
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

MODULE 1. INTRODUCTION: COMPUTER & OPERATING
SYSTEMS

1.1 BASIC ELEMENTS
A computer consists of processor, memory and I/O components with one or more modules
of each type. These components are interconnected to ease job of computer. Thus, there
are four structural elements:

 Processor: It controls the operation of the computer and performs its data
processing functions. When there is only one processor, it is called as Central
Processing Unit (CPU).

 Main Memory: It stores data and programs. But, the contents of memory are lost
when the computer shuts down. Whereas, the contents of disk memory are retained.

 I/O Modules: Move data between the computer and its external environment. The
external environment consists of a variety of devices including secondary memory
devices, communications equipment and terminals.

 System Bus: This provides communication among processors, main memory and
I/O modules.

Figure 1.1 Computer Components: Top Level View

The top-level components of computer are shown in Figure 1.1. One of the functionality of
a processor is to exchange data with memory. For this purpose, the following registers are
used:

0
1
2
3
4
....
....
....
....
....
....
...
....
....
....
....
....
...
....
….
n-2
n-1

CPU

PC MAR

I/OBR

I/OAR Executi
on Unit

MBR IR

I/O Module

 Buffers

….

…

Instruction
Instruction
Instruction

…

Data
Data
Data
Data

…

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

 Memory Address Register (MAR): specifies the address in memory for the next
read or write.

 Memory Buffer Register (MBR): contains data to be written into memory or it
receives the data read from memory.

 I/O Address Register (I/OAR): indicates particular I/O device
 I/O Buffer Register: used to exchange data between an I/O module and the

processor.

A memory module contains a set of locations – which are sequentially numbered
addresses. Each location contains a bit pattern that can be interpreted as an instruction or
data. An I/O module transfers data from external devices to processor and memory and
vice versa. It contains temporary buffers for holding data till they are sent.

1.2 PROCESSOR REGISTERS
A processor includes a set of registers that provide memory. But, this memory is faster and
smaller than the main memory. These registers can be segregated into two types based on
their functionalities as discussed in the following sections.

1.2.1 User – visible Registers
These registers enable the assembly language programmer to minimize the main memory
references by optimizing register use. Higher level languages have an optimizing compiler
which will make a choice between registers and main memory to store variables. Some
languages like C allow the programmers to decide which variable has to be stored in
register.

A user visible register is generally available to all programs. Types of registers that are
available are: data, address and condition code registers.

 Data Registers: They can be assigned to different types of functions by the

programmer. Sometimes, these are general purpose and can be used with any machine
instruction that performs operations on data. Still, there are some restrictions like – few
registers are used for floating-point operations and few are only for integers.

 Address Registers: These registers contain main memory addresses of data and
instructions. They may be of general purpose or may be used for a particular way of
addressing memory. Few examples are as given below:

o Index Registers: Indexed addressing is a common mode of addressing which
involves adding and index to a base value to get the effective address.

o Segment Pointer: In segmented addressing, a memory is divided into segments
(a variable-length block of words). In this mode of addressing, a register is used
to hold the base address of the segment.

o Stack Pointer: If there is a user-visible stack addressing, then there is a register
pointing to the top of the stack. This allows push and pop operations on
instructions stored in the stack.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

1.2.2 Control and Status Registers
The registers used by the processor to control its operation are called as Control and
Status registers. This registers are also used for controlling the execution of programs.
Most of such registers are not visible to the user. Along with MAR, MBR, I/OAR and I/OBR
discussed earlier, following registers are also needed for an instruction to execute:

 Program Counter: that contains the address of next instruction to be fetched.
 Instruction Register(IR): contains the instruction most recently fetched.

All processor designs also include a register or set of registers, known as program status
word (PSW). It contains condition codes and status information like interrupt
enable/disable bit and kernel/user mode bit.

Condition codes (also known as flags) are bits set by the processor hardware as the
result of operations. For example, an arithmetic operation may produce a positive,
negative, zero or overflow result. Condition code bits are collected into one or more
registers. And, they are the part of a control register. These bits only can be read to know
the feedback of the instruction execution, but they can’t be altered.

1.3 INSTRUCTION EXECUTION
A program to be executed contains a set of instructions stored in the memory. The
processor takes two steps for processing an instruction:

 Read(or fetch) instructions from the memory one at a time
 Execute each instruction

These two steps are referred as fetch stage and execute stage respectively. One
instruction requires both of these steps for its execution and such a processing is called as
instruction cycle as shown in Figure 1.2. The program halts its execution only if the
processor is turned off, some error occurs or there is an instruction in the program to
terminate.

Figure 1.2 Basic Instruction Cycle

1.3.1 Instruction Fetch and Execute
At the beginning of every instruction cycle, the processor fetches an instruction from the
memory. The program counter (PC) holds the address of next instruction to be fetched.
And, the PC will be incremented whenever the processor fetches the instruction. For
example, assume that the current value of PC is 300. When the processor fetches next
instruction, PC will be incremented to 301. However, this logic may change in case of
possible conditional statements of the program.

Later, the fetched instruction is loaded into the instruction register (IR). The instruction
contains bits, and these bits inform the processor about the action to be taken. The

Execute Stage Fetch Stage

START HALT
Fetch next
instruction

Execute
instruction

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

processor understands these bits and performs the required action. Generally, this entire
process of instruction execution is segregated into four categories as given below:

 Processor-memory: Data may be transferred from processor to memory and vice-
versa.

 Processor-I/O: Data may be transferred to/from a peripheral device by transferring
between the processor and I/O module.

 Data Processing: Processor may perform arithmetic/logical operations on data.
 Control: An instruction may specify that the sequence of execution be altered. For

example, the processor may fetch the instruction from the location 149, which
indicates the next address to be fetched should be 182. So, now the program
counter is set to 182, instead of 150.

With the help of example, we will discuss these points in details now. Consider the
processor with characteristics as shown in Figure 1.3.

Figure 1.3 Characteristics of a processor

The processor contains single data register called accumulator (AC). Both data and
instructions are 16 bit long. The instruction format allows 4 bits for the opcode. So, 16
different opcodes are possible (2^4=16). It will be a single hexadecimal digit. Remaining 12
bits are used for the address in the form of 3 hexadecimal digits. Consider the illustration of
program execution (just a portion) shown in Figure 1.4. The program segment is to add the
contents at the address 940 and the contents at the address 941 and then storing the result
in the address 941. This is something similar to a programming statement x = y+x.

For doing this job, three instruction cycles (3 fetch, 3 execute) are required as given below:

 Fetch: The PC contains the address of first instruction, that is 300. The instruction is
1940. Here, 1 indicates opcode and 940 is the memory address. The instruction
1940 is loaded into IR and PC is incremented to 301.

Instruction Format
 0 3 4 15

Opcode Address

CPU Registers:
Program Counter (PC) – Address of instruction
Instruction Register (IR) – Instruction being executed
Accumulator (AC) – Temporary storage

Partial list of opcodes:
 0001 – Load AC from memory
 0010 – Store AC to memory
 0101 – Add to AC from memory

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

 Execute: Since the opcode 1 (or 0001) is for loading the AC from memory, the
content of the address 940 is loaded into AC. Hence, now AC contains 0003.

 Fetch: Now, the next instruction (5941) is fetched from the location 301 and PC is
incremented to 302.

 Execute: The opcode 5 (0101) indicates adding AC from memory. So, the content of
the location 941 is added to the contents of AC. (0003 + 0002 =0005)

 Fetch: The next instruction (2941) from the address 302 is fetched and the PC is
incremented to 303.

Execute: The opcode 2 (0010) indicates storing AC to memory. Hence the value 0005 is
loaded into the memory address 941.

Figure 1.4 Example of program execution

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

1.3.2 I/O Function
Data can be exchanged directly between an I/O module and the processor. That is, the
processor can directly read/write data from/to I/O module, not necessarily from the
memory. Here, the processor identifies a specific device that is controlled by a particular
I/O module.

In some situations, it is better to allow I/O exchanges to occur directly with main memory to
relieve the processor from I/O task. In such cases, the processor should grant the authority
to I/O module to read/write to memory. Hence, processor is not tied up with I/O operations.
Now, I/O module will issue read/write commands directly to the memory. This operation is
known as direct memory access (DMA).

1.4 THE MEMORY HIERARCHY
The constraints on the design of computer’s memory depend on three key points viz.

 Capacity (how much is the size?)
 Access time (how fast it can be accessed?)
 Cost (how expensive it is?)

In general, the relationship between these three points will be as below –
 Faster access time, greater the cost per bit
 Greater capacity, smaller cost per bit
 Greater capacity, slower access speed

Thus, the designers of computer memory face the dilemma on these points. He/she has to
optimize and balance the constraints.

Figure 1.5 Memory Hierarchy

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

To solve this problem, memory hierarchy has to be used instead of relying on a single
memory component. A typical memory hierarchy would be as given in Figure 1.5. In this
hierarchy, from top to bottom, the following occur:

(i) Decreasing cost per bit
(ii) Increasing capacity
(iii) Increasing access time
(iv) Decreasing frequency of access to the memory by the processor

Hence, the smaller, expensive, faster memories are supplemented by larger, cheaper,
slower memories. The levels of memory hierarchy are explained hereunder.

