
Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

1

SORTING 
 

Sorting is a process of arranging a set of data in some order. Usually, sorting will be either 

in ascending order or in descending order. Sorting technique can be mainly divided into two 

categories viz. internal sorting and external sorting. If all the data to be sorted all stored in 

the main memory, then it is called as internal sorting. If the data are stored in the auxiliary 

storage i.e. in floppy, tape etc, then the sorting is said to be external sorting. Let us discuss 

about different internal sorting techniques one by one. 

 

Selection Sort 
 
Selection sort is a simplest method of sorting technique. To sort the given list in ascending 

order, we will compare the first element with all the other elements. If the first element is 

found to be greater then the compared element, then they are interchanged. Thus at the 

end of first interaction, the smallest element will be stored in first position, which is its 

proper position. Then in the second interaction, we will repeat the procedure from second 

element to last element. The algorithm is continued till we get sorted list. If there are n 

elements, we require (n-1) iterations, in general. 

 
Consider the example---- 
 
25 12 30 8 7 43 32 
 
First: Iteration 
 
25 12 30 8 7 43 32 
 
12 25 30 8 7 43 32 
 
12 25 30 8 7 43 32 
 
8 25 30 12 7 43 32 
 
7 25 30 12 8 43 32 
 
7 25 30 12 8 43 32 
 
 25 30 12 8 43 32 
 

7 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

2

 
  
 Second Iteration 
             
 25 30 12 8 43 32 
 
  25 30 12 8 43 32 
            
  12 30 25 8 43 32 
             
 8 30 25 12 43 32 
    

8 30 25 12 43 32 
 
 30 25 12 43 32 

 
Third Iteration 
    
     30 25 12 43 32 
 
     25 30 12 43 32 
 
     12 30 25 43 32 
 
     12 30 25 43 32 
 
   30 25 43 32 
 
Fourth Iteration 
 
7 8 12 30 25 43 32 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 43 32 
 
Fifth Iteration 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 43 32 
 
 

7 

7 

7 

7 

7 

7 8 

7 8 

7 8 

7 8 

7 8 

7 8 12 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

3

 
Sixth Iteration 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 32 43 
 
 
Thus sorted list is: 
7, 8, 12, 25, 30, 32, 43 
 
Program: 
 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
 int a[10],n,i,temp,j; 
 clrscr(); 
 printf("Enter the size of the array:"); 
 scanf("%d",&n); 
 printf("\nEnter array elements:\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 
 for(i=0;i<n-1;i++) 
 { 
  for(j=i+1;j<n;j++) 
  { 
   if(a[ i]>a[j]) 
   { 
    temp=a[i]; 
    a[i]=a[j]; 
    a[j]=temp; 
   } 
  } 
 } 
 printf("\nSorted list is:\n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 getch(); 
} 
 
 
 
 
 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

4

 
Bubble Sort 
 
The bubble sort technique for sorting a list of data in ascending order is as follows:   In the 

first iteration, the first element of the array is compared with the second element.  If the first 

element is found to be greater than the second element, they are interchanged.  Now, the 

second element is compared with the third and interchanged if required.  In the same way, 

comparison is done till the last element.  At the end of first iteration, the largest element will 

be stored at the last position.  In the second iteration, again the comparison is done from 

the first element to last-but-one element.  At the end of this iteration, the second largest 

element will be placed in its proper position.  If there are ‘n’ elements in the given list, then 

after (n-1) iterations, the array gets sorted. 

 

Consider the following list of integers to be sorted: 
  25 12 30 7 32 8 
 
1st  Iteration: 
  25 12 30 7 32 8  25>12  interchange 
  
 
  12 25 30 7 32 8  25<30 no interchange 
 
 
  12 25 30 7 32 8  30>7 interchange 
 
   
  12 25 7 30 32 8  30<32 no interchange 
 
   
  12 25 7 30 32 8  32>8 interchange 
 
          
  12 25 7 30 8   32 placed in its position 
 
 
2nd Iteration: 
  12 25 7 30 8   12<25 no interchange 
 
 
  12 25 7 30 8   25>7 interchange 
 
   

32 

32 

32 

32 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

5

12 7 25 30 8   25<30 no interchange 
 
 
  12 7 25 30 8   30>8 interchange 
 
 
  12 7 25 8    30 also placed 
 
3rd Iteration: 
  12 7 25 8    12>7 interchange 
 
 
  7 12 25 8    12<25 no interchange 
 
 
  7 12 25 8    25>8 interchange 
 
 
  7 12 8     25 is placed now 
 
4th Iteration: 
  7 12 8     7<12 no interchange 
 
 
  7 12 8     12>8 interchange 
 
   
  7 8      12 is placed now 
 
5th Iteration: 
  7 8      7<8 no interchange 
 
 
  7       8 is placed 
 
Thus, the sorted list is: 
  7 8 12 25 30 32 
 
Program: 
 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
 int a[10],n,i,temp,j; 
 clrscr(); 
 printf("Enter the size of the array:"); 

