
This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

1 

TREES, SORTING AND SEARCHING  
 
5.1 INTRODUCTION TO TREES 
The data structures that we studied till now such as stack, queue, linked list etc, were of 
linear in nature. That is, the inter-relationship between the elements of those data structures 
is linear. But, in the field of computer science, we come across many situations where the 
data are interrelated in hierarchical structure. In this case, a linear representation of data is 
not possible. The solution for this problem is a data structure called tree, which is a non-
primitive non-linear data structure. 
 
Tree is a data structure used to represent hierarchical relationship existing among several 
data items. Here, each data item is referred to as node. Each node may be empty or may be 
connected to some other nodes. 
 
Example of a tree: 
      Root 
 
                                                                                                                     Level 0 
  
  
     Level 1 
 
     Level 2 
 
 
 Internal Level 3 
    nodes 
    
                                             Leaf or external nodes 
 
Referring to the above diagram, let us define some of the terminologies used in trees. In the 
diagram,  

 A, B, C etc. are known as nodes of a tree.  
 A is known as the root.  
 B, C and D are called as children of A. Similarly, J and K are children of H and so on. 
 A is referred as father of B, C and D.  
 B, C and D are known as siblings of each other.  
 The node, which is not a having any children is called as leaf or terminal or external 

node.  
 A tree structure, which is connected to root is known as a subtree.  
 The number of subtrees connected to a node is known as a degree of that node. In 

the figure, A is having degree 3, B is of degree 2, C is of degree 1 etc.   
 The maximum number representing the degree of any node in a tree is called as 

degree of a tree. Here, degree of tree is 3.  

A 

C D B 

G H F E 

I J K 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

2 

 The entire tree structure is leveled such that the root is at level 0 and any other node 
is having the level one more than the level of its father.  

 The depth or height of a tree is the maximum level of that tree.  
 Collection of disjoint trees is known as the forest. 

 
5.2 BINARY TREES 
Binary tree is a finite set of data items, which is either empty or partitioned into three disjoint 
subsets. The first subset contains only one item known as root. The other two subsets are 
themselves binary trees known as left subtree and right subtree. Thus, in a binary tree, 
maximum degree of any node is at most 2. 
Ex: 
         
 
  
 
  
 
 
 
In the above figure, A is the root of a binary tree. A tree structure having B as a root is known 
as left subtree of the tree with root A. Similarly, the tree structure having C as root is the right 
subtree of the given tree.  
 
There are certain variations in binary trees as listed below: 

 A binary tree in which any node is either empty or consisting of both left subtree and 
right subtree is known as strictly binary tree. 

 
For ex: 

   
 
 
 
 
         

 A strictly binary tree is which the number of nodes at any level i is 2i then the tree is 
said to be complete (or full) binary tree. 

 
Ex: 

             Level, i=0 Number of nodes=2i =1 
    
             Level, i=1 Number of nodes=2i =2  
 
             Level, i=2 Number of nodes=2i=4 
 
 

A 

B C 

D E 

A 

B C 

F G D E 

A 

B C 

E F D 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

3 

 A strictly binary tree is which is not full only at the last level, that too at the right side is 
called as almost complete binary tree. 

 
Ex: 

             Level, i=0 Number of nodes=2i =1 
     
             Level, i=1 Number of nodes=2i =2  
 
             Level, i=2 is not full 
 
 

 A binary tree which is having children either only at right side or at left side is called as 
skewed binary tree.  
Ex.  

 
 
5.2.1 Applications of Binary Trees 
Binary tree is a useful data structure while taking two-way decisions at each point of a 
process. Consider an example to illustrate this fact. 
 
Suppose an array of numbers is given. The problem is to find duplicate numbers in the array. 
If the array is large, comparing each element with the other is quite difficult and is time 
consuming. So, for the sake of simplicity the applications of tree concept can be used. The 
procedure is as follows:  Take a first number in the array and put it as a root of the binary 
tree. Now, take the second number compare it with the root. If the match is found, we can 
conclude that the number is duplicate. If the number is smaller than the root put it as a left 
subtree otherwise put it as a right subtree. Now the next   number is compared with root then 
with left subtree and right subtree if necessary. The procedure is repeated till the array is 
completed. 
 
