
This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

INTRODUCTION TO C – A PRE-REQUISITE

1.1 ALGORITHMS
Computer solves a problem based on a set of instructions provided to it. A problem should
be broken into several smaller steps for it to be transformed into a set of instructions. Such
a set of statements/instructions is called as an algorithm. In other words, Complete,
unambiguous procedure (set of instructions) for solving a problem in a finite number
of steps is called as algorithm.

Every algorithm must be complete and yield at least one output. Every statement in the
algorithm must be clear and should not contain any ambiguity. For example,
 Add 3 or 5 to x
The above statement is ambiguous as it is not clear whether to add 3 to x or to add 5 to x.
Such statements must be avoided in the algorithm. Moreover, every algorithm must give
the result in finite number of steps.

Algorithm normally consists of English-like statements. We have a bit-more structured way
of writing algorithm, called as pseudo code.

Example 1. Write an algorithm for finding sum of two numbers.
Algorithm:
 Step 1. Start

Step 2. Read two values, say a and b
 Step 3. Add a and b, and store the result in another variable, say c
 Step 4. Display the value of c.
 Step 5. Stop

Pseudo code:
 Step 1. Input a, b
 Step 2. c a + b
 Step 3. Print c

Example 2. Write an algorithm for finding biggest of two numbers.

Algorithm:
 Step 1. Start

Step 2. Read two values, say a and b
 Step 3. Compare a and b. Store the larger number in another variable, say big.

Step 4. Display the value of big.
 Step 5. Stop

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

Pseudo code:
 Step 1. Input a, b
 Step 2. if(a>b)
 big a
 else
 big b
 Step 3. Print big

NOTE: The student can choose either algorithm or pseudo code for solving a problem.

1.2 FLOW CHARTS
Flow chart is a pictorial representation of the algorithm. Flow chart uses some
geometrical shapes for representing an algorithm diagrammatically.

Symbol Meaning Symbol Meaning Symbol Meaning

Start/End Input/Output Decision

Processing Flow Lines Connector

Looping
Statements

 Pre-defined
Process

 Explanatory
Notes

Advantages of using Flowchart:

 Flowchart acts as a blue print during program preparation phase. The program may
be compared with flowchart to find if any statement is missing.

 Flowchart may be used to study different parts of a program to identify the problems
and find an alternative approach.

 Flowchart helps in understanding the problem easily for any common man.
 In case a program has some logical errors, the flowchart helps in locating the error

quickly and leads to easier debugging process.

Example: Write algorithm and flow chart for finding the area of a circle given the
value of radius.

Algorithm/Pseudo Code

Step 1: Start
Step 2: Input the value of a radius say, rad.
Step 3: Calculate area = 3.1416 * rad * rad.
Step 4. Print the value of area.
Step 5: Stop.

START

INPUT rad

Area = 3.1416 * rad * rad

PRINT Area

STOP

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

Example: Write an algorithm and flow chart to find the biggest of three numbers.

Step 1: Read a, b, c
Step 2: if a>b then
 if a>c then
 print a as bigger
 else
 print c as bigger
 else
 if b>c then

print b as bigger
 else
 print c as bigger
Step 3: Stop.

1.3 STRUCTURE OF C PROGRAM
The general structure of a C program can be given as -

#include<----->
#include<-----> Preprocessor Directives
#define ----------- Symbolic Constants/Macro Functions

Global Variable Declarations
User-defined Function Declarations/Prototypes

void main()
{

Local Variable Declarations

Program Statements
}

User-Defined function Definitions

Yes No

No No Yes Yes

INPUT a, b, c

Is a>b?

STOP

START

Is b>c? Is a>c?

 WRITE Big

Big = a Big = b Big = c

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

Preprocessor is a software piece which scans the entire program before the source code
is handed over to the compiler. Preprocessor directives can be used for including any
header files like stdio.h, math.h etc. and also for declaring symbolic constants using #define
statement. Preprocessor directives are discussed later in detail.

Global variables are the variables that can be used by all the function in the entire program.
Such variable declarations can be provided after a list of preprocessor directives.

C is a modular programming language. That is, the given problem can be divided into
several independent sub-problems. And each of these sub-problems can be solved
independently. The solutions of all these can then be combined to get the solution for
original problem. Such sub-problems can be solved with the help of user-defined
functions (or modules). The declaration (return-type function-name (argument List)) can be
done after/before global variable declarations. (Functions are discussed in later chapters in
detail).

The C program execution always starts with a function main(). This function contains the
declaration of local variables needed for the process inside the main() function. After local
variable declaration, the main() function can contain program statements which may involve
i/o operations, any process statements, function-calls etc.

User-defined functions declared earlier have to be defined with a specific set of
operational statements later.

Note that, every statement in a C program is terminated by a semicolon and every block of
code is enclosed within a pair of flower brackets.

1.4 CHARACTER SET
C programming language uses a finite set of symbols known as character set. A character
may be printable or non-printable. The characters are useful in any language to construct
identifiers and to form a valid statement. Every character is having an equivalent
ASCII (American Standard Code for Information Interchange) code ranging from 0 to 255.
Following is a list of printable characters in C.