 Registers: Generally every processor contains a few dozen or hundreds of registers
which are faster, smaller but expensive.

 Cache Memory: It is not usually visible to the programmer, but visible only to the
processor. It is used for the movement of data between main memory and processor
registers.

 Main Memory: It is the principal internal memory system of the computer. Each
location in the main memory has a unique address. Most of the machine instructions
refer to one or more main memory addresses. Main memory is usually extended
with a higher speed, smaller cache.

 Secondary/Auxiliary Memory: The next two levels of the hierarchy falls into this
category. The data are stored permanently on external storage devices like hard
disk, removable devices like CD, DVD, tape etc. Programmer can see such data in
the form of folders and files.

1.5 CACHE MEMORY
Since cache memory plays very important role in the performance of the processor and
managing the memory hardware, it is being discussed in detail here.

1.5.1 Motivation
On every instruction cycle, the processor fetches the memory at least once. If the
instruction contains operands or it needs to store some data, then every fetch may need to
access memory more than once. Thus, the processor speed is always restricted by the
memory cycle time. And, in almost all computers, the processor speed is much higher than
that of memory cycle speed. Hence, an intermediate repository of instructions is thought of
to keep a portion of memory that needs to be executed by the processor. Such a small and
fast memory between the processor and main memory is called as cache.

1.5.2 Cache Principles
The working of cache memory is depicted in Figure 1.6. The cache size will be
considerably smaller than then main memory. It contains a copy of some portion of main
memory. When the processor tries to read a byte/word from the memory, the cache is
checked first. If that byte is available in the cache, it is delivered to the processor. If not, a
block of main memory containing that byte will be stored into the cache and then it is
delivered to the processor. Figure 1.7 shows the process of read operation using cache.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

Figure 1.6 Cache and Main Memory

Figure 1.7 Read operation using cache

1.5.3 Cache Design
The design of a cache memory has to consider following aspects:

 Cache size: Small size caches have significant impact on the performance of the
processor.

 Block size: It indicates the amount of data exchanged between cache and main
memory. Optimum selection of this size is essential. Because, if the block size is too
small, then it cannot hold many instructions and hence the main memory has to be

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

hit more number of times. Whereas, if the block size is too large, then it becomes
almost like a main memory and the very usage of cache will be void.

 Mapping function: This function determines the location in the cache to be
occupied by the block. It has two constraints: (i) while one block is read, another
may need to be replaced. (ii) As mapping function becomes more flexible, the design
circuitry becomes complex.

 Replacement algorithm: This algorithm decides which block has to be replaced
when a new block is loaded into the cache. And the design of this algorithm should
work within the constraints of mapping function. In most of the cases, least-recently-
used (LRU) method is applied.

 Write policy: If the contents of the block in the cache are modified, the same has to
be written inside the main memory. The write policy indicates when the memory
write operation has to take place.

1.6 I/O COMMUNICATION TECHNIQUES
I/O operations are possible using following three techniques:

 Programmed I/O
 Interrupt-driven I/O
 Direct Memory Access (DMA)

Each of these techniques is explained here and the diagrammatic representation is given in
Figure 1.8.

Figure 1.8 Techniques of I/O communication

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

1.6.1 Programmed I/O
When the processor is executing a program and encounters an I/O instruction, then it will
inform I/O module and executes that instruction. In case of programmed I/O, the I/O
module performs the task but do not interrupt the processor about the completion of the
task. Hence, the processor must periodically keep checking the I/O module for the
completion of the task.

Thus, the processor is responsible for extracting/storing data from/to the main memory. So,
the instruction set includes the I/O instructions in the following categories:

 Control: activates an external device and informs the action to be taken.
 Status: used to test various status conditions associated with I/O module.
 Transfer: to read/write data between processor registers and external devices.

Note that, the technique of programmed I/O is time-consuming and keeps the processor
busy unnecessarily.

1.6.2 Interrupt-Driven I/O
(NOTE: Concepts of Interrupts is out-of-syllabus. But for the knowledge purpose, the
notes for interrupts is given at the end of this module.)
As it is observed, the programmed I/O technique will degrade the performance of the
processor. An alternative way is to provide interrupt-driven I/O. In this technique, the
processor will issue an I/O command to the I/O module and then continue its regular
instruction execution. When the I/O module is ready, it will interrupt the processor. Then the
processor will execute the requested task and then resume its former processing.

1.6.3 Direct Memory Access
Though interrupt-driven I/O is efficient than the programmed I/O, it requires active
participation of the processor for transferring data between memory and I/O module.
Hence, both of these techniques have following drawbacks:

 I/O transfer rate is limited
 Processor is tied up in managing I/O transfer

To avoid these problems, direct memory access (DMA) is proposed. It can be put as a
separate module on the system bus or as a part of I/O module. In this technique, when the
processor has read/write data, it issues a command to DMA by sending following
information:

 Whether a read or write is requested
 Address of the I/O device involved
 Starting location in memory to read/write data
 Number of words to be read/written

Then, the processor continues its work. Now the job has been delegated to DMA module.
The DMA module will transfer the entire data from the memory and then interrupts the
processor. Thus, the processor is involved only at the beginning and ending of the data
transfer.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

1.7 INTRODUCTION TO OPERATING SYSTEM
An operating system is a program that manages the computer hardware. It also provides a
basis for application programs and acts as an intermediary between a user of a computer
and the computer hardware.

The design of OS is depending on the purpose for which it is being used. For example,

 Mainframe OS are designed to optimize the utilization of hardware
 Personal computer OS are designed to support complex games, business

applications etc.
 Handheld computer (like mobiles, tablets etc) OS provides user-friendly interface

and environment to execute programs/applications.
Hence, few OS may be convenient, few may be efficient and some may be combination of
both.

Figure 1.9 Abstract view of components of a computer system

A computer system can be divided into four components as shown in Figure 1.9. They are:

 Hardware : Consists of central processing unit (CPU), memory and I/O devices and
provides the basic computing resources

 Operating system: Controls and coordinates the use of hardware among various
application software for different users.

 Application programs: defines the ways in which the computing resources are
used to solve the problems of users. For example, word processors, spreadsheets,
compilers, browsers etc.

 Users: users of the computer.
Thus, we can say that OS is like a government. It does not perform any useful function by
itself, but provides environment within which other programs can do useful works.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

OS can be explored from two viewpoints and are explained below:

 User View
 System View

1.7.1 User View
The user's view of the computer varies according to the interface being used. The design
on OS varies depending on type of the user or work to be carried out as explained below:

 User of PC: OS for personal computers is aimed at maximizing the work that the
user is performing. Hence, the OS design is mostly for the ease of use rather than
the performance. And, resource utilization is not taken into consideration.

 User of Mainframes: Some users make use of terminals connected to a mainframe
or minicomputer. There will be other people accessing the same computer through
other terminals. These users share the resources and information. Hence, the OS on
such systems is designed to maximize the resource utilization. Thus, efficient
sharing of CPU time, memory and I/O are assured for every user.

 User of Workstations: Sometimes, computers are connected to networks of
workstations and servers. The user working on such workstations may have their
own resources and they may also share the resources with other servers. Hence,
OS for such situation is designed to optimize between individual usability and
resource utilization.

 User of Handheld Computers: Handheld devices like mobiles, tablets are common
nowadays. Because of power, speed and interface limitations, they may perform
relatively less operations. So, their OS are designed for individual usability by
keeping battery life in mind.

Some computers have little or no user view. For example, embedded computers in home
devices and automobiles may have numeric keypads and may turn indicator lights on or off
to show status, but they and their operating systems are designed primarily to run without
user intervention.

1.7.2 System View
From the computer's point of view, the OS is the program closely involved with the
hardware. In this context, we can view an OS as a resource allocator. A computer system
has many resources that may be required to solve a problem: CPU time, memory space,
file-storage space, I/O devices, and so on. The OS acts as the manager of these resources
by allocating the resources to the programs and users efficiently.

Another view of OS focuses on controlling various I/O devices and user programs. As a
control program, OS manages the execution of user programs to prevent errors and
improper use of computer.

The aim of any computer system is to execute user programs to solve user’s problems. As
computer hardware alone is not easy to use, application programs/softwares have been
created for solving the problems. Such programs require certain common operations like

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

controlling I/O devices etc. The common functions of controlling and allocating resources
are brought together into one piece of software known as Operating System.

The widely accepted definition of OS goes like this: OS is the program running all times
on the computer (also called as kernel), with all other programs being treated as
application programs.

1.7.3 System Goals
It is easier to define an operating system by what it does than by what it is. The primary
goal of some operating system is convenience for the user. Operating systems exist
because they are supposed to make it easier to compute with them than without them. This
view is particularly clear when you look at operating systems for small PCs.

The primary goal of other operating systems is efficient operation of the computer system.
This is the case for large, shared, multi-user systems. These systems are expensive, so it
is desirable to make them as efficient as possible.

These two goals - convenience and efficiency-are sometimes contradictory. In the past,
efficiency was often more important than convenience. Thus, much of operating-system
theory concentrates on optimal use of computing resources. Operating systems have also
evolved over time. For example, UNIX started with a keyboard and printer as its interface,
limiting how convenient it could be for the user. Over time, hardware changed, and UNIX
was ported to new hardware with more user-friendly interfaces. Many graphic user
interfaces (GUIs) were added, allowing UNIX to be more convenient for users while still
concentrating on efficiency.