Binary tree concept can be used for the efficient method of searching and sorting also. It can 
also be used for evaluating an expression by creating an expression tree. 
 
5.2.2 Operations on Binary Trees 
Few of important operations on trees are- 

 Traversing a tree 
 Insertion of a node 

A 

B C 

F D E 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

4 

 Deletion of a node 
 Searching for a node 

 
5.2.3 Traversing a Tree 
Traversal of a tree is a method of visiting each node of a tree exactly once in a systematic 
way. There are three different methods for tree traversal, viz. 

i) Pre-order traversal 
ii) In-order traversal 
iii) Post-order traversal 

 
The rules for these traversals are as below- 
 
Pre-order traversal: 

i) Visit the root. 
ii) Traverse left subtree using pre-order traversal method. 
iii) Traverse right subtree using pre-order traversal method. 

 
In-order traversal: 

i) Traverse left subtree using in-order traversal method. 
ii) Visit the root. 
iii) Traverse right subtree using in-order traversal method.  

 
Post-order traversal: 

i) Traverse left subtree using post-order traversal method. 
ii) Traverse right subtree using pos-order traversal method. 
iii) Visit the root. 
 
 

Example: 
 
 
 
 
 
 
 
 
Pre-order: 
         ABDECFG                          15, 25, 31, 42, 92, 13, 34, 61 
In-order:  
         DBEACGF                           31, 42, 25, 92, 15, 34, 13, 61 
Post-order: 
          DEBGFCA                            42, 31, 92, 25, 34, 61, 13, 15 
 
 

15 

25 13 

34 61 31 92 

42 

A 

B C 

F 

G 

D E 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

5 

5.2.4 Representation of Binary Trees 
For programmatic implementation, tree can be represented in two ways. 

 Array Representation 
Here, each element of a tree is treated as an element of the array i.e. in a binary 
tree, assumption is made that each node is present at all the levels and leaving 
blank space for absent nodes, the array elements are filled-up. 
 
Ex: Consider a binary tree in fig(a). 
 
 
 
 
 
 
 
                       Fig(a)     Fig(b) 
 
Since this binary tree is having a maximum level of 2, fill-up all the nodes till level 2 
as in fig (b). Now, the array representations will be- 
 

  A   B  C     D  E 
 
But, as we know, the array requires contiguous memory blocks to store the 
elements; we will go for node representations of trees. 
 

 Node/Linked list Representation 
Here, each of the elements in a binary tree is treated as a node in doubly linked list 
having three fields viz, left link, data and right link. 

Ex:  For the tree in fig (a), the node representation will be as in fig (b). 
 
 
 
                                                                
                                                            1000 
 
                                                              
                                                  2000                                3000 
   
                          
                                                           4000                               5000   
              Fig(a)      Fig(b) 
 

 
For the programming purpose, we create a node in a tree as-  

 
 

A 

B C 

D E 

A 

B 
C 

D E   

A 

B C 

D E 

2000  A   3000 

N       B        N 4000  C   5000 

N       D        N N       E        N 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

6 

struct node 
{ 
      struct node *llink; 
      int data; 
      struct node *rlink; 
}; 
typedef struct node * NODE; 

 
5.3 BINARY SEARCH TREES 
Binary search tree is a binary tree in which for each node, the elements in left subtree are 
less than it and the elements in right subtree are greater than or equal to it.  Every node of 
binary search tree must satisfy this condition. 
Ex: 
          
 
 
 
 
 
 
 
 
To insert a new node into BST, it is compared with root. If it is less than the root, traverse 
towards left subtree. If it is greater than or equal to root, traverse towards right subtree and 
insertion is made appropriately. Care to be taken such that after insertion also, the tree 
remains BST. Similary, for deletion of a node also, such precaution is to be taken.  
 
Note that in-order traversal of a BST will give the sorted list in ascending order. So, binary 
tree sort is nothing but a creation of BST and then its in-order traversal. 
 