Table 1.1 Character Set of C

Decimal Digits : 0, 1, 2 … 9
Alphabets : A to Z and a to z
Special Characters : ! “ # $ % & ‘ (
) * + - / . : ;
 < = > ? @ [] \

 ^ _ , { } | ~

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

Note that ASCII codes for 0 to 9 is from 48 - 57,
 for a to z is from 97 - 122
 for A to Z is from 65 - 90

1.5 TOKENS
One or more characters grouped together to form a basic element in C is called as a token.
A token can be a keyword, constant, variable, operator, string, special character etc.

Every word in C is classified as either identifier or keyword. Identifiers are used to name
variables, functions, arrays, symbolic constants, macros etc.

1.6 KEYWORDS
Some words are used for particular purpose in C. They have a specific meaning and
are reserved to do certain task. Such words are known as keywords or reserved words
in C. There are 32 keywords currently defined in standard C as listed below.

Table 1.2 Keywords in C

Some of these keywords are used for declaring type of variables, some for controlling the
flow of statements etc. The usage of all these keywords will be understood in further
discussion of the subject.

1.7 VARIABLES
A variable is a symbolic name to represent quantities in a program. In other words, variable
is an identifier to name a specific memory location that can store the data. Computer
identifies a memory location with an address assigned to it and each variable name
in a program represents a memory location consisting of data. For example, the statement

int Age = 23;

implies that, Age is name of the variable having specific address and storing the value 23.
It can represented as -
 Age

 1200

auto break case char
const continue default do
double else enum extern
float for goto if
int long register return
short signed sizeof static
struct switch typedef union
unsigned void volatile while

23

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Here, Age is variable name, 1200 is the address of that variable and 23 is its value.

Note that, value of any variable is stored in binary format. That is, the value is converted
into binary number and then it is stored. Also, the address will be actually in hexadecimal
format and for the sake of simplicity, we will be considering in decimal format.

Rules for naming variables: To name a variable in C, certain rules have to be followed.
 Variable name should not be a C keyword.
 First character in a variable name must be any alphabet or an underscore (_).The

remaining characters can be alphabets, digits or underscore.
 White (empty) space is not allowed.
 No special character other than underscore is allowed.
 The uppercase and lowercase alphabets are treated as different. For example, Age,

age, aGe etc. are all treated as different variables. That is, C is case-sensitive.
 In most of the C compilers, the maximum number of characters allowed in a variable

name is 8.

Following list gives a list of valid and invalid variable names –

Table 1.3 Example for valid and invalid variable names

Valid Names
 Age
Test
Sum2
Stud_marks

_height

x2y2

NOTE:

 All the variables in a program must be declared with appropriate data type. The
process of variable declaration assigns required number of memory locations (in
bytes) for each variable based on data type.

 The data stored in a variable can be accessed just by specifying the name of that
variable.

 The value of a variable can be changed by assigning new value to it or by
reading from keyboard.

 The name of variable should reflect the meaning of value to be stored in it. For
example, assume that age of a student is to be stored in a variable. Instead of
naming it as xyz, it will be more meaningful if it is named as stud_age or simply age.

Invalid Names Reason
2sum Should not start with digit
#age Should not start with special character
height 3 Space is not allowed
Stud-marks Hyphen (-) not allowed
$12Currency Should not start with special

character

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

1.8 DATA TYPES
Basically, in C, the programmer can have four different types of data. That is, a value stored
in a variable can be any one of four types viz. int, float, char, double. These are known as
basic data types in C.

The integer (int) data type is used to store only integer values. The data type float is
used store real numbers with fractional parts. Character (char) variables can store singe
characters and double variables may store real numbers with higher precisions. These
aspects are more elaborated in the following section.

1.9 CONSTANTS
A constant is a quantity that does not change during the program execution. Integer,
floating point, character and the string are the four types of constants available in C.
There are few modifiers like short, long, signed, unsigned etc. to provide various
ranges in the values of constants. Each of the constant types are discussed here.

1.9.1 Integer Constants
These are the numeric values with no decimal point. An integer constant can be decimal,
octal or hexadecimal. A decimal integer may consist of digits 0-9. An octal number may
contain the digits 0-7 and is preceded by zero. Hexadecimal number consist of digits 0-9
and the alphabets a to e (or A to E). These are preceded by x or X. Following list gives
some integer constants.

Table 1.4 Example for integers
Decimal Octal Hexadecimal

0 0 0

02 002 0x2

07 007 0x7

09 011 0x9

10 012 0xa

14 016 0xe
The range of values that can be stored in an integer variable depends on the word length
of the computer. If n is word length of a computer, then the allowable range of numbers
can be given by the formula

-2n-1 to +2n-1 -1

For example, a 16-bit computer can store the integers in a range of -32768 to +32767.
The highest bit (most significant bit) is always reserved for the sign of a number. If the
most significant bit (MSB) is 1, then the number is negative, if MSB is 0, then the number is
positive.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

An integer data type can be either signed or unsigned.

 Signed Integers: The integers that may contain a sign-bit are signed-integers.
o int It is a basic integer data type and requires minimum 16 bits (2 bytes).
o short int It may be smaller than int or equal to int depending on machine. In

some of the machines, short int will be half the size of int. If its size is 2
bytes, then the range of these numbers is -32768 to +32767.

o long int It requires at least 32 bits. So, the allowed range is -2,14,74,83,648 to
+2,14,74,83,647 (-231 to +231-1).

