background with black color and foreground text with white (That is
reverse of the previous settings). To stop this setting, the argument rmso (Reset Mode
Stand-Out) is used. For example,
 $tput smso
 $echo “hello world” //foreground background colors will be reverse from now
 hello world
 $tput rmso //becomes normal

1.6.21 cat
It is a short-form of the term concatenate. This command is basically used for viewing the
contents of a file. But, it has many other usages like creating a file, joining more than one
file etc. Here, few of the usages of cat command are discussed.

 To create a new file: Following is an example to create a new file –
$ cat >test
hello how are you?
I'm doing good.
what about you?
[Ctrl+d]
$

When cat command is used with > operator and the file name, the cursor waits for
the user to enter the contents of the file. Once the entry is over, user will press ctrl+d
to exit. This action would create a file with a specified name and the contents. Note
that, if the file with that name already exists, it will be overwritten by new contents.

 To display contents of a file: The cat command is used with filename to display
the contents of the file as shown below –

$cat t1
This is first file
$

 Display Multiple files at once: The cat command can be used to display contents

of multiple files by passing different filenames as arguments through space-
separated list. For example,

$ cat t1 t2
This is first file
This is second file //content of the file t2
$

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

 Giving line Numbers: The contents of any file can be displayed along with line

number by using –n option as below –
$cat –n test

1 hello how are you?
2 I'm doing good.
3 what about you?

$

 Use redirection operator to copy the contents of one file to other: A duplicate
copy of one file can be created using redirection operator as below –

$cat t1 > t3
$ cat t3 // check the contents of t3
This is first file
$

Now, a new file t3 got created and the contents of t1 are copied into t3. Note that, if
the file with name t3 already existed, then it will be overwritten.

 Append contents of one file at the end of other file: Using the >> operator, the
contents of one file can be appended at the end of other file as shown below –

$ cat t1 >>t2
$ cat t2 //display the contents of t2
This is first file //original contents of t1
This is second file //appended portion from t2

 $

 Creating single file with the contents of multiple files: One can create a new file
which contains the contents of more than one file as below –

$ cat t1 t2 > t4
$ cat t4
This is first file
This is second file
$

1.6.22 touch
This command is used to create one or more empty files. These files can be then filled with
required content through vi editor. Usage is as follows –
 $touch t1 t2 t3
 $

Now, 3 files with names t1, t2 and t3 got created and that can be verified by using ls
command.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

1.7 INTRODUCTION TO SHELL SCRIPTING
Various basic commands of UNIX have been discussed till now. And, it is understood that
the shell is helping to perform all these command-line tasks. But, shell is not just limited to
command interpretation; instead, it also has many internal commands and has a
programming capability. Shell supports many programming constructs like variables,
conditional structures, looping structures etc, which are borrowed from C language. But,
most of these constructs are much simpler and compact to use compared to that in C.

Shell programs run in interpretive mode – one statement at a time. That is, the output of
every line is displayed immediately after executing that line. Shell will not wait till the end of
the program. Also, there will not be any intermediate files (like .obj or .exe etc) for a shell
script when you run it. Since shell scripts are interpreted codes, they run slower compared
to higher–level languages. Still, shell scripts are powerful because external UNIX
commands mingle with internal constructs of shell very easily.

1.7.1 Shell Variables
Variables are used for storing the values. In shell programming, variable name must start
with a letter, but can contain digits and the underscore. A variable is assigned a value using
= operator, and evaluated by prefixing $ symbol with its name. For example,
 $ x=5

$ echo "value of x is " $x
value of x is 5
$

The command unset can be used to remove the variable from shell. For example,
 $ unset x //value of x removed
 $ echo “value of x is “ $x
 value of x is // x value not got printed
 $

More than one variable can be concatenated by placing them together, and without using
any operator. For example,

$ x=5;y=6
$ z=xy
$ echo $z
56

Shell may use alternative method for evaluating a variable with the help of curly braces as
below –
 $echo ${x}
 5

If user wants to concatenate a value of a variable with a string, then the above format is
useful. For example –
 $echo ${x} “is the value of x”
 5 is the value of x

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

1.7.2 Shell Scripts
When a group of commands have to be executed to solve a single problem, they are
usually kept inside a file. This is called as shell script or shell program. Usually, the
extension used for these files is .sh, though it is not mandatory to do so. Shell scripts are
executed in a separate child shell process, and this sub-shell need not be of the same type
as that of your login shell. That is, even if your login shell is Bourne, you can use Korn shell
as a sub-shell to run the script. Though, child and parent shells belong to the same type by
default, one can provide a special interpreter line in the first line of the script to specify the
type of shell of your script.