32 

32 30 

32 30 

32 30 

32 30 

32 30 25 

32 30 25 

32 30 25 

32 30 25 12 

32 30 25 12 

32 30 25 12    8 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

6

 scanf("%d",&n); 
 printf("\nEnter array elements:\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 
 for(i=0;i<n;i++) 
 { 
  for(j=0;j<n-i-1;j++) 
  { 
   if(a[ j]>a[j+1]) 
   { 
    temp=a[j]; 
    a[j]=a[j+1]; 
    a[j+1]=temp; 
   } 
  } 
 } 
 printf("\nSorted list is:\n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 getch(); 
} 
 
 
Quick Sort 
 
As the name suggests, Quick Sort is a technique that will sort a list of data significantly 

faster than any other sorting techniques. This algorithm is based on the fact that – it is 

always easier and faster to sort two small arrays than one single big array.  

 

Here, the given array is divided into two sub-arrays such that the elements at the left-side 

of some key element are less than the key element and the elements at the right-side of the 

key element are greater than the key element. 

 
The dividing procedure is done with the help of two index variables and one key element as 
explained below – 

 
i) Usually the first element of the array is treated as key. The position of the 

second element is taken as the first index variable left and the position of the 
last element will be the index variable right. 

ii) Now the index variable left is incremented by one till the value stored at the 
position left  is greater than the key. 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

7

iii) Similarly right is decremented by one till the value stored at the position right 
is smaller than the key. 

iv) Now, these two elements are interchanged. Again from the current position, 
left and right are incremented and decremented respectively and exchanges 
are made appropriately, if required. 

v) This process is continued till the index variables crossover. Now, exchange 
key with the element at the position right. 

vi) Now, the whole array is divided into two parts such that one part is containing 
the elements less than the key element and the other part is containing the 
elements greater than the key.  And, the position of key is fixed now. 

vii) The above procedure (from step i to step vi) is applied on both the sub-arrays. 
After some iteration we will end-up with sub-arrays containing single element. 
By that time, the array will be stored. 

 
     Let us illustrate this algorithm using an example.  Consider an array  

 
a[7] ={25, 12, 30, 8, 7, 43, 32} 

 
     Let key =25 
 left = 1, the position of 12 
           right =6, the position of 32 
 
     First step: Compare key with a[left] 
 
     key     left     right 

    25   12   30   8   7   43    32  
 

Now, key > a[left] (i.e. 25 > 12) is true.  
So increment left. So, now left will be at the element 30. 

  
      Second step: Compare key with a[left] 

key                     left    right          
25   12   30   8   7   43   32 

Now, key > a[left] (i.e. 25 > 30) is false. 
So stop incrementing  left. 

 
      Third step: Compare key with a[right]. 

key  left    right  
25   12   30   8   7   43   32  

Now, key < a[right] (i.e. 25 < 32) is true. 
So, decrement right. Thus, right will be at the element 43 now. 

 
       Fourth step: Compare key with a[right]. 

key  left   right  
25   12   30   8   7   43   32 

 Now, key < a[right] (i.e. 25 < 43) is true. 
 So, decrement right. Thus, right will be now at 7. 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

8

 
       Fifth step: Compare key with a[right]. 

key  left  right  
25   12   30   8   7   43   32 

 Now, key < a[right] (i.e. 25 < 7) is false. 
 So, stop decrementing right. 
 
       Sixth step: Exchange the values of a[left] (30) and a[right] (7). Thus, array will be – 

key  left  right  
25   12   7   8   30   43   32 

 
      Seventh step: Again start the procedure from beginning. That is, compare key with 
a[left].  

key  left  right  
25   12   7   8   30   43   32 

 Now, key > a[left] (i.e. 25 > 7) is true. 
 So, increment left.  Now, left will be at 8. 
 
Eighth step: Compare key with a[left]. 

key   left right  
25   12   7   8   30   43   32 

 Now, key > a[left] (i.e. 25 > 8) is true. 
 So, increment left.  Now, left will be at 30. 
 
Ninth step: Compare key with a[left]. 

key         left, right  
25   12   7   8   30    43   32 

 Now, key > a[left] (i.e. 25 > 30) is false. 
 So, stop incrementing left. 
 
