
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

UNIT 1. INTRODUCTION: COMPUTER & OPERATING
SYSTEMS

1.1 BASIC ELEMENTS
A computer consists of processor, memory and I/O components with one or more modules
of each type. These components are interconnected to ease job of computer. Thus, there
are four structural elements:

 Processor: It controls the operation of the computer and performs its data
processing functions. When there is only one processor, it is called as Central
Processing Unit (CPU).

 Main Memory: It stores data and programs. But, the contents of memory are lost
when the computer shuts down. Whereas, the contents of disk memory are retained.

 I/O Modules: Move data between the computer and its external environment. The
external environment consists of a variety of devices including secondary memory
devices, communications equipment and terminals.

 System Bus: This provides communication among processors, main memory and
I/O modules.

Figure 1.1 Computer Components: Top Level View

0
1
2
3
4
....
....
....
....
....
....
...
....
....
....
....
....
...
....
….
n-2
n-1

CPU

PC MAR

I/OBR

I/OAR Executi
on Unit

MBR IR

I/O Module

 Buffers

….

…

Instruction
Instruction
Instruction

…

Data
Data
Data
Data

…

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

The top-level components of computer are shown in Figure 1.1. One of the functionality of
a processor is to exchange data with memory. For this purpose, the following registers are
used:

 Memory Address Register (MAR): specifies the address in memory for the next
read or write.

 Memory Buffer Register (MBR): contains data to be written into memory or it
receives the data read from memory.

 I/O Address Register (I/OAR): indicates particular I/O device
 I/O Buffer Register: used to exchange data between an I/O module and the

processor.

A memory module contains a set of locations – which are sequentially numbered
addresses. Each location contains a bit pattern that can be interpreted as an instruction or
data. An I/O module transfers data from external devices to processor and memory and
vice versa. It contains temporary buffers for holding data till they are sent.

1.2 PROCESSOR REGISTERS
A processor includes a set of registers that provide memory. But, this memory is faster and
smaller than the main memory. These registers can be segregated into two types based on
their functionalities as discussed in the following sections.

1.2.1 User – visible Registers
These registers enable the assembly language programmer to minimize the main memory
references by optimizing register use. Higher level languages have an optimizing compiler
which will make a choice between registers and main memory to store variables. Some
languages like C allow the programmers to decide which variable has to be stored in
register.

A user visible register is generally available to all programs. Types of registers that are
available are: data, address and condition code registers.

 Data Registers: They can be assigned to different types of functions by the

programmer. Sometimes, these are general purpose and can be used with any machine
instruction that performs operations on data. Still, there are some restrictions like – few
registers are used for floating-point operations and few are only for integers.

 Address Registers: These registers contain main memory addresses of data and
instructions. They may be of general purpose or may be used for a particular way of
addressing memory. Few examples are as given below:

o Index Registers: Indexed addressing is a common mode of addressing which
involves adding and index to a base value to get the effective address.

o Segment Pointer: In segmented addressing, a memory is divided into segments
(a variable-length block of words). In this mode of addressing, a register is used
to hold the base address of the segment.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

o Stack Pointer: If there is a user-visible stack addressing, then there is a register
pointing to the top of the stack. This allows push and pop operations on
instructions stored in the stack.

1.2.2 Control and Status Registers
The registers used by the processor to control its operation are called as Control and
Status registers. This registers are also used for controlling the execution of programs.
Most of such registers are not visible to the user. Along with MAR, MBR, I/OAR and I/OBR
discussed earlier, following registers are also needed for an instruction to execute:

 Program Counter: that contains the address of next instruction to be fetched.
 Instruction Register(IR): contains the instruction most recently fetched.

All processor designs also include a register or set of registers, known as program status
word (PSW). It contains condition codes and status information like interrupt
enable/disable bit and kernel/user mode bit.

Condition codes (also known as flags) are bits set by the processor hardware as the
result of operations. For example, an arithmetic operation may produce a positive,
negative, zero or overflow result. Condition code bits are collected into one or more
registers. And, they are the part of a control register. These bits only can be read to know
the feedback of the instruction execution, but they can’t be altered.