 Unsigned Integers: In some of the programming situations, the programmer may

need only positive constants. Then instead of wasting one bit for sign-bit, the
programmer can go for unsigned numbers using the keyword unsigned. The
unsigned numbers will make use of even the bit reserved for sign. Thus, the allowable
range of unsigned integers will be 0 to 65635(0 to 216-1). The programmer may use
unsigned short int (2 bytes), unsigned long int (4 bytes) etc.

1.9.2 Floating Point Constants
The numeric values having decimal point and fractional part are known as floating
point constants. For example - 8.75, 0.025, 123.89 etc. Since it is difficult to represent very
large and very small floating point numbers in a standard decimal form, in C, the exponential
form is used as –

(Mantissa) e (Exponent)
Here, Mantissa should have at least one digit along with decimal point and exponent may be
either 2 or 3 digit integer. The following table gives some examples:

Table 1.5 Example of exponential notation
Decimal Exponential

Form
C Exponential
Form

7653000 7.653 x 106 7.653e06

350000000 3.5 x 108 3.5e08

1000000000 1.0 x 109 1.0e9

0.000012 1.2 x 10-5 1.2e-05

-0.0000034 -3.4 x 10-7 -3.4e-07

The decimal part and fractional part of a floating point numbers are converted into binary
format separately and then stored. Thus, the operations on floating point numbers are slower
than that on integers.

To store floating point constants, three data types are available in C.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

 float A float number has 6 digits after decimal point. It requires 4 bytes of memory
and the allowed range of numbers is -3.4E48 to +3.4E48.

 double This types of constants are used to increase the precision. The number of
digits in fractional part is 10 (It is Operating System dependent). It requires 8 bytes
of memory and the range allowed is -1.7E308 to +1.7E308.

 long double This is used to store largest floating point number. The size is 10
bytes and the range of values is -1.7E4932 to +1.7E4932.

1.9.3 Character Constants
A single character enclosed within single-quotes is called as a character constant.
Each character has an equivalent ASCII code. The binary equivalent of this ASCII code
is stored with respect to a character constant. Thus, computer stores a character constant
as an integer. Examples of character constants are -

‘M’, ‘#’, ‘9’, ‘r’, ‘1’ etc.

The size required for a character constant is 1 byte and the range of values is -128 to
+127. Character can be signed or unsigned. A signed character is same as char, but
unsigned character has the range from 0 to 255.

1.9.4 String Constants
A sequence of characters enclosed within double-quotes is known as string constant. For
example,

“Hello, how are you?”
“Object Oriented
Programming in
C++”
“x”
“8” etc.

To indicate the end of a string, the compiler will append a null character (‘\0’) at the end
of every string. Thus, the total size of any string constant will be total number of
characters in a string plus one extra byte for null character.

Note that, “x” is different from ‘x’. The former is a string composed of x and null
character requiring two bytes of memory. Whereas, latter is a single character having
ASCII value 120 requiring single byte of memory.

String handling is discussed later in detail.

1.10 VARIABLE DECLARATION
In C, all the variables to be used in the program must be declared initially. The syntax
of variable declaration is –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

For example,

int age;
float marks;
unsigned char gender; etc.

Variable declaration informs the compiler about the type of the data (to allocate
required number of memory in bytes) and about name of a variable.

The programmer can assign any value to a variable at the time of declaration itself. It is
known as initialization of a variable. For example,

int age=26, salary=10000;

This kind of statements will serve both declaration and initialization of a variable.

1.11 SYMBOLIC CONSTANTS
The process of assigning a constant value to a variable may cause a problem during
the program. Unknowingly the variable may get altered through assignment statement or
any such other operation. To avoid this problem, C provides Symbolic Constants which
are declared using preprocessor directive #define. The general form of declaring a
symbolic constant is -

#define TAG EXP

Here TAG is name of the symbolic constant and EXP is the value assigned to that constant.

For example -
#define PI 3.1416
#define MAX 5

Following are the rules to be followed while defining symbolic constants:
 There is no space between # and define, but there should be a space

between define and TAG and EXP.
 The #define directive should not end with semicolon.
 Symbolic constant can not be changed later using any statement. That is,

 #define MAX 5
……
……
MAX=3; //error

data_type varName;

Any built-in or user-defined data type
Any valid name for variable

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

 It is better to use capital letters for symbolic constants, to differentiate them
from other variables of the program.

 Rules for naming symbolic constants are same as those of naming variables.

1.12 const QUALIFIER
In many programs, there are some situations where we need some value to be
constant throughout the program. If we define such a value using any variable name as:
 int size =10;
there is a chance that the value 10 of size may change. Because, after the initialization of
size to 10, if the programmer himself unknowingly assigns some other value, say 15 as:
 size =15;
size looses its original value. This may affect the logic of the program.

To prevent such changes in a constant value, we use a qualifier viz. const. For example:
 const int size =10;

This keyword const assures that the value of the variable will not be changed throughout
the program.

1.13 volatile QUALIFIER
This qualifier is used to tell the compiler that a variable’s value may be changed, not
explicitly specified by the program. For example, a global variable’s address may be used
to store the real time of the system. In this situation, the contents of the variable are
altered without any explicit assignment statements in the program. Many of C/C++
compilers assume that a value of a variable is not changed if it does not appear at the
left hand side of an assignment operator. Therefore, there is a chance that the program
task is worked out without updating such global variables.