The designers of OS face many tradeoffs related to efficiency and convenience. Lot of
continuous revision and updation is necessary. Still, the success of OS depends on its
users. In past 50 years, OS evolved into different phases. And, OS and computer
architecture have influenced each other. To facilitate the use of the hardware, researchers
developed operating systems. Users of the operating systems then proposed changes in
hardware design to simplify them.

1.8 MAINFRAME SYSTEMS
Mainframe computer systems were the first computers used to tackle many commercial
and scientific applications. In this section, we trace the growth of mainframe systems.

1.8.1 Batch Systems
Early computers were huge machines and were run from a console. The common input
devices were card readers and tape drives. The common output devices were line printers,
tape drives, and card punches. The user did not interact directly with the computer
systems. Rather, the user prepared a job and submitted it to the computer operator.
Normally, a job would consist of the program, the data, and some control information about
the nature of the job (control cards). The job was usually in the form of punch cards (a
sample punch card is shown in Figure 1.10). After some time (may be minutes, hours, or

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

days), the output appeared. The output consisted of the result of the program, as well as a
dump of the final memory and register contents for debugging.

Figure 1.10 A sample puchcard reader

The operating system in these early computers was fairly simple. Its major task was to
transfer control automatically from one job to the next. The operating system was always
resident in memory as shown in Figure 1.11.

Figure 1.11 Memory layout for simple batch system

The operators batched the jobs with similar needs together and ran them through the
computer as a group. Later, the output from each job would be sent back to respective
programmer. This would speed up the processing.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

In this execution environment, the CPU is often idle, because the speed of I/O devices is
much slower than process. Over time, improvements in technology and the introduction of
disks resulted in faster I/O devices. However, CPU speeds increased to an even greater
extent, so the problem was not only unresolved, but became worse. The introduction of
disk technology allowed the operating system to keep all jobs on a disk, rather than in a
serial card reader. With direct access to several jobs, the operating system could perform
job scheduling, to use resources and perform tasks efficiently. Job scheduling is discussed
later in detail.

1.8.2 Multiprogrammed Systems
The most important aspect of job scheduling is the ability to multiprogram. A single user
cannot keep either the CPU or the I/O devices busy at all times. Multiprogramming
increases CPU utilization by organizing jobs so that the CPU always has one job to
execute.

In multiprogrammed systems, the OS keeps several jobs in memory simultaneously as
shown in Figure 1.12. The OS picks and begins to execute one of the jobs in the memory.
Eventually, the job may have to wait for some task, such as an I/O operation, to complete.
In a non-multiprogrammed system, the CPU would sit idle. In a multiprogramming system,
the OS simply switches to, and executes, another job. When that job needs to wait, the
CPU is switched to another job, and so on. Eventually, the first job finishes waiting and gets
the CPU back. As long as at least one job needs to execute, the CPU is never idle.

Figure 1.12 Memory layout for multiprogramming system

Multiprogramming creates the situation for OS to make certain decisions:

 There will be many jobs residing on the disk waiting for allocation of main memory
for processing. The OS has to take decision of choosing one job among them (This
is job scheduling).

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

 When the OS selects a job from the job pool, it loads that job into memory for
execution. Having several programs in memory at the same time requires some form
of memory management.

 In addition, if several jobs are ready to run at the same time, the system must
choose among them. Making this decision is CPU scheduling.

 Finally, multiple jobs running concurrently require that their ability to affect one
another be limited in all phases of the operating system, including process
scheduling, disk storage, and memory management. OS has to consider all these
aspects.

1.8.3 Time-sharing Systems
Multiprogrammed, batched systems provided effective use of resources, but did not provide
for user interaction with the computer system. Time sharing (or multitasking) is a logical
extension of multiprogramming. Here, the CPU executes multiple jobs by switching among
them, but the switches occur so frequently that the users can interact with each program
while it is running. The user gives instructions to the operating system or to a program
directly, using a keyboard or a mouse, and waits for immediate results. The response time
should be short, typically within 1 second.

A time-shared OS allows many users to share the computer simultaneously. As the system
switches rapidly from one user to the other, every user feels that the entire computer is
dedicated to him/her.

A time-shared OS makes use of CPU scheduling and multiprogramming to provide a small
portion of a time-shared computer to every user. Each user has at least one separate
program in memory. A program loaded into memory and executing is commonly
referred to as a process. A process normally executes only for a short time and waits to
perform I/O. As I/O is depending on the speed of the user, which is very low compared to
that of a system, the user gets enough time. Meanwhile, the OS takes up another process
to execute.

In both time-sharing and multiprogrammed OS, several jobs must be kept simultaneously in
memory. Hence, the OS should have memory management and protection. To obtain a
reasonable response time, jobs may have to be swapped in and out of main memory to the
disk. This is achieved by virtual memory, which is a technique that allows the execution of a
job that may not be completely in memory. The main advantage of the virtual-memory
scheme is that programs can be larger than physical memory. Further, it abstracts main
memory into a large, uniform array of storage, separating logical memory as viewed by the
user from physical memory. This arrangement frees programmers from concern over
memory-storage limitations.

Time-sharing systems must also provide a file system. As the file system resides on a
collection of disks, the disk management must be provided by OS. Also, time-sharing
systems provide a mechanism for concurrent execution, which requires sophisticated CPU-
scheduling schemes. To ensure orderly execution, the system must provide mechanisms

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

for job synchronization and communication and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another.

1.9 DESKTOP SYSTEMS
Personal computers appeared in the 1970s. During their first decade, the CPUs in PCs
lacked the features needed to protect an OS from user programs. Therefore, OS in PC
were neither multiuser nor multitasking. However, the goals of these OS have changed with
time. Instead of maximizing CPU and peripheral utilization, the systems opt for maximizing
user convenience and responsiveness; for example, Microsoft Windows and Apple
Macintosh. The MS-DOS from Microsoft has been superseded by multiple flavors of
Microsoft Windows, and IBM has upgraded MS-DOS to the OS/2 multitasking system. The
Apple Macintosh operating system has been ported to more advanced hardware, and now
includes new features, such as virtual memory and multitasking. With the release of
MacOS X, the core of OS is now based on Mach and FreeBSD UNIX for scalability,
performance, and features, but it retains the same rich GUI. Linux, a UNIX-like operating
system available for PCs, has also become popular recently.

OS for these computers have benefited in several ways from the development of OS for
mainframes. Microcomputers were immediately able to adopt some of the technology
developed for larger OS. On the other hand, the hardware costs for microcomputers are
becoming less that an individual user can bear, and CPU utilization is no longer a prime
concern. Thus, some of the design decisions made in OS for mainframes may not be
appropriate for smaller systems.

Other design decisions still apply. For example, initially file protection was not necessary on
a personal machine. However, these computers are now often tied into other computers
over LAN or other Internet connections. When other computers and other users can access
the files on a PC, file protection again becomes a necessary feature of the OS. The lack of
such protection has made it easy for malicious programs to destroy data on systems such
as MS-DOS and Macintosh. These programs may be self-replicating, and may spread
rapidly via worm or virus mechanisms and disrupt entire companies or even worldwide
networks. Advanced timesharing features such as protected memory and file permissions
are not enough, on their own, to safeguard a system from attack. But, recent
advancements in technology are safeguarding a system up to some extent.

1.10 MULTIPROCESSOR SYSTEMS
Nowadays, many systems are single-processor systems having only one main CPU.
However, multiprocessor systems (also known as parallel systems or tightly coupled
systems) are growing in importance. Such systems have more than one processor in close
communication, sharing the computer bus, the clock, and sometimes memory and
peripheral devices.

Multiprocessor systems have three main advantages:

 Increased throughput: By increasing the number of processors, we hope to get
more work done in less time. The speed-up ratio with N processors is not N; rather,
it is less than N. When multiple processors cooperate on a task, a certain amount of

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

overhead is incurred in keeping all the parts working correctly. This overhead, plus
conflict for shared resources, lowers the expected gain from additional processors.
Similarly, a group of N programmers working closely together does not result in N
times the amount of work being accomplished.

 Economy of scale: Multiprocessor systems can save more money than multiple
single-processor systems, because they can share peripherals, mass storage, and
power supplies. If several programs operate on the same set of data, it is cheaper to
store those data on one disk and to have all the processors share them, than to
have many computers with local disks and many copies of the data.

 Increased reliability: If functions can be distributed properly among several
processors, then the failure of one processor will not halt the system, only slows
down. If we have ten processors and one fails, then each of the remaining nine
processors must take a share of the work of the failed processor. Thus, the entire
system runs only 10 percent slower, rather than failing altogether. This ability to
continue providing service proportional to the level of surviving hardware is called
graceful degradation. Systems designed for graceful degradation are also called
fault tolerant.

Continued operation in the presence of failures requires a mechanism to allow the failure to
be detected, diagnosed, and, if possible, corrected. The Tandem system uses both
hardware and software duplication to ensure continued operation despite faults. The
system consists of two identical processors, each with its own local memory. The
processors are connected by a bus. One processor is the primary and the other is the
backup. Two copies are kept of each process: one on the primary processor and the other
on the backup. At fixed checkpoints in the execution of the system, the state information of
each job including a copy of the memory image-is copied from the primary machine to the
backup. If a failure is detected, the backup copy is activated and is restarted from the most
recent checkpoint. This solution is expensive, since it involves considerable hardware
duplication.

