
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Analysis and Design of Algorithms (13MCA41)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

UNIT 8. LIMITATIONS OF ALGORITHM POWER
In the previous chapters, various algorithms and design techniques (like brute force, divide
and conquer etc) have been considered. But, every methodology and algorithm has
limitations. Some problems cannot be solved by any algorithm. Some problems can be
solved algorithmically, but not in a polynomial time. And few problems have lower bound for
their efficiency. There are certain ways of establishing lower bounds on efficiency of
algorithms.

8.1 Decision Trees
A decision tree is a decision support tool that uses a tree-like graph or model of decisions
and their possible consequences. Decision trees are helpful in establishing the lower bounds
on efficiency of comparison-based algorithms like sorting and searching. Consider a decision
tree given in Figure 8.1, which is used for finding minimum of three numbers. Here, each leaf
represents the possible outcome of the algorithm. The work of the algorithm on a particular
input of size can be traced by a path from the root to a leaf in its decision tree. Number of
comparisons made by the algorithm is equal to the number of edges in that path. Hence,
maximum number of comparisons required for the algorithm is equal to the height of the
decision tree.

Figure 8.1 Decision tree for finding minimum of three numbers

Decision Trees for Sorting Algorithms:
Most of the sorting algorithms are based on comparison of elements in a given array. Hence,
decision tree can be drawn for solving sorting problems. Selection sort is one of the sorting
techniques based on comparison of elements. Figure 8.2 is a decision tree for applying
selection sort on 3 elements viz. a, b, c.

Figure 8.2 Decision tree for three-element selection sort

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Analysis and Design of Algorithms (13MCA41)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

It can be observed that in the worst case, number of comparisons can be given as –() ≥ ⌈log ⌉
Decision Tree for three-element Insertion sort:
The figure 8.3 shows the decision tree for implementing insertion sort for an array of three
elements.

Figure 8.3 Decision tree for three-element insertion sort

8.2 P, NP and NP – Complete Problems
In the study of the computational complexity of the problems, the major concern is whether a
given problem can be solved by some algorithm in a polynomial time or not.

We can say that an algorithms solves the problem in polynomial time if its worst-case time
complexity is O(p(n)), where p(n) is a polynomial of input size n. The problems which are
solvable in polynomial time are called as tractable and problems that cannot be solved in
polynomial time are called as intractable.

Class P is a class of decision problems that can be solved in polynomial time by
deterministic algorithms. This class of problems is called polynomial.

Class NP is the class of decision problems that can be solved by nondeterministic
polynomial algorithms. This class of problems is called as Nondeterministic polynomial.

Most of the decision problems are in NP. That is,⊆
But, NP also contains few decision problems like Hamiltonian circuit problem, travelling
salesman problem, knapsack problem etc. This leads to the most important open question of
theoretical computer science: Is P a proper subset of NP, or are they same? That is,

Whether P = NP ?

The meaning of P = NP implies that many combinatorial decision problems can be solved by
a polynomial-time algorithm, though no such algorithm is invented till today. Moreover, many
well-known decision problems are known to be NP-Complete. A decision problem D is said
to be NP-Complete if,

 It belongs to class NP
 Every problem in NP is polynomially reducible to D.

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Analysis and Design of Algorithms (13MCA41)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

A Decision problem D1 is said to be polynomially reducible to a decition problem D2, if
there exists a function t that transforms instances of D1 to instances of D2 such that

 t maps all yes instances of D1 to yes instances of D2 and all no instances of D1 to no
instances of D2

 t is computable by a polynomial-time algorithm

Informally, an NP-complete problem is a problem in NP that is as difficult as any other
problem in this class, because, any other problem in NP can be reduced to it in a polynomial
time as shown in Figure 8.4. In this diagram, arrows indicate the polynomial-time reductions
of NP problems to an NP-complete problem.

Figure 8.4 Notion of an NP-complete problem.