To prevent this from happening, the variable is declared as volatile, so that each time
the external change occurs in the variable it will reflect in the program. Thus when a
variable is preceded with the volatile qualifier, the compiler will not optimize the code
using that variable.

It is always a good practice to declare a volatile variable with const qualifier. Because a
volatile variable must not be changed by the program code.

For example:
volatile int disp_register;
volatile const int TIME;

1.14 COMMENT STATEMENT
Having comments in between a program code to indicate the purpose of a particular
statement or function is a good programming style. Comment lines will not occupy space in
the memory. The compiler ignores them before object code generation.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

There are two types of comment delimiters in C. Whenever the comment text is more than
one line, generally we use the pair /* and */. For example,

/* This is multi-line comment delimiter. A programmer can use
any of the comment delimiters as per programmer’s
requirements. */

The above passage of text is ignored by the compiler when it is included in the C program,
as it is written between /* and */. To comment a single line, one can use the second
type of delimiter i.e. //. For example,

//This is single line comment.

1.15 ASSIGNMENT STATEMENT
It has been discussed that a variable name identifies a memory location and this
memory location can store a constant value of a particular data type same as that of
variable name. For any given moment of time, a variable can store a single constant value.
To store a constant value into a variable, programmer has to use assignment statement.
The syntax is –

Here,
 varName is known as lvalue and

 expression is known as rvalue

Consider an example -

int a, b, c;
float x=2.5, y;

 a=10; //constant value is assigned
b=20;

 c=a+b; //evaluated expression is assigned
 y=x; //value of one variable is copied to other
 a=a+1; //value of a is increased by 1

1.16 INTRODUCTION TO OPERATORS

To solve any problem using computer, one may need to perform some calculations and
various types of processes. C provides several types of operators to write a program
involving calculations.

varName= expression;

Variable of specific data type Either a constant value or an
expression yielding a constant

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

The symbols used to perform a specific type of operations are known as operators. The
variables and/or constants upon which these operations are carried out are known as
operands. An operator requiring two operands is known as binary operator, whereas, an
operator requiring single operand is unary operator.

Different types of operators are discussed here under.

1.17 Arithmetic Operators

The symbols used to perform arithmetic operations are known as arithmetic operators.
Following provides a list of arithmetic operators available in C.

Arithmetic operators
Type Purpose Operator Syntax Meaning

Addition + a + b Addition of a and b
Subtraction - a – b Subtract b from a

Multiplication * a * b Product of a and b
Division / a / b Divide a by b

Binary

Operators

Modulus % a % b Remainder after dividing
a by b

Positive + +a Positive of a Unary
Operators Negative - -a Negative of a

A valid combination of variables and/or constants with arithmetic operators is known as
arithmetic expression. For example,
 Assume, int a=10, b=4;

Then, a+b is 14
 a-b is 6
 a%b is 2
 (a+b)/7 is 2 etc.

1.18 Increment and Decrement Operators
In many of the programming situations, the programmer has to increment and decrement
value of a variable by 1. Programmer can follow traditional way like,

 i=i+1; or
 i=i-1;

But, C provides more simple way to achieve this task in the form of increment and
decrement operators, written as ++ and --respectively. These operators can be used either
as a prefix or as a postfix to the variable. The syntax is –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

 Post-increment/Post-decrement

 Pre-increment/Pre-decrement

The usage of these operators is illustrated below.

Examples:

 int i=5;
i++; //value of i will be 6.

 int i=5;

++i; //value of i will be 6.

 int i=10;
i--; //value of i will be 9

 int i=10;

--i; //value of i will be 9

 int i=5,j;

j=i++; //i(=5) is assigned to j and then i becomes 6.

 int i=5,j;

j=++i; //i becomes 6 and then i(=6) is assigned to j.

 int i=10,j;

j=i--; //i(=10) is assigned to j and then i becomes 9.

 int i=5,j;

j=--i; //i becomes 9 and then i(=9) is assigned to j.

Thus, it can be easily observed that, if post/pre increment/decrement operators are used
with operand independently, it will not make any difference. But, if the
incremented/decremented value is assigned to some other variable, then certainly, there
will be change in the value of a variable at left-hand-side of assignment operator.

1.19 Compound Assignment Operators
Sometimes, the programmer has to perform some operation on a variable and the result
must be stored in the same variable. For example,
 x= x*5;

var++;
var--;

++var;
--var;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

 a= a+4; etc.

In such situations, the assignment operator can be combined with arithmetic operators.
Following is a list of compound assignment (short-hand) operators.

 Compound Assignment Operators

Operator Usage Meaning
+=
-=
*=
/=

%=

a += b
a -= b
a *= b
a /= b

a %= b

a = a+b
a = a-b
a = a*b
a = a/b

a = a%b

Examples:

 int p=5;
p+=3; //(p = p+3) p is now 5+3 i.e. 8.

 int q=11;
q%=2; //(q = q%2) q is now 11%2 i.e. 1

1.20 Relational Operators
Operators used to identify the relationship between two operands are known as relational
operators. The expressions involving these operators are relational expressions. Relational
expressions always results in either true or false. Thus, they are also known as Boolean
expressions. Following table gives the list of relational operators.