The most common multiple-processor systems now use symmetric multiprocessing (SMP),
in which each processor runs an identical copy of the OS, and these copies communicate
with one another as needed. Some systems use asymmetric multiprocessing, in which
each processor is assigned a specific task. A master processor controls the system; the
other processors either look to the master for instruction or have predefined tasks. This
scheme defines a master-slave relationship. The master processor schedules and allocates
work to the slave processors. SMP means that all processors are peers; no master-slave
relationship exists between processors. Each processor concurrently runs a copy of the
operating system.

A typical SMP architecture is shown in Figure 1.13. An example of the SMP system is
Encore's version of UNIX for the Multimax computer. This computer can be configured such
that it employs dozens of processors, all running copies of UNIX. The benefit of this model
is that many processes can run simultaneously-N processes can run if there are N CPUs-
without causing a significant deterioration of performance. However, we must carefully
control I/O to ensure that the data reach the appropriate processor. Also, since the CPUs

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

are separate, one may be sitting idle while another is overloaded, resulting in inefficiencies.
These inefficiencies can be avoided if the processors share certain data structures. A
multiprocessor system of this form will allow processes and resources to be shared
dynamically among the various processors. Almost all modern OS including Windows NT,
Solaris, Digital UNIX, OS/2, and Linux will support SMP.

Figure 1.13 Symmetric multiprocessing architecture

The difference between symmetric and asymmetric multiprocessing may be the result of
either hardware or software. Special hardware can differentiate the multiple processors, or
the software can be written to allow only one master and multiple slaves. For instance,
Sun's operating system SunOS Version 4 provides asymmetric multiprocessing, whereas
Version 5 (Solaris 2) is symmetric on the same hardware.

As microprocessors become less expensive and more powerful, additional OS functions
are off-loaded to slave processors (or back-ends). For example, it is fairly easy to add a
microprocessor with its own memory to manage a disk system. The microprocessor could
receive a sequence of requests from the main CPU and implement its own disk queue and
scheduling algorithm. Thus, the main CPU is relieved from overhead of disk scheduling.

1.11 DISTRIBUTED SYSTEMS
Distributed systems depend on networking for their functionality. A network is a
communication path between two or more systems. By being able to communicate,
distributed systems are able to share computational tasks, and provide a rich set of
features to users.

Networks vary by the protocols used, the distances between nodes, and the transport
media. TCP/IP is the most common network protocol. Similarly, OS support of protocols
varies. Most OS support TCP/IP, including Windows and UNIX. Some systems support
proprietary protocols to suit their needs. To an OS, a network protocol needs an interface
device (for example, a network adapter) with a device driver to manage it, and software for
sending/receiving packet data.

Networks are typecast based on the distances between their nodes; for example, LAN,
WAN, MAN etc. The media to carry networks are equally varied. They include copper
wires, fiber strands, and wireless transmissions between satellites, microwave dishes and
radios. When computing devices are connected to cellular phones, they create a network.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

Even very short-range infrared communication can be used for networking. These networks
also vary by their performance and reliability.

1.11.1 Client-Server Systems
As PCs have become faster, more powerful, and cheaper, designers have shifted away
from the centralized system architecture. Terminals connected to centralized systems are
now being replaced by PCs. Similarly, user-interface functionality that was handled directly
by the centralized systems is now being handled by the PCs. As a result, centralized
systems today act as server systems to satisfy requests generated by client systems. The
general structure of a client-server system is shown in Figure 1.14. Server systems can be
broadly categorized as follows:

 Compute-server systems provide an interface to which clients can send requests
to perform an action, in response to which they execute the action and send back
results to the client.

 File-server systems provide a file-system interface where clients can create,
update, read, and delete files.

Figure 1.14 General structure of client-server system

1.11.2 Peer-to-peer Systems
The growth of computer networks like the Internet and World Wide Web (WWW) has major
influence on the recent development of OS. When PCs were introduced in the 1970s, they
were designed for personal use. With the beginning of internet for electronic mail, ftp, and
gopher, many PCs became connected to computer networks in 1980s. With the
introduction of the Web in the mid 1990s, network connectivity became an essential
component of a computer system.

Virtually all modern PCs and workstations are capable of running a web browser. OS like
Windows, OS/2, MacOS, UNIX etc also include the system software (such as TCP/IP and
PPP) that enables a computer to access the Internet via a LAN or telephone connection.

In contrast to the tightly coupled systems discussed earlier, the computer networks used in
these applications consist of a collection of processors that do not share memory or a
clock. Instead, each processor has its own local memory. The processors communicate
with one another through various communication lines, such as high-speed buses or

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

telephone lines. These systems are usually referred to as loosely coupled systems (or
distributed systems).

A network OS is an OS that provides features such as file sharing across the network, and
that includes a communication scheme that allows different processes on different
computers to exchange messages. A computer running a network OS acts autonomously
from all other computers on the network, although it is aware of the network and is able to
communicate with other networked computers. A distributed OS is a less autonomous
environment. Here, the different OS communicate closely enough to provide the illusion
that only a single operating system controls the network.

1.12 CLUSTERED SYSTEMS
In clustered systems, multiple CPUs are gathered together to perform computational work.
Clustered systems are composed of two or more individual systems coupled together. The
clustered computers share storage and are closely linked via LAN networking.

Clustering is usually performed to provide high availability. A layer of cluster software runs
on the cluster nodes. Each node can monitor one or more of the others (over the LAN). If
the monitored machine fails, the monitoring machine can take ownership of its storage, and
restart the application(s) that were running on the failed machine. The failed machine can
remain down, but the users and clients of the application would only see a brief interruption
of service.

In asymmetric clustering, one machine is in hot standby mode while the other is running the
applications. The hot standby host (machine) just monitors the active server. If that server
fails, the hot standby host becomes the active server. In symmetric mode, two or more
hosts are running applications, and they are monitoring each other. This mode is obviously
more efficient, as it uses all of the available hardware.

Other forms of clusters include parallel clusters and clustering over a WAN. Parallel
clusters allow multiple hosts to access the same data on the shared storage. Since most
OS lack support for this simultaneous data access by multiple hosts, parallel clusters are
usually accomplished by special versions of software and special releases of applications.
For example, Oracle Parallel Server is a version of Oracle's database that has been
designed to run on parallel clusters. Each machine runs Oracle, and a layer of software
tracks access to the shared disk. Each machine has full access to all data in the database.

Most systems do not offer general-purpose distributed file systems. Therefore, many
clusters do not allow shared access to data on the disk. For this, distributed file systems
must provide access control and locking to the files to ensure no conflicting operations
occur. This type of service is commonly known as a distributed lock manager (DLM).

Cluster technology is rapidly changing. Cluster directions include global clusters, in which
the machines could be anywhere in the. Such projects are still the subject of research and
development. Clustered system use and features should expand greatly as storage-area
networks (SANS) become prevalent. SANs allow easy attachment of multiple hosts to

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

multiple storage units. Current clusters are usually limited to two or four hosts due to the
complexity of connecting the hosts to shared storage.

1.13 REAL-TIME SYSTEMS
A real-time system is used when there is a time requirements on the operation of a
processor or the flow of data. Thus, it is used as a control device in a dedicated application.
Sensors bring data to the computer. The computer must analyze the data and possibly
adjust controls to modify the sensor inputs. Systems that control scientific experiments,
medical imaging systems, industrial control systems, and certain display systems are real-
time systems. Some automobile-engine fuel-injection systems, home-appliance controllers,
and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing must be done within
the defined constraints, or the system will fail. For instance, a robot arm must be instructed
to halt before it reaches a wall. A real-time system functions correctly only if it returns the
correct result within its time constraints. So in real-time system, a quick response is
expected; whereas in batch system time constraints are not at all there.

Real-time systems may be hard or soft. A hard real-time system guarantees that critical
tasks be completed on time. That is, various tasks like retrieval of stored data, process by
OS etc are bounded by time. Secondary storage is usually limited with data being stored in
read-only memory (ROM). ROM is located on nonvolatile storage devices that retain their
contents even in the case of electric outage; most other types of memory are volatile. Most
advanced OS features are absent too, since they tend to separate the user from the
hardware. And this result in uncertainty about the amount of time an operation will take. For
example, virtual memory is almost never found on real-time systems. Therefore, hard real-
time systems conflict with the operation of time-sharing systems, and the two cannot be
mixed. None of the existing general-purpose OS support hard real-time functionality.

A soft real-time system is less restrictive, where a critical real-time task gets priority over
other tasks, and retains that priority until it completes. Here also, the OS kernel delays
need to be bounded: A real-time task cannot be kept waiting indefinitely for the kernel to
run it. Soft real time is an achievable goal that can be mixed with other types of systems.
But, soft real-time systems have limited utility than hard real-time systems. Given their lack
of deadline support, they are risky to use for industrial control and robotics. They are useful
in areas like multimedia, virtual reality, and advanced scientific projects-such as undersea
exploration and planetary rovers. These systems need advanced OS features that cannot
be supported by hard real-time systems. Because of the expanded uses for soft real-time
functionality, it is finding its way into most current operating systems, including major
versions of UNIX.