Program:  Implementation (creation) of Binary Search Trees and Traversal Techniques 
#include<stdio.h> 
#include<conio.h> 
 
struct node 
{ 
 struct node *llink; 
 struct node *rlink; 
 int data; 
}; 
typedef struct node *NODE; 
 
NODE getnode()  //Function to get memory from heap 
{ 
 NODE x; 

150 

100 180 

200 50 110 

120 85 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

7 

 x = (NODE) malloc (sizeof (struct node)); 
 if (x == NULL) 
 { 
  printf("No memory space\n"); 
  exit(0); 
 } 
 return x; 
} 
 
NODE insert (int item, NODE root) //Function to create BST by inserting elements 
{ 
 NODE temp,prev,cur; 
 
 temp = getnode(); 
 temp->data = item; 
 temp->rlink = NULL; 
 temp->llink = NULL; 
 
 if(root == NULL) 
  return temp; 
 
 prev = NULL; 
 cur = root; 
 
 
 while (cur != NULL) 
 { 
  prev = cur; 
   
  cur = (item < cur->data) ? cur->llink : cur->rlink; 
 } 
 if (item < prev->data) 
  prev->llink = temp; 
 else 
  prev->rlink = temp; 
 
 return root; 
} 
 
void preorder(NODE root)  //Function to traverse tree in pre-order 
{ 
 if(root != NULL) 
 { 
   printf("%d\t",root->data); 
   preorder(root->llink); 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

8 

  preorder(root->rlink); 
 } 
} 
 
void inorder(NODE root)  //Function to traverse tree in in-order 
{ 
 if(root != NULL) 
 { 
   inorder(root->llink); 
    printf("%d\t",root->data); 
    inorder(root->rlink); 
 } 
} 
 
void postorder(NODE root)  //Function to traverse tree in post-order 
{ 
 if(root != NULL) 
 { 
   postorder(root->llink); 
    postorder(root->rlink); 
    printf("%d\t",root->data); 
 } 
} 
 
void main() 
{ 
 NODE root = NULL; 
 int opt,item; 
 
 for(; ;) 
 { 
  printf("\nCreating a Binary Tree and Traversing the tree\n"); 
  printf("Enter your option\n"); 
  printf("1:Insert an element to tree\n"); 
  printf("2:Pre-Order Traversal\n"); 
  printf("3:In-Order Traversal\n"); 
  printf("4:Post-Order Traversal\n"); 
  printf("5:Exit\n"); 
  scanf("%d",&opt); 
  switch(opt) 
  { 
    case 1: printf("Enter the element to be inserted \n"); 
     scanf("%d",&item); 
     root = insert(item,root); 
     break; 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

9 

    case 2: printf("PREORDER TRAVERSAL\n"); 
     preorder(root); 
     break; 
    case 3: printf("INORDER TRAVERSAL\n"); 
     inorder(root); 
     break; 
    case 4: printf("POSTORDER TRAVERSAL\n"); 
     postorder(root); 
     break; 
    case 5:  
    default: exit(0); 
  }  
 } 
} 
 
Following is a function for deleting a node from BST. This function can be included in 
the above program, if you want delete option. 
 
/* Function to delete a node whose data field is given*/ 
NODE  deletenode(int key, NODE root) 
{ 
     NODE cur, parent, suc, q; 
 
     if(root= =NULL) 
     { 
           printf(“empty tree”); 
           return root; 
     } 
 
     parent=NULL; 
     cur=root; 
 
     while(cur!=NULL && key!=cur->data) 
     { 
           parent=cur; 
           cur=(item<cur->data)? cur->llink : cur->rlink; 
      } 
 
      if(cur= =NULL) 
      { 
           printf(“key not found”); 
           return root; 
       } 
 
       if(cur->llink= =NULL) 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

10 

             q= cur ->rlink; 
       else if(cur->rlink= =NULL) 
              q=cur->llink; 
       else 
       { 
            suc=cur->rlink; 
            while(suc->llink!=NULL) 
        suc=suc->llink; 
             

suc->llink=cur->llink; 
             q=cur->rlink; 
        } 
 
        if(parent= =NULL) 
            return q; 
        if(cur= =parent->llink) 
            parent->llink=q; 
        else 
            parent->rlink=q; 
        free(cur); 
        return root; 
} 
 
5.4 SORTING 
Sorting is a process of arranging a set of data in some order. Usually, sorting will be either in 
ascending order or in descending order. Sorting technique can be mainly divided into two 
categories viz. internal sorting and external sorting. If all the data to be sorted all stored in the 
main memory, then it is called as internal sorting. If the data are stored in the auxiliary 
storage i.e. in floppy, tape etc, then the sorting is said to be external sorting. Let us discuss 
about different internal sorting techniques one by one. 
 