 Relational Operators
Operator Meaning

<
>

<=
>=
==
!=

Less than
Greater than
Less than or equal to
Greater than or equal to
Equal to
Not equal to

Examples:
 int a=5, b=10,c;

c=(a>b); //a>b is false. So, 0(false) is assigned to c.

 int x=10,y=10,z;
z=(x==y); //as x and y are equal, 1(true) is assigned to z.

1.21 Logical Operators
Some programming situations require that several relational expressions be evaluated and
based on this result, the action should be taken. To combine relational expressions, C
provides logical operators. Following is a list of logical operators.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

 Logical Operators

Type Operator Operation
Binary
Binary
Unary

&&
||
!

Logical AND
Logical OR
Logical NOT

The logical expressions results in either true (1) or false (0). Based on the truth-value of the
operands, the expression yields the result. The truth-tables for these operators are given
below:
 Logical AND operation

Operand1 Operand2 Result
Zero
Zero
Non-Zero
Non-Zero

Zero
Non-Zero
Zero
Non-Zero

Zero
Zero
Zero
One

 Logical OR operation

Operand1 Operand2 Result
Zero
Zero
Non-Zero
Non-Zero

Zero
Non-Zero
Zero
Non-Zero

Zero
One
One
One

 Logical NOT operation

Operand Result
Zero
Non-Zero

One
Zero

Examples:

 int i=10, j=20,k;
k=i&&j; //as i and j are non-zero values, k will be 1

 int i=10, j=0,k;

k=i&&j; //as one of the operands is zero, k will be 0

 int i=10, j=20, k=15, m;
m= (i>j) && (j>k);

/* The expression i>j is false. So, 0 is assigned to m */

 int i=10, j=20,k;
k=i||j; //as i and j are non-zero values, k will be 1

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

 int i=10, j=0,k;
k=i||j; //as one of the operands is non-zero, k will be 1

 int i=10, j=20, k=15, m;
m= (i>j) || (j>k);

/* The expression i>j is false. But, j>k is true. As one of the operands for OR
operator is true, 1 is assigned to m */

 int m=10,k;
k=!m;

/* 10 is true value. So, !m results to be false. So, 0 is assigned to k */

 int x=0,y;
y=!x; //As x is false, y will be true (1).

1.22 Conditional (Ternary) Operator
When one among two situations must be opted based on some condition, the programmer
can go for conditional operator. the syntax is –

Here, expr1, expr2 and expr3 are any type of expressions and/or variables. expr1 is a
condition resulting true or false. If expr1 results to be true, then expr2 will be evaluated and
its value is assigned to var. Otherwise, evaluated result of expr3 is assigned to var. For
example,

 int x=10,y=5,z;
z=(x>y)?x:y;

As the expression x>y is true here, value of x is assigned to z.

 float a=2.5,b=0.5,c;
c=(a<b)?(a-b):(a+b);

The expression a<b is false. So, (a+b) is evaluated and the result (2.5 +0.5 = 3.0) is
assigned to c.

1.23 Comma Operator
To make the program compact, two or more distinct expressions can be combined to a
single expression using comma operator. The syntax is –

var = (expr1)? (expr2): (expr3);

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

Examples:
 int x=5,y=8, a=10,z;

z=(++x, ++y, a);

Here, both the expressions ++x and ++y are evaluated. So, values of x and y becomes
6 and 9 respectively. But the usage of comma operator within the pair of parentheses
forces the last value to be assigned to a variable. thus, value of a (10) is assigned to z.

 int x=5,y=8, a=10,z;
z=++x, ++y, a;

Here also, x and y becomes 6 and 9 respectively. But, the expressions ++y and a are
ignored for assignment and value of x (now, it is 6) is assigned to z.

1.24 Bitwise Operators
It has already been discussed that a computer can understand only zeros and ones (binary
number format). Every program written by a programmer is translated into the form that a
computer can understand and then only it gets executed. In C, programmer has a facility to
operate on bits and thus having the features of low-level programming languages. The bit-
wise operations provide an efficient way for interacting with the hardware and to perform
some arithmetic operations in more elegant manner. Programmer can manipulate bits of
variables through several bit-wise operators listed below –

Bit-wise Operators
Type Operator Meaning
Binary
Binary
Binary
Unary
Binary
Binary

&
|
^
~
>>
<<

Bit-wise AND
Bit-wise OR
Bit-wise XOR
One’s complement
Right-shift operator
Left-shift operator

 Bit-wise AND Operator:

As the name suggests, initially, operands are converted into binary-format. Then, the
AND (&) operation is performed on the corresponding bits of operands. Consider an
example –

 int x=5, y=6,z;
 z= x & y;

 Now, this operation is carried out as –

(expr1, expr2, …, exprn);

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

 x 0000 0000 0000 0101
 y & 0000 0000 0000 0110
 z 0000 0000 0000 0100

 Thus, z will be decimal equivalent of 0000 0000 0000 0100, which is 4.

 NOTE:

 In the above example, it is assumed that an integer requires two bytes of
memory. Hence, 16 bit values are considered.