Consider the first shell program, with the name Shell1.sh as given below. One can use vi
editor to create this file.

To run this script, make it as executable file using the command –
 $chmod +x Shell1.sh

Then, use the following command to run the script –

 $./Shell1.sh

Today's date: Tue Jan 23 03:40:59 IST 2007
This month's calendar:
 January 2007
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

 my shell is: /bin/bash

Few important points about Shell Scripts:

 The lines starting with # symbols are comment lines in a shell script. That is, the
shell ignores those lines. When we give the command ./Shell1.sh, then we are

Shell1.sh

#!/bin/sh
#My first shell program
echo "Today's date: `date`"
echo "This month's calendar:"
cal `date "+%m 20%y"`
echo "my shell is: $SHELL"

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

actually requesting a kernel to run an executable file. So, now the kernel checks
the file. In the file, if first two characters are # and ! (together known as shebang),
then the kernel uses the next string (the string which follows #!) to run the script.
Hence, in the above script the string after #! is - /bin/sh – being used to run
the script. The path /bin/sh makes the underlying shell (bash, ksh, csh etc) to
run the script and to give the output. Note that, the line #!/bin/sh is known as
interpreter line.

 To run the script, we are using the command ./Shell1.sh here. The meaning
of .(dot) is current directory. If the PATH variable consists of the current
directory, we can remove ./ and can just use

$Shell1.sh
to run the script. To include current directory in a PATH variable, we should use
the command
 $ export PATH=$PATH:.
As PATH variable in UNIX is a colon separated list, we are using colon (:) here to
concatenate existing contents of PATH and the dot (.).

 To run the script, it must be in an executable mode. So, we will change the mode
of the file and make it executable. If you directly use the shell to run a shell script,
then you don’t need a script in executable mode. For example, in the above
example, before using chmod command, one can use –

$sh Shell1.sh
to run this script. Here, the usage of sh make the underlying parent shell to
spawn a child shell and that child is being used to run the script. Now, the
interpreter line is being ignored by shell.

But, the above type of usage has a disadvantage as well. As we know, there is a
slight difference between the syntax of various shell scripts. That is, some of the
commands in bash, ksh, csh etc may not be compatible with each other. Now
consider a situation – you are writing a script in ksh format and you have given
interpreter line accordingly. Assume that the underlying shell in your system is
bash. Now, if you directly use sh to run a script, you may get unexpected results
or sometimes errors as well. Because, you are trying to run a ksh script using
bash shell, which is not possible always.

Hence, it is always better to have an interpreter line, then changing the script to
executable mode and then to run a script.

Explanation about the program Shell1.sh:
 The first line in the program (after an interpreter line and a comment line) is –

 echo "Today's date: `date`"
Here, a string within double quotes is being passed to echo command. But,
observe the term `date` within that string. The symbol ` (in the keyboard, it is
at the left of key 1, and it is along with another symbol tilde ~) is known as

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

backquote or backticks. The command given within a pair of backquote in UNIX
is known as command expansion (or command substitution). The command
expansion will execute the underlying command (that is, the command given
within backquotes) and the output is substituted at that place itself.

Hence, in the above line the command date is executed and its output is made
as a part of the string. Thus, we will get the output as expected.

Some of the shells use the $ symbol and a pair of brackets as an alternative to
backquotes for command expansion purpose. For example, one can use the
following line to get the same result as shown in the script –
 echo “Today’s date: $(date)”

 The third line in the script is -
cal `date "+%m 20%y"`

 In the section 1.6.1, we have seen date command and its options like %m
 and %y. These are given as arguments to date command to get month number
 and last two digits of the year. Then the output is substituted and passed as
 option to cal command to get the calendar for respective month of the year.

 In the last line of the script, a PATH variable $SHELL is used to display the type

of shell being used.

1.7.3 read
The read statement is the internal tool of the shell for taking input from the user. This will
help the scripts to become interactive. Consider the following example –

When you run this script, the output would be –
 Enter your name:

Chetana
Hello Chetana

Observe that, when the statement read fname is encountered, the script pauses to
receive the user input. After getting the input, it continues with the next line in the script.