5.4.1 Selection Sort 
Selection sort is a simplest method of sorting technique. To sort the given list in ascending 
order, we will compare the first element with all the other elements. If the first element is 
found to be greater then the compared element, then they are interchanged. Thus at the end 
of first interaction, the smallest element will be stored in first position, which is its proper 
position. Then in the second interaction, we will repeat the procedure from second element to 
last element. The algorithm is continued till we get sorted list. If there are n elements, we 
require (n-1) iterations, in general. 
 
Consider the example---- 
 
 
 
 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

11 

25 12 30 8 7 43 32 
 
 
First: Iteration 
 
25 12 30 8 7 43 32 
 
12 25 30 8 7 43 32 
 
12 25 30 8 7 43 32 
 
8 25 30 12 7 43 32 
 
7 25 30 12 8 43 32 
 
7 25 30 12 8 43 32 
 
 25 30 12 8 43 32 
 
 
 Second Iteration 
             
 25 30 12 8 43 32 
 
  25 30 12 8 43 32 
            
  12 30 25 8 43 32 
             
 8 30 25 12 43 32 
    

8 30 25 12 43 32 
 
 30 25 12 43 32 

 
Third Iteration 
    
     30 25 12 43 32 
 
     25 30 12 43 32 
 
     12 30 25 43 32 
 
     12 30 25 43 32 
 
   30 25 43 32 

7 

7 

7 

7 

7 

7 

7 8 

7 8 

7 8 

7 8 

7 8 

7 8 12 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

12 

Fourth Iteration 
 
7 8 12 30 25 43 32 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 43 32 
 
Fifth Iteration 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 43 32 
 
 
Sixth Iteration 
 
7 8 12 25 30 43 32 
 
7 8 12 25 30 32 43 
 
 
Thus sorted list is: 
7, 8, 12, 25, 30, 32, 43 
 
Program for selection sort: 
 
#include<stdio.h> 
#include<conio.h> 
 
void main() 
{ 
 int a[10],n,i,temp,j; 
 clrscr(); 
 printf("Enter the size of the array:"); 
 scanf("%d",&n); 
 
 printf("\nEnter array elements:\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

13 

 for(i=0;i<n-1;i++) 
 { 
  for(j=i+1;j<n;j++) 
  { 
   if(a[ i]>a[j]) 
   { 
    temp=a[i]; 
    a[i]=a[j]; 
    a[j]=temp; 
   } 
  } 
 } 
 printf("\nSorted list is:\n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 getch(); 
} 
 
5.4.2 Bubble Sort 
The bubble sort technique for sorting a list of data in ascending order is as follows:   In the 
first iteration, the first element of the array is compared with the second element.  If the first 
element is found to be greater than the second element, they are interchanged.  Now, the 
second element is compared with the third and interchanged if required.  In the same way, 
comparison is done till the last element.  At the end of first iteration, the largest element will 
be stored at the last position.  In the second iteration, again the comparison is done from the 
first element to last-but-one element.  At the end of this iteration, the second largest element 
will be placed in its proper position.  If there are ‘n’ elements in the given list, then after (n-1) 
iterations, the array gets sorted. 
 

Consider the following list of integers to be sorted: 
  25 12 30 7 32 8 
 
1st  Iteration: 
  25 12 30 7 32 8  25>12  interchange 
  
 
  12 25 30 7 32 8  25<30 no interchange 
 
 
  12 25 30 7 32 8  30>7 interchange 
 
   
  12 25 7 30 32 8  30<32 no interchange 
 
   

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

14 

  12 25 7 30 32 8  32>8 interchange 
 
          
  12 25 7 30 8   32 placed in its position 
 
 
2nd Iteration: 
  12 25 7 30 8   12<25 no interchange 
 
 
  12 25 7 30 8   25>7 interchange 
 
   