 Whether a number is even or odd is decided by the value of a lower order bit in
the corresponding bit pattern. If the last bit of a number is 1, then the number is
odd. Otherwise, it is even. To check the value of lower order bit, one can use a
specially called variable viz. mask having a value 1. Now, the number to be
checked is ANDed (&) with mask. If the result is one, then number is odd.
Otherwise, it is even. To illustrate this fact, consider an example:

 int x=5, mask=1,y;
 y= x & mask;

 The operation is performed as –

 0000 0000 0000 0011
 & 0000 0000 0000 0001
 0000 0000 0000 0001, which equivalent to decimal 1.

 Thus, y will be 1 and so, x is odd.

Consider another example:

int x=10, mask=1,y;
 y= x & mask;

 The operation is performed as –
 0000 0000 0000 1010
 & 0000 0000 0000 0001
 0000 0000 0000 0000

 Thus, y will be 0 and so, x is even.

 Bit-wise OR Operator:

Here, the OR (|) operations is performed on individual bits of operands. For example –

int x=5, y=6,z;
 z= x | y;

 Now, this operation is carried out as –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

 x 0000 0000 0000 0101
 y | 0000 0000 0000 0110
 z 0000 0000 0000 0111

 Thus, z will be decimal equivalent of 0000 0111, which is 7.

 Bit-wise XOR Operator:

In XOR operation, if both bits are same (either both are 1 or both 0), then the resulting
bit will be 0 (false). Otherwise, the resulting bit is 1 (true). For example –

int x=5, y=6,z;
 z= x ^ y;

 Now, this operation is carried out as –

 x 0000 0000 0000 0101
 y ^ 0000 0000 0000 0110
 z 0000 0000 0000 0011

 Thus, z will be decimal equivalent of 0000 0011, which is 3.

 One’s Complement:

It is a unary operator. This operator changes all 1’s of a binary number into 0’s and vice-
versa. For example –

 int x=9, y;
 y= ~x;

Now, x = (0000 0000 0000 1001)

 y = ~(0000 0000 0000 1001)
 = 1111 1111 1111 0110
In binary form, we got the value of y as 1111 1111 1111 0110. It means, the sign bit
(most significant bit) is 1 now. That, is the number is negative. Hence, while converting
this number into decimal, the C compiler treats it as a negative number. And, negative
numbers in C are represented as 2’s complement. Note that,

 2’s complement of a number = one’s complement of that number + 1
Thus, in the above example, 2’s complement of the number is taken by excluding sign
bit. That is, 2’s complement of (1111 1111 1111 0110) is calculated as –

Now, this 2’s complement is converted to decimal as -10. Hence, one’s complement of
+9 would be -10.

One’s complement of 111 1111 1111 0110 1 000 0000 0000 1001
+ 1
 1 000 0000 0000 1010

Sign Bit

Two’s complement of 111 1111 1111 0110

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

 Right Shift Operator:

This operator is denoted by >> (two greater-than symbols). It will shift each bit of the
operand towards right through a number of positions as specified. And the empty bit-
positions at left-side must be appended by zeroes. The syntax is:

 Number of locations to be shifted

 Examples:

 int x=7,y;
y= x>>1;

Here, the bits of x must be shifted one position towards right as shown –

 discard

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

 Append one zero at left.

Thus, y will be 3.

 int x=10,y;
y= x>>2;

Here, the bits of x must be shifted two positions towards right as shown –

 discard

0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0

 Append two zeroes at left.

Thus, y will be 2 now.

operand>>n;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

 NOTE:
It can be easily observed that right-shift operation on an operand is equivalent to

dividing the operand by 2n. Thus,

 Referring to above examples –
 x>>1 is nothing but x/21 = 7/2 = 3 (integer division)
 and x>>2 is(when x=10) x/22 = 10/4 = 2 (integer division)

 Left Shift Operator:

This operator is denoted by << (two less-than symbols). It will shift each bit of the
operand towards left through a number of positions as specified. And the empty bit-
positions at right-side must be appended by zeroes. The syntax is:

 Number of locations to be shifted

 Examples:

 int x=7,y;
y= x<<1;
Here, the bits of x must be shifted one position towards left as shown –

 discard

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 0

 Append one zero at right.
Thus, y will be 14.

 int x=10,y;
y= x<<2;
Here, the bits of x must be shifted two positions towards left as shown –
 discard

0 0 0 0 1 0 1 0

0 0 1 0 1 0 0 0

 Append two zeroes at right.

Operand<<n;

op>>n; op/2n

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

Thus, y will be 40 now.

NOTE:
Here also, one can observe that left-shift operation on an operand is equivalent to

multiplying the operand by 2n. Thus,

 Referring to above examples –
 x>>1 is nothing but x*21 = 7*2 = 14 (integer division)
 and x>>2 is(when x=10) x*22 = 10*4=40 (integer division)

1.25 Special Operators
There are some operators in C used for specific purpose as listed below:

 Address of Operator (&) : To extract the address of a particular variable.
 Value at the address (*) : To extract the value stored at a particular address

(pointer)
 Dot operator (.) : To refer member variable of a structure/union/enumeration
 Indirectional Operaotr (->) : To refer member variable of a

structure/union/enumeration
 through their pointers.

These operators will be discussed later in detail.

1.26 Precedence and Associativity of Operators
Computer evaluates several operations in an expression following a specific order known
as precedence/hierarchy of operators. All the operators have two properties known as
precedence and associativity. The associativity and precedence of various operators is
listed in Table 1.12.