1.14 HANDHELD SYSTEMS
Handheld systems include personal digital assistants (PDAs), cell phones, tablets
with/without internet connection. Developers of handheld systems and applications face
many challenges, most of which are due to the limited size of such devices. Due to limited

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

size, most handheld devices have a small amount of memory, slow processors, and small
display screens. The handheld devices have following limitations:

 Limited Memory: Many handheld devices have between 512 KB and 2 GB of
memory. As a result, the operating system and applications must manage memory
efficiently. This includes returning all allocated memory back to the memory
manager once the memory is no longer being used. Virtual memory allows
developers to write programs that behave as if the system has more memory than
actual availability. Currently, many handheld devices do not use virtual memory
techniques, thus forcing program developers to work within the limited physical
memory.

 Less Speed: Processors for most handheld devices run at a fraction of the speed of
a processor in a PC. Faster processors require more power. To include a faster
processor in a handheld device would require a larger battery that would have to be
replaced (or recharged) more frequently. To minimize the size of most handheld
devices, smaller, slower processors which consume less power are typically used.
Therefore, the OS and applications must be designed accordingly.

 Small Display: Handheld devices have a display of about 3-5 inches, whereas, PCs
will be having display of about 14 – 40 inches. Familiar tasks, such as reading e-mail
or browsing web pages, must be condensed onto smaller displays. One approach
for displaying the content in web pages is web clipping, where only a small subset of
a web page is delivered and displayed on the handheld device.

1.15 FEATURE MIGRATION
Overall examination of OS for mainframes and microcomputers shows that features once
available only on mainframes have been adopted by microcomputers. The same concepts
are appropriate for the various classes of computers: mainframes, minicomputers,
microcomputers, and handhelds. Figure 1.15 shows the migration of OS features.
However, to start understanding modern OS, you need to realize the theme of feature
migration and to recognize the long history of many OS features.

A good example of this movement occurred with the MULTIplexed Information and
Computing Services (MULTICS) operating system. MULTICS was developed from 1965 to
1970 at the Massachusetts Institute of Technology (MIT) as a computing utility. It ran on a
large, complex mainframe computer (the GE 645). Many of the ideas that were developed
for MULTICS were subsequently used at Bell Laboratories (one of the original partners in
the development of MULTICS) in the design of UNIX. The UNIX operating system was
designed circa 1970 for a PDP-11 minicomputer. Around 1980, the features of UNIX
became the basis for UNIX-like operating systems on microcomputer systems, and they
are being included in more recent operating systems such as Microsoft Windows NT, IBM
0S/2, and the Macintosh operating system. Thus, the features developed for a large
mainframe system have moved to microcomputers over time.

At the same time as features of large operating systems were being scaled down to fit PCs,
more powerful, faster, and more sophisticated hardware systems were being developed.
The personal workstation is a large PC-for example, the Sun SPARCstation, the HP/Apollo,

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

the IBM RS/6000, and the Intel Pentium class system running Windows NT or a UNIX
derivative. Many universities and businesses have large numbers of workstations tied
together with local-area networks. As PCs gain more sophisticated hardware and software,
the line dividing the two categories-mainframes and microcomputers-is blurring.

Figure 1.15 Migration of OS concepts and features

1.16 COMPUTING ENVIRONMENTS
Here, we will discuss how multiprogrammed, time-shared, handheld computers are used in
variety of computing environment settings.

1.16.1 Traditional Computing
As the time passes by, the computing environment is getting matured. Just a few years
ago, a typical office environment consisted of PCs connected to a network, with servers
providing file and print service. Remote access was not so easy, and portability was
achieved by carrying laptops. Terminals attached to mainframes were common at many
companies as well, with even fewer remote access and portability options.

The current trend is toward more ways to access these environments. Web technologies
are stretching the boundaries of traditional computing. Companies implement portals which

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

provide web accessibility to their internal servers. Network computers are essentially
terminals that understand web-based computing. Handheld computers can synchronize
with PCs to allow very portable use of company information. They can also connect to
wireless networks to use the company's web portal.

At home, most users had a single computer with a slow modem connection to the office
and Internet. Network connections with good speed are now available for lower cost. Those
fast data connections are allowing home computers to serve up web pages and to contain
their own networks with printers, client PCs, and servers. Some homes even have firewalls
to protect these home environments from security breaches.

1.16.2 Web-based Computing
The Web has become ubiquitous, leading to more access by a wider variety of devices
than was imagined few years ago. PCs are still the most common access devices, with
workstations (high-end graphics-oriented PCs), handheld PDAs, and even cell phones also
providing access.

Web computing has increased the emphasis on networking. Now, devices have
wired/wireless networks with faster connectivity. The implementation of web-based
computing has given rise to new categories of devices, such as load balancers which
distribute network connections among a pool of similar servers. Operating systems like
Windows 95, which acted as web clients, have evolved into Windows ME and Windows
2000, which can act as web servers as well as clients. Generally, the Web has increased
the complexity of devices as their users require them to be web-enabled.

1.16.3 Embedded Computing
Embedded computers are the most common form of computers in existence. They run
embedded real-time OS. These devices are found everywhere, from car engines and
manufacturing robots to VCRs and microwave ovens. They tend to have very specific
tasks. The systems they run on are usually primitive, lacking advanced features, such as
virtual memory, and even disks. Thus, the OS provide limited features. They usually have
little or no user interface, preferring to spend their time monitoring and managing hardware
devices, such as automobile engines and robotic arms.

As an example, consider firewalls and load balancers. Some are general-purpose
computers, running standard OS like UNIX-with special-purpose applications loaded to
implement the functionality. Others are hardware devices with a special-purpose OS
embedded within, providing just the functionality desired.

The use of embedded systems will increase over the time. Their need as a standalone
device or as a member of network/web is increasing. Entire houses can be computerized,
so that a central computer-either a general-purpose computer or an embedded system-can
control heating and lighting, alarm systems, and even coffee makers. Web access can let a
home-owner tell the house to heat up before he arrives home. Someday, the refrigerator
may call the grocery store when it notices the milk is gone.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

26

1.17 INTRODUCTION TO SYSTEM STRUCTURES
An OS provides the environment within which the programs are executed. OS varies in
their design. Before designing OS, the goals of the OS must be decided. The type of
system desired is the basis for choices among various algorithms and strategies.

An OS can be viewed from different angles:

 By examining the services provided by it.
 By looking at the interface that it makes available to users and programmers.
 By disassembling the system into its components and their interconnections.

Here, we will discuss all these aspects of OS, showing the viewpoints of users,
programmers, and OS designers. We consider what services an OS provides, how they are
provided, and what the various methodologies are for designing such systems.

1.18 SYSTEM COMPONENTS
A large and complex OS can be created by designing small pieces. Each piece should be a
well defined portion of the system, with carefully defined inputs, outputs, and functions.
Obviously, not all systems have the same structure. However, many modern systems share
the goal of supporting the system components as discussed in the following sections.

1.18.1 Process Management
In simple terms, a process can be thought of as a job or time-shared program in execution.
A notepad being run, a system task sending output to the printer, a compiler running a
program etc. are examples of a process.

A process requires some resources like CPU time, memory, files, I/O devices etc to
accomplish its task. These resources are either given to the process when it is created, or
allocated to it while it is running. Along with these physical and logical resources, various
inputs may be passed when a process is running. For example, consider a process whose
function is to display the status of a file on the screen of a terminal. At the beginning, name
of the file can be given as an input to the process. It will then execute the appropriate
instructions and system calls to obtain and display the information on the terminal. When
the process terminates, the OS will claim back the resources.

Program is a passive entity and a process is an active entity. So, a simple program is not a
process; whereas a program with a program counter specifying the next instruction to
execute is a process. The execution of a process must be sequential and only one
instruction is executed at a time. Thus two processes associated with the same program
are not treated as two separate execution sequences. A program may generate many
processes. A system consists of a collection of processes:

 operating-system processes – those that execute system code
 user processes – those that execute user code

All these processes can potentially execute concurrently, by multiplexing the CPU among
them.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

27

The operating system is responsible for the following activities of with process
management:

 Creating and deleting both user and system processes
 Suspending and resuming processes
 Providing mechanisms for process synchronization
 Providing mechanisms for process communication
 Providing mechanisms for deadlock handling

Process management techniques are discussed later.

1.18.2 Main-memory Management
The main memory is central to the operation of a modern computer system. Main memory
is a large array of words or bytes. Each word or byte has its own address. Main memory is
a repository of quickly accessible data shared by the CPU and I/O devices. The central
processor reads instructions from main memory during the instruction-fetch cycle, and it
reads/writes data from main memory during the data-fetch cycle. The I/O operations
implemented via DMA also read/write data in main memory. The main memory is the only
large storage device that the CPU is able to address and access directly. For example, the
data stored in the disk must be transferred to main memory for processing that data.
Similarly, instructions must be in memory for the CPU to execute them.

For a program to be executed, it must be mapped to absolute addresses and loaded into
memory. As the program executes, it accesses program instructions and data from memory
by generating these absolute addresses. Eventually, the program terminates, its memory
space is declared available, and the next program can be loaded and executed.