1.3 INSTRUCTION EXECUTION
A program to be executed contains a set of instructions stored in the memory. The
processor takes two steps for processing an instruction:

 Read(or fetch) instructions from the memory one at a time
 Execute each instruction

These two steps are referred as fetch stage and execute stage respectively. One
instruction requires both of these steps for its execution and such a processing is called as
instruction cycle as shown in Figure 1.2. The program halts its execution only if the
processor is turned off, some error occurs or there is an instruction in the program to
terminate.

Figure 1.2 Basic Instruction Cycle

1.3.1 Instruction Fetch and Execute
At the beginning of every instruction cycle, the processor fetches an instruction from the
memory. The program counter (PC) holds the address of next instruction to be fetched.
And, the PC will be incremented whenever the processor fetches the instruction. For
example, assume that the current value of PC is 300. When the processor fetches next

Execute Stage Fetch Stage

START HALT
Fetch next
instruction

Execute
instruction

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

instruction, PC will be incremented to 301. However, this logic may change in case of
possible conditional statements of the program.

Later, the fetched instruction is loaded into the instruction register (IR). The instruction
contains bits, and these bits inform the processor about the action to be taken. The
processor understands these bits and performs the required action. Generally, this entire
process of instruction execution is segregated into four categories as given below:

 Processor-memory: Data may be transferred from processor to memory and vice-
versa.

 Processor-I/O: Data may be transferred to/from a peripheral device by transferring
between the processor and I/O module.

 Data Processing: Processor may perform arithmetic/logical operations on data.
 Control: An instruction may specify that the sequence of execution be altered. For

example, the processor may fetch the instruction from the location 149, which
indicates the next address to be fetched should be 182. So, now the program
counter is set to 182, instead of 150.

With the help of example, we will discuss these points in details now. Consider the
processor with characteristics as shown in Figure 1.3.

Figure 1.3 Characteristics of a processor

The processor contains single data register called accumulator (AC). Both data and
instructions are 16 bit long. The instruction format allows 4 bits for the opcode. So, 16
different opcodes are possible (2^4=16). It will be a single hexadecimal digit. Remaining 12
bits are used for the address in the form of 3 hexadecimal digits. Consider the illustration of
program execution (just a portion) shown in Figure 1.4. The program segment is to add the
contents at the address 940 and the contents at the address 941 and then storing the result
in the address 941. This is something similar to a programming statement x = y+x.

Instruction Format
 0 3 4 15

Opcode Address

CPU Registers:
Program Counter (PC) – Address of instruction
Instruction Register (IR) – Instruction being executed
Accumulator (AC) – Temporary storage

Partial list of opcodes:
 0001 – Load AC from memory
 0010 – Store AC to memory
 0101 – Add to AC from memory

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

Figure 1.4 Example of program execution

For doing this job, three instruction cycles (3 fetch, 3 execute) are required as given below:

 Fetch: The PC contains the address of first instruction, that is 300. The instruction is
1940. Here, 1 indicates opcode and 940 is the memory address. The instruction
1940 is loaded into IR and PC is incremented to 301.

 Execute: Since the opcode 1 (or 0001) is for loading the AC from memory, the
content of the address 940 is loaded into AC. Hence, now AC contains 0003.

 Fetch: Now, the next instruction (5941) is fetched from the location 301 and PC is
incremented to 302.

 Execute: The opcode 5 (0101) indicates adding AC from memory. So, the content of
the location 941 is added to the contents of AC. (0003 + 0002 =0005)

 Fetch: The next instruction (2941) from the address 302 is fetched and the PC is
incremented to 303.

 Execute: The opcode 2 (0010) indicates storing AC to memory. Hence the value
0005 is loaded into the memory address 941.

1.3.2 I/O Function
Data can be exchanged directly between an I/O module and the processor. That is, the
processor can directly read/write data from/to I/O module, not necessarily from the
memory. Here, the processor identifies a specific device that is controlled by a particular
I/O module.