12 7 25 30 8   25<30 no interchange 
 
 
  12 7 25 30 8   30>8 interchange 
 
 
  12 7 25 8    30 also placed 
 
 
 
3rd Iteration: 
  12 7 25 8    12>7 interchange 
 
 
  7 12 25 8    12<25 no interchange 
 
 
  7 12 25 8    25>8 interchange 
 
 
  7 12 8     25 is placed now 
 
 
4th Iteration: 
  7 12 8     7<12 no interchange 
 
 
  7 12 8     12>8 interchange 
 
   
  7 8      12 is placed now 
 

32 

32 

32 

32 

32 

32 30 

32 30 

32 30 

32 30 

32 30 25 

32 30 25 

32 30 25 

32 30 25 12 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

15 

 
5th Iteration: 
  7 8      7<8 no interchange 
 
 
  7       8 is placed 
 
 
Thus, the sorted list is: 
  7 8 12 25 30 32 
 
Program for bubble sort: 
 
#include<stdio.h> 
#include<conio.h> 
 
void main() 
{ 
 int a[10],n,i,temp,j; 
 clrscr(); 
 printf("Enter the size of the array:"); 
 scanf("%d",&n); 
 
 printf("\nEnter array elements:\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 
 for(i=0;i<n;i++) 
 { 
  for(j=0;j<n-i-1;j++) 
  { 
   if(a[ j]>a[j+1]) 
   { 
    temp=a[j]; 
    a[j]=a[j+1]; 
    a[j+1]=temp; 
   } 
  } 
 } 
 printf("\nSorted list is:\n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 getch(); 
} 
 

32 30 25 12 

32 30 25 12    8 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

16 

5.4.3 Insertion Sort 
This sorting technique involves inserting a particular element in proper position. In the first 
iteration, the second element is compared with the first. In second iteration, the third element 
is compared with second and then the first. Thus in every iteration, the element is compared 
with all the elements before it. If the element is found to be greater than any of its previous 
elements, then it is inserted at that position and all other elements are moved to one position 
towards right, to create the space for inserting element. The procedure is repeated till we get 
the sorted list. 
 
Consider an example 
25 12 30 8 7 43 32 
 
I iteration  
 
25 12 30 8 7 43 32    (12<25, so insert 12 at first position) 
 
12 25 30 8 7 43 32 
 
 II iteration  
 
12 25 30 8 7 43 32 (30>25, so don’t compare 30 with 12) 
 
 
12 25 30 8 7 43 32 
 
III iteration  
 
12 25 30 8 7 43 32 (8<30,25,12 so insert 8 at 1st position) 
 
 
IV iteration  
 
8 12 25 30 7 43 32   (7<30,25,12,8. So insert 7 at 1st pos) 
 
 
V iteration  
 
7 8 12 25 30 43 32  (43>30. So, don’t compare 43 with other) 
 
 
VI iteration  
 
7 8 12 25 30 43 32  (32<43 but 32>30. So, insert in-between) 
 
 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

17 

Sorted list: 
 
7 8 12 25 30 32 43 
 
Program for insertion sort: 
#include<stdio.h> 
#include<conio.h> 
 
void main() 
{ 
 int a[10],n,i,item,j; 
 clrscr(); 
 printf("Enter the size of the array:"); 
 scanf("%d",&n); 
 printf("\nEnter array elements:\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 
 for(i=1;i<n;i++) 
 { 
  item=a[i]; 
  for(j=i-1;j>=0 && item<a[j];j--) 
   a[j+1]=a[j]; 
  a[j+1]=item; 
 } 
 printf("\nSorted list is:\n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 getch(); 
} 
 
5.4.4 Quick Sort 
As the name suggests, Quick Sort is a technique that will sort a list of data significantly faster 
than any other sorting techniques. This algorithm is based on the fact that – it is always 
easier and faster to sort two small arrays than one single big array.  
 
Here, the given array is divided into two sub-arrays such that the elements at the left-side of 
some key element are less than the key element and the elements at the right-side of the key 
element are greater than the key element. 