The read statement can be used to read multiple variables in a single line as below –
 read fname lname

Shell2.sh
#!/bin/sh
#Illustration of read statement
echo "Enter your name:"
read fname
echo "Hello $fname"

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

26

Here fname and lname are different variables. The input has to be given with a space
between two values.

Note that, if the numbers of inputs are less than the number of variables, then the leftover
variables will not be assigned any value. Whereas, if number of inputs are more than the
number of variables, then the extra inputs are concatenated and assigned to the last
variable. Consider following examples –

Ex1:
read fname lname #read two variables
chetana #give only one input
echo “$fname $lname” #try to display both variables
chetana #displays first variable, second is empty

Ex2:
read fname #read one variable
chetana hegde #give two inputs
echo “$fname” #display one variable
chetana hegde #displays both values

1.7.4 Command Line Arguments
Arguments can be passed to a shell script through the command line, while running the
script. Such command line arguments are assigned to special variables known as
positional parameters. The name of the program itself is treated as first argument and
stored in positional parameter $0. Further arguments given by the user are sequentially
stored in parameters $1, $2 and so on. Note that, these are not called as shell variables
(because, name of shell variables starts with a character). Some of the special parameters
used by the shell are listed in Table 1.1.

Table 1.1 Special parameters used by Shell
Shell Parameter Significance

$0 Name of the executed command (that is script file name – in
most of the cases)

$1, $2 etc. Positional Parameters representing command line arguments
$# Total number of arguments specified in command line (excluding

file name)
$* Complete set of positional parameters as a single string
“$@” Each quoted string treated as a separate argument
$? Exit status of last command
$$ PID of the current shell
$! PID of the last background job

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

27

Consider a shell script Shell3.sh as below –

Output:
 $sh Shell3.sh Hello World
 Your file name is Shell3.sh
 Argument one: Hello
 Argument two: World
 you have totally 2 arguments as: Hello World

Here, along with script name Shell3.sh, two arguments Hello and World have been passed
and they will be stored in $1 and $2 respectively. The parameter $# is used to display
number of arguments and $* is used to display all arguments as a single string.

1.7.5 Exit Status of a Command
Whenever a shell command gets executed, its execution status is stored in a special
parameter $?. If the command is executed successfully, then 0 will be stored (indicating
true). Otherwise, some non-zero number (indicating false) is stored in $?. It is called as
exist status of a command. This parameter always contains the exit status of the last
command which has been executed. Consider few examples:

Ex1: Successful Execution
 $echo “Date: `date`” ; echo “Exit Status: $?”
 Date: Wed Oct 18 21:25:29 IST 2017
 Exit Status: 0

Here, the date command is executed within echo. As, it could execute successfully, the
exit status parameter will be obviously 0.

Ex2: File not found error
 $cat test; echo “Exit Status: $?”
 cat: test: No such file or directory
 Exit Status: 1

Here, we are trying to open a file test, which actually does not exist. So, the appropriate
error message is displayed. Hence, the exit status parameter will now contain 1.

Ex3: Command not found error
 $try ; echo “Exit status: $?”

Shell3.sh
#!/bin/sh
#Illustration of Command line arguments
echo "Your file name is $0"
echo “Argument one: $1”
echo “Argument two: $2”
echo “you have totally $# arguments as: $*”

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

28

 bash: try: command not found
 Exit status: 127

Here, we are giving some random text try as if it is a command. Hence, no such command
exists, there will be a command not found error. Now the exit status is 127. Note that the
number 127 indicates – either the command not found; or the command is found, but the
library required to run that command is not found in the specified path.

NOTE: Knowing the exit status of a command is very essential in real time programming.
Because, one may need to take separate action based on successful/unsuccessful
execution of a particular command.

1.7.6 Relational Operators in Shell Scripts
In shell scripts, when we need to compare two numeric values we use some special
operators as listed in Table1.2.

Table 1.2 Relational Operators
Operator Meaning

-eq Equal to
-gt Greater than
-lt Less than

-ne Not equal to
-ge Greater than or equal to
-le Less than or equal to

Example Syntax:
 operand1 -eq operand2

Note that these operators will work only on integers. The numbers with decimal points will
be simply truncated.