In some situations, it is better to allow I/O exchanges to occur directly with main memory to
relieve the processor from I/O task. In such cases, the processor should grant the authority

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

to I/O module to read/write to memory. Hence, processor is not tied up with I/O operations.
Now, I/O module will issue read/write commands directly to the memory. This operation is
known as direct memory access (DMA).

1.4 INTERRUPTS
The normal sequence of the processor may be interrupted by other modules like I/O,
memory etc. Table 1.1 gives the list of common interrupts.

Table 1.1 Classes of Interrupts
Class Description

Program Generated as a result of an instruction execution. For example,
arithmetic overflow, division by zero etc.

Timer Generated by timer within the processor. It allows OS to
perform certain functions on regular basis.

I/O Generated by I/O controller to indicate any error or normal
completion of an operation.

Hardware Failure Generated by failure like power failure or memory parity error.

Figure1.5 Program flow of control with and without interrupts

The aim of interrupts is to improve the processor utilization. For example, most I/O devices
are slower than the processor. If the processor gives the instruction for WRITE something
on I/O devices, the I/O unit takes two steps for the job –

 I/O program may copy the data to be written into the buffer etc. and prepare for the
actual I/O operation.

 The actual I/O command has to be executed.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

Without interrupts, the processor would sit idle while the I/O unit is preparing (the first step)
itself for the job. But, in case of interrupts, the processor just gives intimation to the I/O unit
first. While I/O unit prepares itself, the processor would continue to execute the next
instructions in the program. When I/O unit is ready, in between, it will do the actual I/O
command and come back to normal flow of execution. Refer Figure 1.5 for understanding
this concept.

1.4.1 Interrupts and the Instruction Cycle
Whenever interrupts are introduced in the system, the processor gives information to the
I/O unit and without waiting for I/O operation to complete; it will continue to execute next
instruction. When the external device is ready to accept more data from the processor, the
I/O module sends an interrupt request signal to the processor. Now, the processor
suspends the current operation of the program and responds to a routine (or a function) of
I/O device, which is called as interrupt handler. When the interrupt processing is
completed, the processor resumes the execution. To allow interrupts, an interrupt stage is
added along with fetch stage and execute stage as shown in Figure 1.6.

Figure 1.6 Instruction Cycle with interrupts

In the interrupt stage, the processor checks for any possible interrupt signal. If no interrupt
is pending, it will go the fetch stage. If an interrupt signal is there, the processor suspends
current execution and executes interrupt handler routine. The interrupt handler routine is a
part of OS, which identifies nature of interrupt and performs necessary action. After
completing interrupt handler routine, the processor resumes the program execution from
the point where it was suspended.

It is understood that some overhead is involved in this process. Extra instructions have to
be executed in the interrupt handler to determine type of interrupt, to decide the appropriate
action etc. But, instead of processor sitting idle for I/O operation and wasting huge amount
of time, the concepts of interrupts are found to be efficient.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

1.4.2 Interrupt Processing
An interrupt triggers many events in the processor hardware and software. The Figure 1.7
shows the sequence of these events and is explained below:

i. The I/O device (or any other interrupt) issues an interrupt signal to the processor.
ii. The processor finishes the execution of current instruction.
iii. The processor checks for the interrupt signal and send the acknowledgement to the

I/O device. This acknowledgement helps the device to clear the interrupt signal.
iv. Now, the processor has to transfer the control to interrupt routine. Before that, it

saves the current status of PC and PSW (Program Status Word) in the control stack.
This will help the processor to resume its execution after finishing the interrupt
routine.

v. Then, the processor loads the entry location of interrupt handling routine into the PC.

Now, the processor has to go for next instruction cycle by fetching the address at PC. But,
PC now contains address of interrupt routine (as per step (v)) and hence, the following
operations will be carried out.

vi. The PC and PSW relating to the interrupted program have been saved on the

control stack. Now, the contents of all registers are also pushed into the control
stack. Thus, the top of the stack contains the address of interrupt routine.

vii. The interrupt handler will now process the interrupt.
viii. When interrupt processing is complete, the saved register values are retrieved from

the stack and stored back into the registers.
ix. Finally, PC and PSW are loaded with their old values from the stack. Hence, the

next instruction of the program will be executed.