 
The dividing procedure is done with the help of two index variables and one key element as 
explained below – 

 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

18 

i) Usually the first element of the array is treated as key. The position of the 
second element is taken as the first index variable left and the position of the 
last element will be the index variable right. 

ii) Now the index variable left is incremented by one till the value stored at the 
position left  is greater than the key. 

iii) Similarly right is decremented by one till the value stored at the position right is 
smaller than the key. 

iv) Now, these two elements are interchanged. Again from the current position, left 
and right are incremented and decremented respectively and exchanges are 
made appropriately, if required. 

v) This process is continued till the index variables crossover. Now, exchange key 
with the element at the position right. 

vi) Now, the whole array is divided into two parts such that one part is containing 
the elements less than the key element and the other part is containing the 
elements greater than the key.  And, the position of key is fixed now. 

vii) The above procedure (from step i to step vi) is applied on both the sub-arrays. 
After some iteration we will end-up with sub-arrays containing single element. 
By that time, the array will be stored. 

 
     Let us illustrate this algorithm using an example.  Consider an array  

 
a[7] ={25, 12, 30, 8, 7, 43, 32} 

 
     Let key =25 
 left = 1, the position of 12 
           right =6, the position of 32 
 
     First step: Compare key with a[left] 
 
     key     left     right 

    25   12   30   8   7   43    32  
 

Now, key > a[left] (i.e. 25 > 12) is true.  
So increment left. So, now left will be at the element 30. 

  
      Second step: Compare key with a[left] 

key                     left    right          
25   12   30   8   7   43   32 

Now, key > a[left] (i.e. 25 > 30) is false. 
So stop incrementing  left. 

 
      Third step: Compare key with a[right]. 

key  left    right  
25   12   30   8   7   43   32  

Now, key < a[right] (i.e. 25 < 32) is true. 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

19 

So, decrement right. Thus, right will be at the element 43 now. 
 
       Fourth step: Compare key with a[right]. 

key  left   right  
25   12   30   8   7   43   32 

 Now, key < a[right] (i.e. 25 < 43) is true. 
 So, decrement right. Thus, right will be now at 7. 
 
       Fifth step: Compare key with a[right]. 

key  left  right  
25   12   30   8   7   43   32 

 Now, key < a[right] (i.e. 25 < 7) is false. 
 So, stop decrementing right. 
 
       Sixth step: Exchange the values of a[left] (30) and a[right] (7). Thus, array will be – 

key  left  right  
25   12   7   8   30   43   32 

 
      Seventh step: Again start the procedure from beginning. That is, compare key with 
a[left].  

key  left  right  
25   12   7   8   30   43   32 

 Now, key > a[left] (i.e. 25 > 7) is true. 
 So, increment left.  Now, left will be at 8. 
 
Eighth step: Compare key with a[left]. 

key   left right  
25   12   7   8   30   43   32 

 Now, key > a[left] (i.e. 25 > 8) is true. 
 So, increment left.  Now, left will be at 30. 
 
Ninth step: Compare key with a[left]. 

key         left, right  
25   12   7   8   30    43   32 

 Now, key > a[left] (i.e. 25 > 30) is false. 
 So, stop incrementing left. 
 
Tenth step: Compare key with a[right]. 

key         left, right  
25   12   7   8   30    43   32 

 Now, key < a[right] (i.e. 25 < 30) is true. 
 So, decrement right. Thus, right will be at 8 now. 
 
 
 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

20 

Eleventh step: The array looks like – 
key          right      left  
25   12   7   8   30 43   32 

As the index variables left and right cross-over, exchange key (25) with a[right] (8). 
 
The array would be – 
  8 12 7 25 30 43 32 
 
Thus, all the elements at the left-side of key(i.e. 25) are less than key and all the elements at 
the right-side of key are greater than key. Hence, we have got two sub-arrays as – 
  {8, 12, 7} 25 {30, 43, 32} 
Now, the position of 25 will not get changed. But, we have to sort two sub-arrays separately, 
by referring the above explained steps. 
 

Proceeding like this, we will get the sorted list.  
 