1.7.7 Numeric Comparison using test and []
In shell scripts, to evaluate an expression (especially in if conditional construct) we use test
command. Generally, test command will use numeric comparison operators to evaluate the
condition. It returns either true or false exit status. Hence the result of test command can be
known using the shell parameter $?, which stores the exit status of previous command. The
uses of test command are:

 Comparing two numbers
 Comparing two strings
 Comparing single string with a null value
 Checking file’s attributes

Here, we will discuss comparison of two numbers. Consider the following example –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

29

 $ x=5; y=7
 $ test $x –eq $y
 $ echo $?
 1 #Not equal

 $ test $x –lt $y; echo $?
 0 #5 less than 7 is true

Observe that when x and y are compared for checking equality, the result is 1 – a non-zero
number indicating false; whereas, x is less than y and hence the result is true (indicated by
zero).

A pair of square brackets [] also does the similar job that of test for evaluating numbers.
For example,
 $ [10 –lt 20]
 $echo $?
 0 #10 less than 20 is true

NOTE that, there must be a space between a square bracket and the operand. Otherwise,
shell will throw an error.

1.7.8 The if Condition
One of the important requirements in programming is conditional structures. In shell
programming, the conditional construct if can be used in the following ways –

 Format 1

 Format 2

 Format 3
Consider the following example to illustrate if statement.

if command is successful
then
 execute commands
fi

if command is successful
then
 execute commands
else
 execute commands
fi

if command is successful
then
 execute commands
elif command is successful
then
 execute commands
elif command is successful
then

…………….
else
 ……………..
fi

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

30

Output:

5 is less than 10
5 and 10 are not equal

1.7.9 The Logical Operators && and ||
The shell script allows the user to use two logical operators && and || for combining more
than one conditions/commands. Syntax:

 cmd1 && cmd2: The cmd2 is executed only if cmd1 is true. If both cmd1 and cmd2
executed successfully, then the exit status would contain zero, otherwise some non-
zero number. For example,
Ex1:

$ a=10
$ b=10
$ test $a -eq $b && echo "equal"
equal
$ echo $?
0

Here the values of a and b are equal. Hence, the second command echo "equal”
got executed. The exit status is found to be zero indicating successful execution of
both the commands.

Ex2.

$ a=10
$ b=20
$ test $a -eq $b && echo "not equal"
$ echo $?

 1
Observe that value of a and b are different. Hence, the first command

test $a -eq $b

#!/bin/sh
#Illustration of if statement

x=5
y=10

if test $x -lt $y
then
 echo "$x is less than $y"
else
 echo "$y is less than $x"
fi

if [$x -ne $y]; then
 echo "$x and $y are not equal"
fi

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

31

itself is false. So, the second command will not be executed. And, the exit status is
found to be 1 indicating false.

 cmd1 || cmd2: If any one of cmd1 and cmd2 executes successfully, then the exit

status will contain zero.
Ex1:

$ a=10
$ b=20
$ test $a -eq $b && echo "equal"
equal
$ echo $?
0

Here the values of a and b are not same. Still, we are checking the equality. In fact,
the command test $a -eq $b results in false. Still, because of OR (||) operator,
the second command echo "equal" gets executed.

1.7.10 case
The case statement in shell is similar to switch – statement in C language. When there is a
possibility that the statement matches an expression for more than one alternative, we use
case statement. It is useful for multi-way branching. The general syntax is –

 case expression in
 pattern1) commands1 ;;
 pattern2) commands2 ;;
 pattern3) commands3 ;;
 …….
 esac

The case matches expression with pattern1. If they match, then commands1 will be
executed. If the match fails, then pattern2 is compared and so on. Here commands1 etc
may be one or more commands. Each command list is terminated by a pair of semicolons
(similar to break in C language). And, entire case construct is ended with esac (the reverse
of case).

Consider the following shell script :

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

32

menu.sh

Output:
 MENU

 1. List of files
 2. Display date
 3. Users of system
 4. Quit

 Enter your option: 2
Tue Jan 30 09:59:46 IST 2007

In the above example, the multi-line echo command uses –e option to enable escape
sequences like \n. The script displays various options as shown in the output. Based on the
user’s choice, the respective option is matched using case statement to execute respective
block of code. The last pattern in the case is *), which is used only when all previous
options fails (similar to default keyword in switch-case of C language). Note that a pair of
semicolons is not necessary for this last option.