Operators with higher precedence have their operands bound or grouped to them before
operators of lower precedence, regardless of the order in which they appear. For example,
in the expression,
 4+8*2
the multiplication (*) has higher precedence than addition (+). So, 8*2 is evaluated first and
then 4 is added to 16.

Associativity of an operator determines the direction in which the operands are associated
with the operator. The association of operands with operator can be either from left to right
or from right to left. The evaluation process of an expression is thus based on associativity
of various operators involved in the expression. Consider the following examples:

Op<<n; op*2n

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

 12 + 6 / 3 = 14

 If two operators have equal precedence and occur one after the other, then they are
evaluated in a sequence.

12 / 4 * 2 + 5 = 11

Here, / and * have equal precedence and have left to right associativity. Thus, they
are evaluated in a sequence from left to right.

 int x=2,y=3,z;

z = x += y *= 10;

 (y= Y*10=30)

 (x=x+y =32)

 (z=x=32)

Here, the operators =, += and *= are all having same precedence. But, they are
associated from right to left. Thus, the value of z will be 32.

 10 * (3 + 4 / 2) + (-1) = 49

The parentheses have higher priority. So, all the operations within it are evaluated. Then
the parenthesis containing unary operator – is evaluated. The next priority is the

1

2

1

2

3

1

2

3

3 1

2

4

5

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

multiplication and finally addition. Note that all the operators involved here are associated
from left to right.

Table 1.12 Precedence of Operators
Precedence Operator Operation Associativity

() Function Call/Parentheses 1
[] Array subscript

Left to Right

! Logical Negation(NOT)
~ One’s Complement
+ Unary Plus
- Unary Minus

++ Pre/post increment
-- Pre/post decrement
& Address of
* Indirection

2

sizeof Size of operand(in bytes)

Right to Left

* Dereference (pointer) 3
-> Dereference (pointer to an

object of a class or structure)

Left to Right

* Multiplication
/ Division

4

% Modulus (Remainder after
division)

Left to Right

+ Addition 5
- Subtraction

Left to Right

<< Left shift 6
>> Right shift

Left to Right

< Less than
<= Less than or equal to
> Greater than

7

>= Greater than or equal to

Left to Right

== Equality 8
!= Not equal to

Left to Right

9 & Bit-wise AND Left to Right
10 ^ Bit-wise XOR Left to Right
11 | Bit-wise OR Left to Right
12 && Logical AND Left to Right
13 || Logical OR Left to Right
14 ?: Conditional (ternary) Operator Left to Right

= Assignment operator 15
+=,*=, -
=,/= etc.

Compound assignment
operators

Right to Left

16 , Comma operator Left to Right

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

26

1.27 Type Conversions
Some times it may happen that the type of the expression and the type of the variable on
the left hand side of the assignment operator may not be same. In such cases, the value of
the expression is promoted or demoted depending on the type of the variable on left hand
side of =. Such kind of promotion/demotion of type is called as type conversion. Since the
compiler itself does this, it is also known as automatic/implicit type conversion. For
example, consider a code segment:

int i;
 float b;
 i=3.5;
 b=30;

Here, as i can not store fractional value, a floating number 3.5 is converted into integer 3.
Similarly, 30 is promoted to 30.000000.

The same rule is applied for arithmetic expression also. For example,

float a=5.0, b=2.0;
int x;
x= a/b;

Here, x will get the value 2 instead of 2.500000.

Note that, always the promotion happens to the data type with more size.

Some times we need to force the compiler to explicitly convert the value of an expression to
a particular data type. Consider a code segment,

 float z;
 int x=6, y=4;
 z=x/y;

Here, as x and y are integers, the integer division is performed and x/y is evaluated as 1
instead of 1.500000. Now the integer 1 is promoted to 1.000000 and stored in the variable
z, which is declared as float. Thus, we will not get the expected result. To avoid this
problem, the programmer has to convert the type of data during evaluation of expression.
This is known as explicit type conversion or type casting. The methodology is illustrated
in the following code segment –

float z;
 int x=6, y=4;
 z=(float) x/y;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

27

Here, the programmer is explicitly converting value of x from 6 to 6.000000. Then 4 is
converted into 4.00000 implicitly by the complier. Thus, the value of expression is
evaluated to be 1.500000.

1.28 Mathematical Functions
C provides some of the mathematical functions through the header file math.h for the
programmer’s usage. Following is a list showing few of the mathematical functions.

Function Meaning
ceil(x) x rounded up to the nearest integer
floor (x) x rounded down to the nearest integer
exp(x) e to the power of x
abs (x) Absolute value of x
log(x) Natural logarithm of x
log10(x) Logarithm to base 10 of x
sqrt(x) Square root of x
sin(x) Sine of x
cos(x) Cosine of x
tan (x) Tangent of x
sinh (x) sine hyperbolic of x
cosh (x) Cosine hyperbolic of x
tanh (x) Tangent hyperbolic of x

1.29 STORAGE CLASSES IN C
To understand the behavior of variables inside the function /block of code, we should
understand the scope of variables. There is a concept called as storage class in C/C++,
which will explain the storage area of the variable, default value of the variable, scope of
the variable and life time of the variable. C programming language has four storage
classes viz.