To improve the utilization of CPU and the speed of computer's response, several programs
must be kept in the memory. Different memory management schemes are available and
the effectiveness of them depends on situation. Selection of a memory management
scheme for a specific system depends on many factors; especially on the hardware design
of the system.

The OS is responsible for the following activities in connection with memory management:

 Keeping track of which parts of memory are currently being used and by whom
 Deciding which processes are to be loaded into memory when memory space

becomes available
 Allocating and deallocating memory space as needed

1.18.3 File Management
File management is one of the most visible components of an OS. Computers can store
information on different types of physical media like magnetic tape, magnetic disk and
optical disk etc. Each of such media has its own characteristics and physical organization.
And every medium is controlled by a device, such as a disk drive or tape drive. These
devices also have unique characteristics like access speed, capacity, data-transfer rate,
and access method (sequential or random).

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

28

For convenient use of the computer system, the OS provides a uniform logical view of
information storage. The OS uses the concepts of the physical properties of its storage
devices to define a logical storage unit, the file. OS then maps files onto physical media,
and accesses these files via the storage devices.

A file is a collection of related information. Commonly, files represent programs (may be
source code or object code) and data. Data files may be numeric, alphabetic, or
alphanumeric. Files may be of free-form like text files or they may be formatted rigidly like
the files containing fixed fields. A file consists of a sequence of bits, bytes, lines, or records
whose meanings are defined by their creators.

The OS implements the abstract concept of a file by managing mass storage media, such
as disks and tapes, and the devices that control them. Also, files are normally organized
into directories to ease their use. Finally, when multiple users have access to files, we may
want to decide by whom (user) and how (read, write, append) files may be accessed.

The OS is responsible for the following activities in connection with file management:

 Creating and deleting files
 Creating and deleting directories
 Supporting primitives for manipulating files and directories
 Mapping files onto secondary storage
 Backing up files on stable (non-volatile) storage media

1.18.4 I/O System Management
One of the purposes of an OS is to hide the peculiarities of specific hardware devices from
the user. For example, in UNIX, the peculiarities of I/O devices are hidden from the bulk of
the operating system itself by the I/O subsystem. The I/O subsystem consists of

 A memory-management component that includes buffering, caching, and spooling
 A general device-driver interface
 Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which it is assigned.
How the I/O subsystem interfaces to the other system components, manages devices,
transfers data, and detects I/O completion etc are discussed later in detail.

1.18.5 Secondary Storage Management
The main purpose of a computer system is to execute programs. These programs along
with the data they access must be in main memory, or primary storage, during execution.
As main memory is not sufficient to store all data and programs; and data may get lost
when the power goes off, the computer system must provide secondary storage to back up
main memory.
Most modern computer systems use disks as the principal on-line storage medium, for both
programs and data. Most programs including compilers, assemblers, sort routines, editors,
and formatters-are stored on a disk until loaded into memory, and then use the disk as both

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

29

the source and destination of their processing. Hence, the proper management of disk
storage is of central importance to a computer system.

The operating system is responsible for the following activities of disk management:

 Free-space management
 Storage allocation
 Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The entire
speed of operation of a computer may attract the speeds of the disk subsystem and
of the algorithms that manipulate that subsystem.

1.18.6 Networking
A distributed system is a collection of processors that do not share memory, peripheral
devices, or a clock. Instead, each processor has its own local memory and clock, and the
processors communicate with each other through various communication lines, such as
high-speed buses or networks. The processors in a distributed system vary in size and
function. They may include small microprocessors, workstations, minicomputers, and large,
general-purpose computer systems.

The communication network may be fully or partially connected. Its design must focus on
message routing, connection strategies, problems of contention and security. A distributed
system collects physically separate and heterogeneous systems into a single coherent
system, providing the user with access to the various resources that the system maintains.

Access to a shared resource allows computation speedup, increased functionality,
increased data availability, and enhanced reliability. OS generalizes network access as a
form of file access and the details of networking are contained in the device driver of
network interface.

The protocols of a distributed system influence the utility and popularity of that system. The
aim of World Wide Web was to create a new access method for information sharing. It
improved file-transfer protocol (FTP) and network file-system (NFS) protocol by removing
the need for a user to log in for accessing remote resource. It defined a new protocol,
hypertext transfer protocol (HTTP), for use in communication between a web server and a
web browser. A web browser then needs to send a request for information to a remote
machine's web server, and the information is returned. Hence, the HTTP and web usage
got increased.

1.18.7 Protection System
If a computer system has multiple users and concurrent execution of multiple processes is
allowed, then these processes must be protected from each other's activities. For that
purpose, OS must ensure that the files, memory segments, CPU, and other resources are
be operated by only authorized processes. For example, memory-addressing hardware
ensures that a process can execute only within its own address space. The timer ensures
that no process can gain control of the CPU without eventually relinquishing control.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

30

Protection is any mechanism for controlling the access of programs, processes, or users to
the resources defined by a computer system. This mechanism must provide the rules for
how and what type of controls must be enforced. Protection can improve reliability by
detecting hidden errors at the interfaces between component subsystems. Early detection
of interface errors can prevent contamination of a healthy subsystem by a malfunctioning
subsystem. An unprotected resource cannot defend against use (or misuse) by an
unauthorized or incompetent user. A protection-oriented system provides a means to
distinguish between authorized and unauthorized usage.

1.18.8 Command Interpreter System
Command interpreter is the interface between the user and the OS. It is one of the most
important system programs for an OS. Some OS include the command interpreter in the
kernel. Few OS like MS-DOS and UNIX treat the command interpreter as a special
program that is running when a job is initiated, or when a user first logs on.

Many commands are given to the OS by control statements. When a new job is started in a
batch system, or when a user logs on to a time-shared system, a program that reads and
interprets control statements is executed automatically. This program is sometimes called
the control-card interpreter or the command-line interpreter, and is often known as the
shell. The job of shell is to get the next command statement and to execute it.

Normally, shell is differentiated from user-friendly command interpreter. For this purpose,
mouse-based window and menu systems are used in OS like Microsoft Windows and
Macintosh. Here, a mouse pointer and clicks will do the job of navigation and selection.

In a complex shell like MS-DOS and UNIX, commands are typed using a keyboard and
displayed on a screen. Then enter key has to be pressed to indicate end of the command
and then the task is executed.

The command statements themselves deal with process creation and management, I/O
handling, secondary-storage management, main-memory management, file-system
access, protection, and networking.

1.19 OPERATING SYSTEM SERVICES
An OS provides an environment for the execution of programs. Also, it provides certain
services to the programs and its users. Though these services differ from one OS to the
other, following are some general services provided by any OS.

 Program execution: The system must be able to load a program into memory and
to run that program. The program must be able to end its execution, either normally
or abnormally (indicating error).

 I/O operations: A running program may require I/O. This I/O may involve a file or an
I/O device. For efficiency and protection, users usually cannot control I/O devices
directly. Therefore, the OS must provide a means to do I/O.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

31

 File-system manipulation: The OS must facilitate the programs to read and write
the files. And also, programs must be allowed to create and delete files by name.

 Communications: Processes may need to exchange information with each other.
These processes may be running on same computer or on different computers.
Communications may be implemented via shared memory, or by the technique of
message passing, in which packets of information are moved between processes by
the OS.

 Error detection: The OS constantly needs to be aware of possible errors. Errors
may occur in any of CPU, memory hardware, I/O devices, user program etc. For
each type of error, the OS should take the appropriate action to ensure correct and
consistent computing.

OS also has another set of functionalities to help the proper functioning of itself.

 Resource allocation: When multiple users are logged on the system or multiple
jobs are running at the same time, resources must be allocated to each of them. OS
has to manage many resources like CPU cycles, main memory, and file storage etc.
OS uses CPU scheduling routines for effective usage of CPU. These routines
manage speed of the CPU, the jobs that must be executed, the number of registers
available, and such other factors.

 Accounting: We want to keep track of which users use how many and which kinds
of computer resources. This record keeping may be used for accounting (so that
users can be billed) or simply for accumulating usage statistics. Usage statistics may
be a valuable tool for researchers who wish to reconfigure the system to improve
computing services.

 Protection: Information on a multi-user computer system must be secured. When
multiple processes are executing at a time, one process should not interfere with the
others. Protection involves ensuring that all access to system resources is
controlled. System must be protected from outsiders as well. This may be achieved
by authenticating the users by means of a password. It also involves defending
external I/O devices, modems, network adapters etc. from invalid access.

1.20 SYSTEM CALLS
System calls provide the interface between a process and OS. These calls are normally
assembly-language instructions and used by the assembly-language programmers. Some
systems allow system calls to be made directly from a higher level language program. In
such cases, the calls resemble predefined function or subroutine calls. They may generate
a call to a special run-time routine that makes the system call or the system call may be
generated directly in-line.