The case can be used in following ways as well:

 Matching multiple patterns: More than one pattern can be combined to perform a
specific action using case. For example, consider the following code snippet:

echo “Do you want to continue? (y/n):”
read ans
case “$ans” in
 y|Y) ……… ;; #do something
 n|N) exit;;
esac

#!/bin/sh
#Menu driven script to illustrate case

echo –e " MENU \n
1. List of files \n 2. Display date \n 3. Users of
system 4. Quit \n Enter your option: \c"

read choice

case "$choice" in
 1) ls -l ;;
 2) date ;;
 3) who ;;
 4) exit ;;
 *) echo "Invalid option"
esac

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

33

Here, when user would like to continue, he/she may press y or Y (lower case or
upper case letter). So, the | symbol is used to combine both the patterns. In the
same way, n or N is used.

 Using wild-cards with case: String matching features using wild-cards is possible
with case in shell script. The metacharacters like * and ? etc can be used to match
strings. For example,

echo “Do you want to continue? (yes/no):”
read ans
case “$ans” in
 [yY][eE]*) ……… ;; #do something
 [nN][oO]) exit;;
esac

Here, user can give the input for ans in any combination of uppercase and
lowercase letters. That is, ans can be one among: Yes, yes, yEs, YEs etc. Similarly,
a ‘no’ can be given as No, nO, NO, no.

1.7.11 expr
The shell does not have computing features. For the evaluation of expressions, it has to
use the expr command. It can perform arithmetic operations on integers and manipulate
strings up to some extent. As it is not a shell statement, instead a stand – alone UNIX
command, its usage in shell script will slowdown the operation. It can perform the basic
arithmetic operations – addition, subtraction, multiplication, division and modulus
(remainder after division). Consider the following example –
 $ x=3 y=5
 $ expr $x + $y #note the space before and after +
 8

 $ expr $x - $y
 -2

 $ expr $x * $y #the * used with \ as escape sequence
 15

 $ expr $y / $x
 1 # only integer part will be displayed

 $expr 18 % 4
 2 # remainder after dividing 18 by 4

NOTE:

 While using expr, the operands +, - etc. have to be enclosed with white space on
both sides.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

34

 For doing multiplication, the operator * has to be escaped to prevent the shell from
interpreting it as a metacharacter.

 To assign the evaluated value of an expression to another variable, the back quotes
must be used as command substitution. For example,

$ x= 4 y=6
$ z = `expr $x + $y`
$ echo $z
10

1.7.12 sleep And wait
Sometimes in shell scripts, we need to introduce some delay to let the user to see some
message before doing anything else, or to check the regular time intervals for an event to
occur etc. In such situations, a UNIX command sleep can be used along with the argument
indicating number of seconds to sleep or pause. After these many seconds gets elapsed,
the shell resumes its execution. For example,

 $ sleep 100; echo “100 seconds have elapsed”
 100 seconds have elapsed

The output of echo command will be displayed after 100 seconds. That is, we need to wait
for 100 seconds to see the output. The sleep command doesn’t incur much overhead while
it is sleeping.

A shell build-in command wait is used to check whether all background processes have
been completed. This is useful when we have to run a job in the background and now want
to make sure whether it is completed before starting another job. If one needs to wait till a
particular background process to be processed, then this command is used with an
argument indicating the required process id (PID). The syntax is –
 $ wait #waits for completion of all background processes
 $ wait 128 #waits for completion of process having PID 128

1.7.13 while
Shell scripts support three types of looping structures – while, until and for. Looping
structures are used in any program when a set of instructions have to be executed
repeatedly for few times based on the condition.

The while statement performs a set of instructions till the control command returns a true
exit status. It is similar to while loop of C language. The syntax is –

 while condition is true
 do
 execute commands
 done

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

35

Note the keywords do and done here. The set of instructions enclosed within do and done
are executed as long as the condition remains true. The condition may be any UNIX
command or an expression involving test, expr etc.

Consider the shell script menu.sh used earlier (section 1.7.10) and the modified version is
given here –

Output:
 MENU

1. List of files
2. Display date
3. Users of system
4. Quit

 Enter your option: 2
Tue Jan 30 09:59:46 IST 2007
Do you want to continue (y/n)? : y

MENU

 1. List of files
2. Display date
3. Users of system
4. Quit
Enter your option: 3
chetana pts/1 Sept 04 11:11
Do you want to continue (y/n)? : n

#!/bin/sh
#Illustration of while loop

ans='y'
while ["$ans" = "y"]
do
 echo -e " MENU \n
 1. List of files \n 2. Display date \n 3. Users of system
 4. Quit \n Enter your option:\c"

read choice
 case "$choice" in
 1) ls -l;;
 2) date;;
 3) who;;
 4) exit ;;
 *) echo "Invalid option"
 esac

 echo -e "Do you want to continue (y/n)?: \c"
 read ans
done

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

36

In the above example, the menu options are repeatedly shown to the user until he/she
chooses to quit. So, in a single run of the script, one can choose multiple menu options one
after the other.