– Automatic storage Class
– Register storage class
– Static storage class
– External storage class

If user has not specified the storage class of a variable in its declaration, the compiler will
assume a storage class depending on the context in which the variable is used. Usually,
the default storage class will be automatic storage class. Following table briefly illustrates
various storage classes.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

28

Storage
Class

Storage
Area

Default
Value

Scope Life-time

Automatic
(auto)

Memory Garbage Local to the block in
which the variable is
defined

Till the end of program

Register
(register)

CPU
Register

Garbage - Do - - Do -

Static
(static)

Memory Zero - Do - Value of the variable persists
between function calls

External
(extern)

Memory Zero Global Till the end of program

Automatic storage class
The variables having this storage class is declared using the keyword ‘auto’. Variables of
this type are stored in the memory and their scope will be local to the block in which they
are defined. The default initial value will be any garbage. These variables will alive till the
end of the block in which they are defined.

Example:

int x =20;
void display()
{
 auto int a = 10;
 printf(“%d”,a);

 {
 auto int b =20;
 printf(“%d”,b);
 }
 printf(“%d%d”,a,x);
 printf(“%d”, b); //this line generate error
}

Here, a is local to the function display(). That is, it can be accessed anywhere inside the
function. But b is local to the block in which it is declared. So, it can not be accessed
outside that block. The variable x is a global variable in this example, and it can be
accessed anywhere in the program.

Note that, the keyword auto is optional. Even if we declare a variable inside the function
as:

 int a=10;
then, the compiler will treat that variable as auto only.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

29

Register Storage Class
The declaration of register variables is done using the keyword register. Such variables are
stored in CPU registers. They have the initial default value as any garbage value. The
scope of these variables is being local to the block of their declaration. Life time is till the
end of the block in which they are defined.

The number of CPU registers is limited for any system. Register variables may be treated
as automatic variables when all the registers are busy doing some other task. Usually, the
CPU registers in a microcomputer are of 16 bits, they can not hold float or double value. In
this case too, the variables declared as register will be treated as auto. Thus, the
declaration of variables as register is just a request to the compiler but not the order.

The variables declared as register will be accessed faster. It is customary to declare the
most-frequently-used-variables as register. For example:

 void disp()
 {
 register int i;
 for(i=1; i<=10; i++)
 printf(“%d”,i);
 }

The above function is used to display the numbers from 1 to 10. Here, the variable ‘i’ is
declared as ‘register’. So, the variable ‘i’ is going to be stored in CPU register, if
available.

Static Storage Class
The static variables are declared using the keyword static. They are stored in memory and
initial default value is zero. The scope of the static variables is local to the block but the
value of these variables persist between different function calls. For example:

void increment()
{

 /* here i is declared as static variable. So, value of i is initialized when the
function is called for the first time. Then for next calls, instead of re-declaration
and re-initialization, the previous value is referred.*/

 static int i=0;
 int j =0;
 i++;
 printf(“%d \t %d“, i, j);
}
void main()
{

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

30

 increment();
 increment();
 increment();
}

The output would be:
 i=1 j=1
 i=2 j=1
 i=3 j=1
When we call the function increment() for the first time, obviously the value of i is printed as
1. However when we call the function for the second time, memory for the variable i is not
allocated as it is declared as static. Thus, the previous value exists and is incremented.
Hence we will get the output as 2. We get the output as 3 when the function gets called
from the third time. But, the variable j is an auto variable. for each function call, memory for
j will be re-allocated and initialized to 0. Thus, every time it will be zero only.

External Storage Class
Uses the keyword ‘extern’ for declaration. Default value being zero and stored in memory.
Scope of these variables is global and so accessible for all the functions. The life of these
variables exists till the end of the program. External variables can be used in two different
contexts.

 In a single file containing C source code, an external variable can be treated as a
normal global variable. for example:

#include<stdio.h>
 int x=10;
 void main()
 {
 extern int x;
 printf(“%d”,x);
 }

 Here, the variable x is declared globally. So, when the declaration statement using
extern keyword within function main() is encountered, the compiler will not allocate
memory for x, but it uses the global variable x. Thus, external variable is just like a
global variable in this situation.

 Consider one more situation now. Assume that there are two files of which one

is containing just a variable declaration. And the other is containing source code
and is required to use the variable declared in first file. This is shown below –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Introduction to C – A Pre-requisite

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

31

Here, the file file1.c must be compiled first. Then file2.c must be compiled and executed.
Memory will be allocated for variable x only in the first file. When the compiler encounters
the declaration statement with extern keyword in file2.c, then it searches for the variable x
in all the included files. When it finds, the same will be used. If the programmer forgets to
include the file file1.c in file2.c, then the compiler will generate the error.

NOTE:
 The usage of different storage classes should be made keeping the following issues in

mind –
– Economic usage of memory space
– Improvement in speed of execution.

 Considering these two facts, user can use appropriate storage classes as under –

– If there is a necessity of keeping values of variable between different function
calls, use static.

– If a particular variable, for ex., a counter variable in a loop, is used very often
in the program, use register.

– If a variable is used by many functions, use extern. Note that unnecessary
usage of extern will lead huge wastage of memory.

– If there is no need of above three situations, use auto.

//file1.c

int x=10;

//file2.c
#include<stdio.h>
#include “file1.c”
void main()
{
 extern int x;
 printf(“%d”,x);
}
The output would be – 10

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