Tenth step: Compare key with a[right]. 

key         left, right  
25   12   7   8   30    43   32 

 Now, key < a[right] (i.e. 25 < 30) is true. 
 So, decrement right. Thus, right will be at 8 now. 
 
Eleventh step: The array looks like – 

key          right      left  
25   12   7   8   30 43   32 

As the index variables left and right cross-over, exchange key (25) with a[right] (8). 
 
The array would be – 
  8 12 7 25 30 43 32 
 
Thus, all the elements at the left-side of key(i.e. 25) are less than key and all the elements 
at the right-side of key are greater than key. Hence, we have got two sub-arrays as – 
  {8, 12, 7} 25 {30, 43, 32} 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

9

Now, the position of 25 will not get changed. But, we have to sort two sub-arrays 
separately, by referring the above explained steps. 
 

Proceeding like this, we will get the sorted list.  
 
Program: 
#include<stdio.h> 
quick_sort(int x[], int low, int high)  //Function to apply quick sort technique 
{ 
 int pos; 
 if (low < high) 
 { 
  pos = partition(x,low,high); 
  quick_sort(x,low,pos-1); 
  quick_sort(x,pos+1,high); 
 } 
 return; 
} 
 
int partition(int x[], int low, int high)  //Function for partitioning the array 
{ 
 int key, temp, true = 1; 
 int left, right; 
 
 key = x[low]; 
 left = low +1; 
 right = high; 
 
 while(true) 
 { 
  while ((left < high) && (key >= x[left])) 
   left++; 
  while(key < x[right]) 
   right--; 
  if(left < right) 
  { 
   temp = x[left]; 
   x[left] = x[right]; 
   x[right] = temp; 
  } 
  else 
  { 
   temp = x[low]; 
   x[low] = x[right]; 
   x[right] = temp; 
   return(right); 
  } 
 } 
 return 0; 
} 
 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

10

void main() 
{ 
 int a[10],n,i,low,high; 
 clrscr(); 
 
 printf("Enter array size\n"); 
 scanf("%d",&n); 
 
 printf("Enter the elements\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 
 low = 0; 
 high = n-1; 
 
 quick_sort(a,low,high); 
 
 printf("The sorted list is \n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 
 getch(); 
} 
 
NOTE: The bubble sort and quick sort techniques are usually called as exchange sort 
techniques. Because, both of these involves the procedure of exchanging the elements in 
some or the other situation. 
 
 
Merge Sort 
 
The procedure for merge sort contains two main parts viz. divide and merge. 
Divide: The original array is divided into two equal parts. Then each sub-array is divided 
into two equal parts. This method is continued till each sub array contains only one 
element. 
Merge: The first element of first sub-array is compared with first element of the second 
sub-array. The lesser among these is put into result-array. The remaining element is 
compared with the second element of the other array. The procedure is continued till both 
the arrays get exhausted.  
 
The divide and merge parts are done recursively on given array to get sorted list. 
 
 
Consider an array: 3, 0, -8, 5, 2, 15, 13, 6, -4 
 
 
 
 
 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

11

 
                             
 
 

 
 

 
 

 
 
Program: 
 
#include<stdio.h> 
#include<conio.h> 
 
void Merge(int b[10], int c[10],int a[20],int p, int q) 
{ 
 int i=0,j=0,k=0; 
 
 while(i<p && j<q) 

3,0,-8,5 2, 15, 13, 6, -4 

3,0 -8,5 
2, 15 13,6,-4 

3 0 -8 5 

0, 3 -8, 5 

2 15 13 6,-4 

2, 15 6 

-4,2,6,13,15 

3, 0,-8, 5, 2, 15, 13, 6,-4 

-8, 0, 3, 5 

-4 

-4, 6 

-4,6,13 

-8,-4, 0, 2, 3, 5, 6, 13, 15 

D
I
V
I
D
E 
 
P
A
R
T 

M
E
R
G
E 
 
P
A
R
T 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

12

 { 
  if(b[i]<c[j]) 
  { 
   a[k]=b[i]; 
   i++; 
  } 
  else 
  { 
   a[k]=c[j]; 
   j++; 
  } 
  k++; 
 } 
 while(i<p) 
 { 
  a[k]=b[i]; 
  i++; 
  k++; 
 } 
 while(j<q) 
 { 
  a[k]=c[j]; 
  j++; 
  k++; 
 } 
} 
 
void MergeSort(int a[20],int n) 
{ 
 int b[20],c[20],i,j,p,q; 
 
 if(n>1) 
 { 
  for(i=0;i<n/2;i++) 
   b[i]=a[i]; 
  p=i; 
 
  for(i=n/2,j=0;i<n;i++,j++) 
   c[j]=a[i]; 
  q=j; 
 