1.7.14 until
The until statement is a complement of while loop. Here, the block of statement is
executed until the condition remains false. For example, consider the following shell script –

Output:
 0
 1
 2
 3
 4
 5

In the above script, the variable a is initialized to zero. Then the condition is checked
whether a is greater than 5. Since the condition is false, the statement inside the until-loop
starts getting executed. Here, the value of a is being printed and then incremented by 1.
When value of a is 6, then the condition ‘6 greater than 5’ becomes true. And now, the loop
gets terminated.

1.7.15 for
It is very important to note that (especially those who know higher programming languages)
the for loop in shell script is NOT same as that in other languages. One can neither
increment/decrement the values, nor specify the condition to be met. Instead, it just iterates
over the elements in a list. A set of commands are executed until the list gets exhausted.

The syntax is –

 for variable in list
 do
 execute commands
 done

Consider an example –

#!/bin/sh
#Illustration of until loop

a=0
until [$a –gt 5]
do
 echo $a
 a=`expr $a + 1`
done

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

37

 $ for x in 1 5 10 4 # list has 4 strings
 > do
 > echo “Value of x is $x” # executed 4 times
 > done
 Value of x is 1
 Value of x is 5

Value of x is 10
Value of x is 4

Here, the list contains four strings 1, 5, 10 and 4 (note that, they are treated as strings, not
as integers). Each item in the list is assigned to variable (here x) and echo command is
executed.

Ex: Write a shell script to find sum of numbers provided through command line.

sum.sh

Output:
While running this script, give command line arguments similar to –
 $ sh sum.sh 10 20 30
 Sum=60

1.7.16 “$@”
We have observed earlier that $* is used to list out all the arguments given via command
line. In the script sum.sh given in previous section, it is observed that a string separated by
space is treated as a different argument by $*. But, sometimes we need text within double
quotes separated by space to be treated as single string. In such situations, $@ is used.
The $@ will treat the text given in double quotes as one single string. To do that, $@ itself
has to be enclosed in double quotes as “$@”.

Consider the script given below –

#!/bin/sh
#sum of numbers given through command line

sum=0

for x in $*
do
 sum=`expr $sum + $x`
done

echo “Sum = $sum”

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

38

cmdArg.sh

Output:
While running this script, give command line arguments similar to –

$sh cmdArg.sh "MCA01 Chetana" "MCA02 Raghu" "MCA03 Rajatha"
The command line arguments are:
MCA01 Chetana
MCA02 Raghu
MCA03 Rajatha

Observe that, the arguments are given within double quotes. And each argument contains
string involving space in between. If $* would have used in the above script, the shell would
treat MCA01 as separate string, Chetana as another string and so on.

1.7.17 set And shift: Manipulating the Positional Parameters
To extract a field from single line output statements, we have filters like grep, head etc. (will
be discussed in later chapters). But, there is an internal command in UNIX viz. set. This
command assigns its arguments to positional parameters like $1, $2 etc. Also, it assigns
proper values to $* and $# as well. For example,
 $ set 13 45 32
 $ echo “Argument one:$1, Argument 2:$2, Argument 3:$3”
 Argument one:13, Argument 2:45, Argument 3:32
 $ echo “There are $# number of arguments”
 There are 3 number of arguments

Now, this feature of set command can be used in commands like date. For example,
 $set `date`
 $echo $*
 Sun Oct 29 08:57:52 IST 2017
 $echo $1
 Sun
 $echo $3
 29
 $ echo “Today’s date is $2 $3, $6”
 Today’s date is Oct 29, 2017

#!/bin/sh
#illustration of $@

echo "The command line arguments are:"
for x in "$@"
do
 echo $x
done

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

39

Shifting Arguments towards left: The shift command
We have seen that in many of the scripts, the first argument ($0) is a filename. If we don’t
want this to happen, we can shift the argument towards left using shift command. This will
transfer the contents of a positional parameter to its immediate lower numbered positional
parameter. When shift is called once, $2 will become $1, $3 will become $2 and son on.
For example,
 $set `date`
 $echo $1 $2 $3
 Sun Oct 29
 $shift
 $ echo $1 $2 $3
 Oct 29 08:57:52
 $shift 2 #shifting two positions at a time
 $ echo $1 $2 $3
 08:57:52 IST 2017

1.8 REDIRECTION
Usually UNIX commands generate some output or error message on to a terminal, and
require input from the terminal. In the context of redirection, the word terminal indicates the
screen, display or keyboard. The activities related to terminal are done through 3 files viz.