Several languages-such as C, C++, and Perl have replaced assembly language for
systems programming. These languages allow system calls to be made directly. For
example, UNIX system calls may be invoked directly from a C or C++ program. System
calls for modern Microsoft Windows platforms are part of the Win32 application
programmer interface (API), which is available for use by all the compilers written for
Microsoft Windows.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

32

To understand how system calls are used, consider an example of writing a program to
read data from one file and to copy them to another file. The program needs names of two
files as an input. These names may be asked from the user. Now, this will initiate a
sequence of system calls: to write a prompting message on the screen, and to read the
characters from keyboard which defines names of files. Then, the program opens an input
file and creates the output file. This operation requires another system call that may
possibly face error conditions. Each of the error conditions (like input file doesn’t exist, no
permission to read, output file can’t be created, no write permission etc) require different
system calls. When everything is proper, we enter a loop to read from input file and write
into the output file. Both of these operations are system calls. Every read/write must return
status information for any possible error or end-of-file. Again, this requires system call.
Once the task is done, both the files must be closed using system calls. Finally, the
program will be terminated using final system call. Thus, we can make out that a very
simple program also uses OS heavily. However, the users never see such details.
Because, the set of built-in functions provided by the compiler of programming languages
provides very simpler interface.

Occurrence of system calls differ from computer to computer. Apart from the identity of the
system call, some more information may also be required. The type and nature of
information vary according to OS and call. For example, to get input, we may need to
specify the file or device to use as the source, and the address and length of the memory
buffer into which the input should be read.

Three general methods are used to pass parameters to the operating system:

 The simplest approach is to pass the parameters in registers.
 In some cases, there may be more parameters than registers. Then, the parameters

are stored in a block or table in memory. And the address of the block is passed as a
parameter in a register as shown in Figure 1.16. This is the approach taken by
Linux. Parameters can also be placed, or pushed, onto the stack by the program,
and popped of the stack by the operating system.

 Some OS prefer the block or stack methods, because those approaches do not limit
the number or length of parameters being passed.

Figure 1.16 Passing of parameters as a table

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

33

System calls can be grouped roughly into five major categories: process control, file
management, device management, information maintenance, and communications. These
are discussed in the following sections. Table 1.1 summarizes the types of system calls
provided by OS.

Table 1.1 Types of System Calls
Category System Calls

Process Control

 end, abort
 load, execute
 create process, terminate process
 get process attributes, set process attributes
 wait for time
 wait event, signal event
 allocate and free memory

File Management

 create file, delete file
 open, close
 read, write, reposition
 get file attributes, set file attributes

Device Management

 request device, release device
 read, write, reposition
 get device attributes, set device attributes
 logically attach or detach devices

Information Maintenance

 get time or date, set time or date
 get system data, set system data
 get process, file, or device attributes
 set process, file, or device attributes

Communications

 create, delete communication connection
 send, receive messages
 transfer status information
 attach or detach remote devices

1.20.1 Process Control
Various system calls for process controls may be listed as below:

 A running program should halt its execution either normally (end) or abnormally
(abort).

 A process or job executing one program may want to load and execute another
program.

 To create a new job or process, a system call create process is used.
 We may also want to terminate a job or process that we created (terminate process)

if we find that it is incorrect or is no longer needed.
 We should be able to control the execution of a process. This control requires the

ability to determine and reset the attributes of a job or process, including the job's
priority, its maximum allowable execution time, and so on (get process attributes and
set process attributes).

 We may need to wait for a specific amount time (wait time) so that the process is
completed or, we may need to wait for a particular event to happen (wait event).

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

34

 The process may need to signal when the event has occurred (signal event).
 Memory has to be allocated to the process (allocate) when it needs to be executed

and the memory has to be deallocated (free) when the process is completed.

1.20.2 File Management
Whenever we are dealing with file handling, we should be able to create and delete files
using respective system calls. The files have to be opened for using it. One must be able to
read and write the data into/from files. After finishing the job, the file has to be closed.

The same set of system calls is required for directories. On both files and directories, few
attributes like file name, file type, protection codes (access rights) etc have to be set or
retrieved. For this purpose, we may use the system calls get file attribute and set file
attribute.

1.20.3 Device Management
A running program may need additional resources like more memory, tape drives, access
to files etc. to proceed. If the resources are available, they can be granted, and control can
be returned to the user program; otherwise, the program will have to wait until sufficient
resources are available.

As, files can be thought of as abstract or virtual devices, many system calls used for files
are also needed for devices. If the system has multiple users, we must first request the
device. After we are finished with the device, we must release it. These functions are
similar to the open and close system calls for files. Once the device has been requested
(and allocated to us), we can read, write, and reposition the device, just as we can with
ordinary files.

1.20.4 Information Maintenance
Many system calls exist simply for the purpose of transferring information between the user
program and the OS. For example, return the current time and date, the number of current
users, the version number of the OS, the amount of free memory or disk space etc.

In addition, there are also system calls to reset the process information (get process
attributes and set process attributes).
1.20.5 Communication
There are two common models of communication viz.

 Message passing model
 Shared memory model

In the message-passing model, information is exchanged through an inter-process
communication facility provided by the OS. Before communication can take place, a
connection must be opened. The clients and the servers will communicate using send and
receive system calls. In the shared-memory model, processes use map memory system
calls to gain access to regions of memory owned by other processes. The two
communications models are depicted in Figure 1.17.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

35

(a) Message Passing (b) Shared memory

Figure 1.17 Two communication models

1.21 SYSTEM PROGRAMS
System programs provide a convenient environment for program development and
execution. Some of them are just user interfaces to system calls; others are considerably
more complex. They can be divided into following categories:

 File Management: These programs create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories.

 Status Information: Information like date, time, amount of available memory or disk
space, number of users etc. is formatted, and is printed to the terminal or other
output device or file.

 File Modification: Several text editors may be available to create and modify the
content of files stored on disk or tape.

 Programming-language Support: Compilers, assemblers, and interpreters for
common programming languages (such as C, C++, Java etc) are often provided to
the user with the OS.

 Program loading and execution: Once a program is assembled or compiled, it
must be loaded into memory to be executed. The system may provide absolute
loaders, relocatable loaders, linkage editors, and overlay loaders. Debugging
systems for either higher-level languages or machine language are required.

 Communications: These programs provide the mechanism for creating virtual
connections among processes, users, and different computer systems. They allow
users to send messages to one another's screens, to browse web pages, to send
electronic-mail messages, to log in remotely, or to transfer files from one machine to
another.

Most operating systems will supply the programs for solving common problems, or to
perform common operations. For example, web browsers, word processors and text

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

36

formatters, spreadsheets, database systems, compilers, plotting and statistical-analysis
packages, and games. These programs are known as system utilities or application
programs.

1.22 SYSTEM STRUCTURE
The modern OS are very large and complex. To design such an OS, proper care has to be
taken. So, it is advised to partition the task into smaller components. Each of such
components should be a well-defined unit with properly designed input, output and other
functions. We have discussed important components in Section 1.18. Here, we will discuss
how these components are interconnected and integrated into kernel.

1.22.1 Simple Structure
Many commercial systems do not have a well-defined structure. Frequently, such operating
systems started as small, simple, and limited systems, and then grew into wider range. MS-
DOS is an example for one such OS. It was written to provide the most functionality in the
least space, so it was not divided into modules carefully. Although MS-DOS has some
structure, its interfaces and levels of functionality are not well separated as shown in Figure
1.18.

UNIX is another system that was initially limited by hardware functionality. The UNIX OS
consists of two separable parts:

 Systems programs
 The kernel

o Consists of everything below the system-call interface and above the physical
hardware

o Provides the file system, CPU scheduling, memory management, and other
operating-system functions; a large number of functions for one level.

The traditional UNIX OS can be layered as shown in Figure 1.19.

 Figure 1.18 MS DOS Layer Structure Figure 1.19 UNIX System Structure

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

37

1.22.2 Layered Approach
In the layered approach, the OS is divided into a number of layers (levels), each built on top
of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the
user interface. A typical OS with layered approach is shown in Figure 1.20.

Figure 1.20 A layered approach of OS

The main advantage of layered approach is modularity. The layers are selected such that
each uses functions (operations) and services of only lower-level layers. This approach
simplifies debugging and system verification.

The major difficulty with the layered approach involves the careful definition of the layers,
because a layer can use only those layers below it.

1.22.3 Microkernels
In this approach, all non-essential components of earlier UNIX kernel have been removed
and only system and user level programs have been implemented. Hence, it became a
smaller kernel. Generally, microkernels provide minimal process and memory
management, in addition to a communication facility. Here, the communication takes place
between user modules using message passing. The major benefits of using microkernels
are:

 easier to extend a microkernel
 easier to port the operating system to new architectures
 more reliable (less code is running in kernel mode)
 more secure

1.23 VIRTUAL MACHINES
A virtual machine takes the layered approach to its logical conclusion. It treats hardware
and the operating system kernel as though they were all hardware. A virtual machine
provides an interface identical to the underlying bare hardware. The operating system

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

38

creates the illusion of multiple processes, each executing on its own processor with its own
(virtual) memory.

The resources of the physical computer are shared to create the virtual machines. That is,

 CPU scheduling can create the appearance that users have their own processor.
 Spooling and a file system can provide virtual card readers and virtual line printers.
 A normal user time-sharing terminal serves as the virtual machine operator’s

console.

The difference between non-virtual and virtual machines can be understood by referring
Figure 1.21.