Program for quick sort: 
 
#include<stdio.h> 
#include<conio.h> 
 
quick_sort(int x[], int low, int high)  //Function to apply quick sort technique 
{ 
 int pos; 
 if (low < high) 
 { 
  pos = partition(x,low,high); 
  quick_sort(x,low,pos-1); 
  quick_sort(x,pos+1,high); 
 } 
 return; 
} 
 
int partition(int x[], int low, int high)  //Function for partitioning the array 
{ 
 int key, temp, true = 1; 
 int left, right; 
 
 key = x[low]; 
 left = low +1; 
 right = high; 
 
 while(true) 
 { 
   

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

21 

while ((left < high) && (key >= x[left])) 
   left++; 
 
  while(key < x[right]) 
   right--; 
   

if(left < right) 
  { 
   temp = x[left]; 
   x[left] = x[right]; 
   x[right] = temp; 
  } 
  else 
  { 
   temp = x[low]; 
   x[low] = x[right]; 
   x[right] = temp; 
   return(right); 
  } 
 } 
 return 0; 
} 
 
void main() 
{ 
 int a[10],n,i,low,high; 
 clrscr(); 
 
 printf("Enter array size\n"); 
 scanf("%d",&n); 
 
 printf("Enter the elements\n"); 
 for(i=0;i<n;i++) 
  scanf("%d",&a[i]); 
 
 low = 0; 
 high = n-1; 
 
 quick_sort(a,low,high); 
 
 printf("The sorted list is \n"); 
 for(i=0;i<n;i++) 
  printf("%d\t",a[i]); 
 
} 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

22 

NOTE: The bubble sort and quick sort techniques are usually called as exchange sort 
techniques. Because, both of these involves the procedure of exchanging the elements in 
some or the other situation. 
 
5.5 SEARCHING 
Searching is an operation which finds the location of a given element in the list. The search is 
said to be successful if the element is found in the list, otherwise the search is said to be 
unsuccessful.  Some of the search techniques that we are going to discuss: 

 Sequential or linear search 
 Binary Search  (already discussed Module 3 along with Recursion) 

 
5.5.1 Linear Search 
Linear search method searches for a key element in the given list by comparing key with 
every element of an array.  Here, each element is compared with the key element till the end 
of the list is reached or the element is found in between. In general, the linear search takes n 
comparisons for an array consisting of n elements.  
 

#include<stdio.h> 
#include<conio.h> 
 
int linear(int a[], int key, int n) 
{ 
 int i; 
 
 for(i=0;i<n;i++) 
  if(a[i]==key) 
   return i+1; 
 
 return -1; 
} 
 
void main() 
{ 
     int a[20], n, key, i, pos; 
     
     printf("Enter size of the array:"); 
     scanf("%d",&n); 
     printf("\nEnter array elements:\n"); 
 
     for(i=0;i<n;i++) 
 scanf("%d",&a[i]); 
 
     printf("\nEnter the key to be searched:"); 
     scanf("%d",&key); 
 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

23 

     pos=linear(a, key, n); 
     if(pos==-1) 
 printf("\nUnsuccessful search!!"); 
     else 
 printf("\nKey found at position %d",pos); 
} 

 
5.6 HASHING 
Hashing is a way of representing dictionaries. Dictionary is an abstract data type with a set of 
operations searching, insertion and deletion defined on its elements.  The elements of 
dictionary can be numeric or characters or most of the times, records.  Usually, a record 
consists of several fields; each may be of different data types. For example, student record 
may contain student id, name, gender, marks etc.  Every record is usually identified by some 
key.  
 
Here we will consider the implementation of a dictionary of n records with keys k1, k2 …kn.  
Hashing is based on the idea of distributing keys among a one-dimensional array  

H[0…m-1], called hash table.  
 

For each key, a value is computed using a predefined function called hash function. This 
function assigns an integer, called hash address, between 0 to m-1 to each key.  Based on 
the hash address, the keys will be distributed in a hash table. 
 
For example, if the keys k1, k2, …., kn are integers, then a hash function can be  
   h(K) = K mod m.  
 
Let us take keys as 65, 78, 22, 30, 47, 89. And let hash function be,  

h(k) = k%10.  
Then the hash addresses may be any value from 0 to 9.  For each key, hash address will be 
computed as – 
 h(65) = 65 %10 = 5 
 h(78) = 78%10 = 8 
 h(22)= 22 % 10 =2 
 h(30)= 30 %10 =0 
 h(47) = 47 %10 = 7 
 h(89)=89 % 10 = 9 
 
Now, each of these keys can be hashed into a hash table as – 

30 22 65 47 78 89
0 1        2       3           4       5        6          7        8          9

 
 
In general, a hash function should satisfy the following requirements: 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

24 

 A hash function needs to distribute keys among the cells of hash table as evenly as 
possible. 