 Standard Input – The file (or stream) representing input, which is connected to
keyboard

 Standard Output – The file (or stream) representing output, which is connected to
display

 Standard Error – the file (or stream) representing error messages that originate from
the command or shell. This is also connected to the display.

These special files are actually streams of characters which many commands see as input
and output. A stream is a sequence of bytes. When a user logs in, the shell makes these
three files available representing three streams. The files are closed when the command
completes execution. Even though the shell associates each of these files with a default
physical device, this association is not permanent. The shell can easily unhook a stream
from its default device and connect it to a disk file the moment it sees some special
characters in the command line. The user has to instruct the shell to do what by using
symbols like > and < in the command line.

These three files are discussed in detail in the following sections.

1.8.1 Standard Input
The standard input file represents three input sources viz.

 The keyboard (default source)
 A file using redirection with the < symbol
 Another program using a pipeline

The commands like cat and wc, when used without any special symbols like < and | in the
command line, takes the input from the default source. For example –
 $ wc

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

40

 Standard input can be redirected
 It can come from a file
 Or a pipeline
 [ctrl – d]
 3 14 71

Here, when we wc command and press enter, it waits for keyboard input as no filename is
provided. We have given some 3 lines of text and then pressed ctrl-d. Then it displays the
output (3 lines 14 words and 71 characters). In fact, the wc command is reading from
standard input file here.

The shell can reassign or redirect the standard input file to a disk file using < symbol as
shown –
 $ wc < sample.txt #existing file containing above 3 lines
 3 14 71

Here, the wc command reads the sample.txt and gives the input. The working of this
command is explained here –

1. On seeing the < symbol, the shell opens the disk file sample.txt for reading
2. Shell unplugs the standard input file from its default source and assigns it to

sample.txt
3. wc reads from standard input which has earlier been reassigned by the shell to

sample.txt
Note that, wc has no idea where the stream came from, and also it is not even aware that
the shell had to open the file sample.txt on its behalf.

NOTE:

1. When < is used, the shell is opening a file and the command is not aware of that.
But, when filename is used directly without < symbol, then the command itself will
open a file and does the job.

2. In the above discussion, the example of wc command is taken. But, same
explanation holds good for other commands like cat as well.

3. It is possible to take input from both standard input as well as file. While taking input
from multiple sources, the – symbol has to be used to indicate the sequence of
taking input. For example,

$cat – test

The above command takes input from standard input and then from the file test.

$cat test – test1

This line takes input from file test, and then from standard input and finally from the
file test1.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

41

1.8.2 Standard Output
All the commands displaying the output on the terminal actually write to the standard
output file as a stream of characters, but not directly to the terminal. There are three
possible destinations for the output stream –

 The terminal – the default destination
 A file using the redirection symbols > and >>
 As input to another program using a pipeline

The default destination (terminal or the monitor display) of standard output can be
redirected to any file by using >. For example,
 $wc sample.txt > newfile
 $cat newfile
 3 14 71 sample.txt

Here, the wc command operates on sample.txt to count number of lines, words and
characters. But, instead of displaying the result on the terminal, output is redirected to
another file newfile. Then use cat command to view the contents of newfile, which is
nothing but the result of wc command.

In the similar lines, one can use >> symbol to append the output of one command at the
end of existing contents of any file.

The working of the command wc sample.txt > newfile is as given here –

1. The shell opens the disk file newfile for writing once it sees > symbol.
2. It unplugs the standard output file from its default destination and assigns it to

newfile.
3. Now, the command wc (not the shell) opens the file sample.txt for reading.
4. Then, wc writes to standard output which has earlier been reassigned by the shell to

newfile.
And, all these procedure happens without wc knowing that it is writing to newfile.

The redirection is useful feature when output of many commands or files has to be
concatenated.