 (a) (b)

Figure 1.21 System Models (a) Non-virtual machine (b) Virtual Machine

1.23.1 Implementation
Though the virtual-machine (VM) concept is useful, it is difficult to implement due to the
effort required to provide an exact duplicate of the underlying machine. Compared to actual
I/O, the virtual I/O may take considerably more time, as it is interpreted. Also, since CPU is
multiprogrammed among many virtual machines, the VM will slow down unpredictably.

1.23.2 Benefits
The virtual-machine concept provides complete protection of system resources since each
virtual machine is isolated from all other virtual machines. This isolation, however, permits
no direct sharing of resources. A virtual-machine system is a perfect means for operating-
systems research and development. System development is done on the virtual machine,
instead of on a physical machine and so does not disrupt normal system operation.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

39

1.23.3 Java
Java is a popular object oriented programming language which provides specifications for
Java Virtual machine (JVM). The java compiler produces a platform independent bytecode
(.class) file for every class in the program. This bytecode can run on any JVM. The JVM
consists of a class loader, a class verifier and a java interpreter. The just-in-time (JIT)
compiler converts the bytecode into native code for a particular computer. Thus, the JVM
helps to develop platform independent and portable programs. The JVM can be seen in
Figure 1.22.

Figure 1.22 Java Virtual Machine

1.24 SYSTEM DESIGN AND IMPLEMENTATION
Here, we will discuss the various problems in designing and implementing a system. No
concrete solution exists for the problem, but some approaches are useful.

1.24.1 Design Goals
The very first challenge in a system design is specifying the goals of the system. At the
highest level, the design of the system will be affected by the choice of hardware and type
of system: batch, time shared, single user, multiuser, distributed, real time, or general
purpose. Beyond this highest level, the requirements can be divided into two types:

 User goals: operating system should be convenient to use, easy to learn, reliable,
safe, and fast.

 System goals: operating system should be easy to design, implement, and
maintain, as well as flexible, reliable, error-free, and efficient.

1.24.2 Mechanisms and Policies
The specification and design of an OS is a highly creative task. There are some general
software engineering principles which are applicable to OS. One important principle is the
separation of policy from mechanism. Mechanisms determine how to do something;
policies determine what will be done.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

40

The separation of policy and mechanism is important for flexibility. Policies are likely to
change across places or over time. Each change in policy may require a change in the
underlying mechanism. Policy decisions must be made for all resource-allocation and
scheduling problems.

1.24.3 Implementation
After designing an OS, the next task would be implementation. Earlier, OS would have
been written in assembly language. Now, they can be written in higher languages like C,
C++ etc. Code written in higher languages has certain advantages:

 Can be written faster
 Is more compact
 Is easier to understand and debug
 Easier to port (move to some other hardware)

Some may say that implementing OS in higher languages may reduce the speed and
performance. But, the modern processors have deep pipelining and multiple functional
units. So, they can handle many complexities and perform better. Moreover, the
performance of OS depends on the selection of data structures and algorithms rather than
the assembly-language code.

1.25 SYSTEM GENERATION
We can design, code, and implement an operating system specifically for one machine at
one site. The system must then be configured or generated for each specific computer site,
a process sometimes known as system generation (SYSGEN).

The SYSGEN program reads from a given file, or asks the operator of the system for
information concerning the specific configuration of the hardware system, or probes the
hardware directly to determine what components are there. The following kinds of
information must be determined.

 What CPU will be used? For multiple-CPU systems, each CPU must be described.
 How much memory is available?
 What devices are available?
 What operating-system options are desired, or what parameter values are to be

used?

Using this information the OS can be compiled for a specific requirement. After an OS is
generated, it must be made available for use by the hardware. But how does the hardware
know where the kernel is, or how to load that kernel? The procedure of starting a computer
by loading the kernel is known as booting the system. Most computer systems have a
small piece of code, stored in ROM, known as the bootstrap program or bootstrap loader.
This code is able to locate the kernel, load it into main memory, and start its execution.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

41

ADD – ON TOPIC

INTERRUPTS

The normal sequence of the processor may be interrupted by other modules like I/O,
memory etc. Following table gives the list of common interrupts.

Classes of Interrupts
Class Description

Program Generated as a result of an instruction execution. For example,
arithmetic overflow, division by zero etc.

Timer Generated by timer within the processor. It allows OS to
perform certain functions on regular basis.

I/O Generated by I/O controller to indicate any error or normal
completion of an operation.

Hardware Failure Generated by failure like power failure or memory parity error.

The aim of interrupts is to improve the processor utilization. For example, most I/O devices
are slower than the processor. If the processor gives the instruction for WRITE something
on I/O devices, the I/O unit takes two steps for the job –

 I/O program may copy the data to be written into the buffer etc. and prepare for the
actual I/O operation.

 The actual I/O command has to be executed.

Program flow of control with and without interrupts

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

42

Without interrupts, the processor would sit idle while the I/O unit is preparing (the first step)
itself for the job. But, in case of interrupts, the processor just gives intimation to the I/O unit
first. While I/O unit prepares itself, the processor would continue to execute the next
instructions in the program. When I/O unit is ready, in between, it will do the actual I/O
command and come back to normal flow of execution. Refer the above given figure for
understanding this concept.

Interrupts and the Instruction Cycle
Whenever interrupts are introduced in the system, the processor gives information to the
I/O unit and without waiting for I/O operation to complete; it will continue to execute next
instruction. When the external device is ready to accept more data from the processor, the
I/O module sends an interrupt request signal to the processor. Now, the processor
suspends the current operation of the program and responds to a routine (or a function) of
I/O device, which is called as interrupt handler. When the interrupt processing is
completed, the processor resumes the execution. To allow interrupts, an interrupt stage is
added along with fetch stage and execute stage as shown in below figure.

Instruction Cycle with interrupts

In the interrupt stage, the processor checks for any possible interrupt signal. If no interrupt
is pending, it will go the fetch stage. If an interrupt signal is there, the processor suspends
current execution and executes interrupt handler routine. The interrupt handler routine is a
part of OS, which identifies nature of interrupt and performs necessary action. After
completing interrupt handler routine, the processor resumes the program execution from
the point where it was suspended.

It is understood that some overhead is involved in this process. Extra instructions have to
be executed in the interrupt handler to determine type of interrupt, to decide the appropriate
action etc. But, instead of processor sitting idle for I/O operation and wasting huge amount
of time, the concepts of interrupts are found to be efficient.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

43

Interrupt Processing
An interrupt triggers many events in the processor hardware and software. The following
figure shows the sequence of these events and is explained below:

 Simple interrupt processing

i. The I/O device (or any other interrupt) issues an interrupt signal to the processor.
ii. The processor finishes the execution of current instruction.
iii. The processor checks for the interrupt signal and send the acknowledgement to the

I/O device. This acknowledgement helps the device to clear the interrupt signal.
iv. Now, the processor has to transfer the control to interrupt routine. Before that, it

saves the current status of PC and PSW (Program Status Word) in the control stack.
This will help the processor to resume its execution after finishing the interrupt
routine.

v. Then, the processor loads the entry location of interrupt handling routine into the PC.

Now, the processor has to go for next instruction cycle by fetching the address at PC. But,
PC now contains address of interrupt routine (as per step (v)) and hence, the following
operations will be carried out.

vi. The PC and PSW relating to the interrupted program have been saved on the

control stack. Now, the contents of all registers are also pushed into the control
stack. Thus, the top of the stack contains the address of interrupt routine.

vii. The interrupt handler will now process the interrupt.
viii. When interrupt processing is complete, the saved register values are retrieved from

the stack and stored back into the registers.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

44

ix. Finally, PC and PSW are loaded with their old values from the stack. Hence, the
next instruction of the program will be executed.

Multiple Interrupts
It is possible to have multiple interrupts in a single program. One or more interrupt can
occur during another interrupt is being processed. For example, an input may be taken
while printing the data onto the printer. Each time, the printer finishes its job, an interrupt
will occur. There are two approaches to deal with multiple interrupts as explained below
(Refer Figure given below).

 Disable the interrupts while one interrupt is being processed: Here, the
processor ignores any new interrupt signal when another interrupt is in progress.
The processor keeps such signals as pending, and considers when the previous
interrupt routine is completed. Hence, all the interrupts will be processed
sequentially.

But, in this approach, the priorities or inter-dependencies between the interrupt
routines are not considered. Hence, time-critical needs cannot be satisfied.

 Define priorities for interrupts: Here, a higher priority interrupt will pause the lower
priority interrupt which is in execution. Hence, a nested interrupt processing will be
achieved based on the priority.

(a) Sequential Interrupt Processing (b) Nested Interrupt Processing
Transfer of control during multiple interrupts

Multiprogramming
Even though interrupts are used, in most of the situations, the processor is not being used
efficiently. For example, if there is a long I/O wait, then time taken for I/O is more than the
actual user code. So, processor would sit idle. To solve this problem, multiple programs
may be made to execute. Thus, when one program is busy with I/O, the other program’s
instructions may be getting executed; and vice-versa. When the processor is dealing with
many programs, the sequence in which the programs are executed will depend on their

Interrupt
Handler Y

Interrupt
Handler X User Program

Interrupt
Handler Y

Interrupt
Handler X User Program

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (16MCA24)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

45

relative priority. In this case, when one interrupt routine is completed, the processor may
not come back to the user program instructions, but it may consider interrupt of another
program based on the priority.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