 A hash function has to be easy to compute.  
 
5.6.1 Hash Collisions 
Let us have n keys and the hash table is of size m such that m<n.  As each key will have an 
address with any value between 0 to m-1, it is obvious that more than one key will have 
same hash address. That is, two or more keys need to be hashed into the same cell of hash 
table.  This situation is called as hash collision.  
 
In the worst case, all the keys may be hashed into same cell of hash table.  But, we can 
avoid this by choosing proper size of hash table and hash function.  Anyway, every hashing 
scheme must have a mechanism for resolving hash collision. There are two methods for 
hash collision resolution, viz.  

 Open hashing or Separate Chaining 
 Closed hashing or Open Addressing 

 
5.6.2 Open Hashing (or Separate Chaining) 
In open hashing, keys are stored in linked lists attached to cells of a hash table. Each list 
contains all the keys hashed to its cell.  For example, consider the elements  
  65, 78, 22, 30, 47, 89, 55, 42, 18, 29, 37.  
 
If we take the hash function as h(k)= k%10, then the hash addresses will be – 

h(65) = 65 %10 = 5   h(78) = 78%10 = 8  
h(22)= 22 % 10 =2   h(30)= 30 %10 =0  
h(47) = 47 %10 = 7   h(89)=89 % 10 = 9  
h(55)=55%10 =5   h(42)=42%10 =2 
h(18)=18%10 =8   h(29)=29%10=9 
h(37)=37%10 =7 

 
The hash table would be – 
 

0 1        2       3           4       5        6          7        8          9

65 7830 22 47

55 1842

89

37 29
 

 
 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org


This document can be downloaded from www.chetanahegde.in with most recent updates. 
Data Structures using C: Module 5 (16MCA11) 

 
 

© Dr. Chetana Hegde, Assoc Prof, Department of MCA, RNS Institute of Technology, Bangalore – 98 
Email: chetanahegde@ieee.org   

25 

Operations on Hashing: 
 Searching:  Now, if we want to search for the key element in a hash table, we need to 

find the hash address of that key using same hash function.  Using the obtained hash 
address, we need to search the linked list by tracing it, till either the key is found or list 
gets exhausted.  

 Insertion: Insertion of new element to hash table is also done in similar manner.  
Hash key is obtained for new element and is inserted at the end of the list for that 
particular cell. 

 Deletion: Deletion of element is done by searching that element and then deleting it 
from a linked list.  

 
5.6.3 Closed Hashing (or Open Addressing) 
In this technique, all keys are stored in the hash table itself without using linked lists. Different 
methods can be used to resolve hash collisions.  The simplest technique is linear probing.  
 
This method suggests to check the next cell from where the collision occurs. If that cell is 
empty, the key is hashed there. Otherwise, we will continue checking for the empty cell in a 
circular manner.  Thus, in this technique, the hash table size must be at least as large as the 
total number of keys. That is, if we have n elements to be hashed, then the size of hash table 
should be greater or equal to n. 
 
Example: 
 
Consider the elements 65, 78, 18, 22, 30, 89, 37, 55, 42 
Let us take the hash function as h(k)= k%10, then the hash addresses will be – 
 h(65) = 65 %10 = 5   h(78) = 78%10 = 8  

h(18)=18%10 =8   h(22)= 22 % 10 =2   
h(30)= 30 %10 =0   h(89)=89 % 10 = 9  
h(37)=37%10 =7   h(55)=55%10 =5  
h(42)=42%10 =2 

 
Since there are 9 elements in the list, our hash table should at least be of size 9. Here we are 
taking the size as 10. 
 
Now, hashing is done as below – 

 
 
NOTE: When we resolve collisions through closed hashing, the hash table may end-up 
without proper order of storage. Hence, searching may become like a linear search and 
hence it is not efficient. 
 

30 89 22 42  65 55 37 78 18 
0 1        2       3           4       5        6          7        8          9 

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