  MergeSort(b,p); 
  MergeSort(c,q); 
  Merge(b,c,a,p,q); 
 } 
 return; 
} 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

13

 
void main() 
{ 
 int a[20],n,i; 
 clrscr(); 
 printf("Enter the size of array:"); 
 scanf("%d",&n); 
 printf("\nEnter elements:\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 
 MergeSort(a,n); 
 
 printf("\nSorted list is:\n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 getch(); 
} 
 
NOTE: 
 When there are two sorted arrays, then also we can sort them using merge sort. 
This technique is called as merging the sorted array. The procedure is explained as below 
using an example – 
 
Sorted Array (i) :  4, 8, 11, 34, 45 
Sorted Array (ii) :  -4, 0, 7, 15, 35, 48, 56, 76 
 
Procedure: 
 

4 8 11 34 45 
 
 
 

-4 0 7 15 35 48 56 76 
  
 
Result: 
-4 0 4 7 8 11 15 34 35 45 48 56 76 
 
 
The program for implementing merge sort when two sorted arrays are given, is as below. 
 
 
Program: 
#include<stdio.h> 
#include<conio.h> 
 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

14

void MergeSort(int a[10], int b[10],int c[20],int m, int n) 
{ 
 int i=0,j=0,k=0; 
 
 while(i<m && j<n) 
 { 
  if(a[i]<b[j]) 
  { 
   c[k]=a[i]; 
   i++; 
   k++; 
  } 
  else 
  { 
   c[k]=b[j]; 
   j++; 
   k++; 
  } 
 } 
 while(i<m) 
 { 
  c[k]=a[i]; 
  i++; 
  k++; 
 } 
 while(j<n) 
 { 
  c[k]=b[j]; 
  j++; 
  k++; 
 } 
} 
 
void main() 
{ 
 int a[10],b[10],c[20],m,n,i; 
 clrscr(); 
 printf("Enter the size of first array:"); 
 scanf("%d",&m); 
 printf("\nEnter first array(in sorted order):\n"); 
 for(i=0;i<m;i++) 
  scanf("%d",&a[i]); 
 printf("Enter the size of second array:"); 
 scanf("%d",&n); 
 printf("\nEnter second array(in sorted order):\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&b[i]); 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

15

 
 MergeSort(a,b,c,m,n); 
 
 printf("\nSorted list is:\n"); 
 for(i=0;i<m+n;i++) 
  printf("%d\t",c[i]); 
 getch(); 
} 
 
 
 
Insertion Sort 
 
This sorting technique involves inserting a particular element in proper position. In the first 

iteration, the second element is compared with the first. In second iteration, the third 

element is compared with second and then the first. Thus in every iteration, the element is 

compared with all the elements before it. If the element is found to be greater than any of 

its previous elements, then it is inserted at that position and all other elements are moved 

to one position towards right, to create the space for inserting element. The procedure is 

repeated till we get the sorted list. 

 
Consider an example 
25 12 30 8 7 43 32 
 
I iteration  
 
25 12 30 8 7 43 32    (12<25, so insert 12 at first position) 
 
12 25 30 8 7 43 32 
 
 II iteration  
 
12 25 30 8 7 43 32 (30>25, so don’t compare 30 with 12) 
 
 
12 25 30 8 7 43 32 
 
 
III iteration  
 
12 25 30 8 7 43 32 (8<30,25,12 so insert 8 at 1st position) 
 
 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

16

 
IV iteration  
 
8 12 25 30 7 43 32   (7<30,25,12,8. So insert 7 at 1st pos) 
 
 
V iteration  
 
7 8 12 25 30 43 32  (43>30. So, don’t compare 43 with other) 
 
 
VI iteration  
 
7 8 12 25 30 43 32  (32<43 but 32>30. So, insert in-between) 
 
 
 
Sorted list: 
 
7 8 12 25 30 32 43 
 
Program: 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
 int a[10],n,i,item,j; 
 clrscr(); 
 printf("Enter the size of the array:"); 
 scanf("%d",&n); 
 printf("\nEnter array elements:\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 
 for(i=1;i<n;i++) 
 { 
  item=a[i]; 
  for(j=i-1;j>=0 && item<a[j];j--) 
   a[j+1]=a[j]; 
  a[j+1]=item; 
 } 
 printf("\nSorted list is:\n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 getch(); 
} 
 



Additional Material for ADA (16MCA33) 

                                                Prepared By: Dr. Chetana Hegde, Assoc Prof, RNSIT, Bangalore 
  Ph.No.: 9448301894 

17

 