1.8.3 Standard Error
Before understanding the concept of standard error, we should understand the concept of
file descriptor. A file descriptor is a number attached to each of the three standard files. A
file is opened by refereeing to its pathname, but subsequent read and write operations
identify the file by this file descriptor. The kernel maintains a table of file descriptors for
every process running in the system. The first 3 slots are generally allocated to three
standard streams as –
 0 – standard input
 1 – standard output
 2 – standard error

These descriptors are implicitly prefixed with the redirection symbols. That is –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

42

 > and 1> both are same
 < and 0< both are same

If our program opens a file now, that file may be allocated with the file descriptor as 3.

One need to use these file descriptors while handling standard error stream. Consider the
following example, where we are trying to open a non-existing file –
 $cat foo
 cat: cannot open foo

Here, the error message has been displayed on the terminal (monitor display). We may
want to redirect this error message into a file. But, ordinary redirection symbol > cannot do
this job. That is,
 $cat foo > errFile
 cat: cannot open foo

As we can observe, the error message is displayed on the terminal, but not being
redirected to errFile. Though standard output and standard error both use the terminal as a
default destination, the shell treats them differently. So, to redirect the standard error, we
need to use the file descriptor as –
 $cat foo 2> errFile
 $cat errFile
 cat: cannot open foo

One can append the error file using 2>>. Also, both output and error streams can be
redirected separately in a single line as –
 $ test.sh > out.txt 2>err.txt

Here, the output of shell script test.sh into the file out.txt and any possible error messages
of the script into err.txt.

1.9 trap: INTERRUPTING A PROGRAM
When we press ctr+c or break in the terminal during the execution of any shell program, the
shell script will be terminated. But, by doing so, some of the temporary files remain in stack
and they will not be cleaned up. Hence, UNIX gives an option to terminate the program
using trap command with appropriate signals. Syntax is –
 trap command_list signal_list

Here, command_list can be any valid UNIX command or user-defined function, signal_list is
a list of any number of signals you want to trap.

Some of the common signals you want to encounter in your program may be as below –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

43

Signal
Name

Signal
Number

Description

SIGHUP 1 Hang up detected on controlling terminal or death of
controlling process

SIGINT 2 Issued if the user sends an interrupt signal (Ctrl + C)
SIGQUIT 3 Issued if the user sends a quit signal (Ctrl + D)
SIGFPE 8 Issued if an illegal mathematical operation is attempted
SIGKILL 9 If a process gets this signal it must quit immediately and

will not perform any clean-up operations
SIGALRM 14 Alarm clock signal (used for timers)
SIGTERM 15 Software termination signal (sent by kill by default)

There are two common uses for trap in shell scripts −

 Clean up temporary files
 Ignore signals

If the command listed for trap is null, the specified signal will be ignored when received. For
example, the command −

$ trap '' 2
This specifies that the interrupt signal is to be ignored. You might want to ignore certain
signals when performing an operation that you don't want to be interrupted. You can specify
multiple signals to be ignored as follows −

$ trap ' ' 1 2 3 15

1.10 THE here document
Sometimes, the shell uses the << symbols to read data from the same file containing the
script. This is referred to as here document, indicating that the data is here only, not in a
separate file. Any command using standard input can also take input from a here
document.

Consider an interactive script, that is, a shell script which reads some input from the
keyboard.

When we run this script in a normal way, it would look something like this –

hereDoc.sh
#!/bin/sh
#Illustration of here document

echo "Enter your name:"
read fname
echo "Enter your age:"
read age

echo “Your name is $fname, Your age is $age”

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for UNIX Programming (16MCA12)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

44

$ sh hereDoc.sh
 Enter your name:
 Ramu
 Enter your age:
 21
 Your name is Ramu, Your age is 21

Now, let us see, how to use here document for this script. Run the above script as shown
below –
 $ sh hereDoc.sh <<END
 >Ramu #shell waits for your input from this line
 >21
 >END # till this line
 Enter your name:
 Enter your age:
 Your name is Ramu, Your age is 21

Observe the above lines. While running the script, we have used a term <<END. Here, the
symbol << indicates that the file hereDoc.sh will be reading an input from the here
document but not from the keyboard. The word END used is just an example for delimiter,
and one can use any word (not UNIX command). After the first line, user can keep giving
the inputs. Once the input is done, the delimiter has to be provided. Immediately after
seeing the delimiter word for the second time, the hereDoc.sh file starts executing and the
read commands inside the script will not wait for the user input from the keyboard, instead,
it will be taken from the here document created already.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