1.4.3 Multiple Interrupts
It is possible to have multiple interrupts in a single program. One or more interrupt can
occur during another interrupt is being processed. For example, an input may be taken
while printing the data onto the printer. Each time, the printer finishes its job, an interrupt
will occur. There are two approaches to deal with multiple interrupts as explained below
(Refer Figure 1.8).

 Disable the interrupts while one interrupt is being processed: Here, the
processor ignores any new interrupt signal when another interrupt is in progress.
The processor keeps such signals as pending, and considers when the previous
interrupt routine is completed. Hence, all the interrupts will be processed
sequentially.

But, in this approach, the priorities or inter-dependencies between the interrupt
routines are not considered. Hence, time-critical needs cannot be satisfied.

 Define priorities for interrupts: Here, a higher priority interrupt will pause the lower
priority interrupt which is in execution. Hence, a nested interrupt processing will be
achieved based on the priority.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

Figure 1.7 Simple interrupt processing

(a) Sequential Interrupt Processing (b) Nested Interrupt Processing

Figure 1.8 Transfer of control during multiple interrupts

Interrupt
Handler Y

Interrupt
Handler X User Program

Interrupt
Handler Y

Interrupt
Handler X User Program

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

1.4.4 Multiprogramming
Even though interrupts are used, in most of the situations, the processor is not being used
efficiently. For example, if there is a long I/O wait, then time taken for I/O is more than the
actual user code. So, processor would sit idle. To solve this problem, multiple programs
may be made to execute. Thus, when one program is busy with I/O, the other program’s
instructions may be getting executed; and vice-versa. When the processor is dealing with
many programs, the sequence in which the programs are executed will depend on their
relative priority. In this case, when one interrupt routine is completed, the processor may
not come back to the user program instructions, but it may consider interrupt of another
program based on the priority.

1.5 THE MEMORY HIERARCHY
The constraints on the design of computer’s memory depend on three key points viz.

 Capacity (how much is the size?)
 Access time (how fast it can be accessed?)
 Cost (how expensive it is?)

In general, the relationship between these three points will be as below –
 Faster access time, greater the cost per bit
 Greater capacity, smaller cost per bit
 Greater capacity, slower access speed

Thus, the designers of computer memory face the dilemma on these points. He/she has to
optimize and balance the constraints.

To solve this problem, memory hierarchy has to be used instead of relying on a single
memory component. A typical memory hierarchy would be as given in Figure 1.9. In this
hierarchy, from top to bottom, the following occur:

(i) Decreasing cost per bit
(ii) Increasing capacity
(iii) Increasing access time
(iv) Decreasing frequency of access to the memory by the processor

Hence, the smaller, expensive, faster memories are supplemented by larger, cheaper,
slower memories. The levels of memory hierarchy are explained hereunder.

 Registers: Generally every processor contains a few dozen or hundreds of registers

which are faster, smaller but expensive.
 Cache Memory: It is not usually visible to the programmer, but visible only to the

processor. It is used for the movement of data between main memory and processor
registers.

 Main Memory: It is the principal internal memory system of the computer. Each location
in the main memory has a unique address. Most of the machine instructions refer to one
or more main memory addresses. Main memory is usually extended with a higher
speed, smaller cache.

 Secondary/Auxiliary Memory: The next two levels of the hierarchy falls into this
category. The data are stored permanently on external storage devices like hard disk,

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

removable devices like CD, DVD, tape etc. Programmer can see such data in the form
of folders and files.

Figure 1.9 Memory Hierarchy

1.6 CACHE MEMORY
Since cache memory plays very important role in the performance of the processor and
managing the memory hardware, it is being discussed in detail here.

1.6.1 Motivation
On every instruction cycle, the processor fetches the memory at least once. If the
instruction contains operands or it needs to store some data, then every fetch may need to
access memory more than once. Thus, the processor speed is always restricted by the
memory cycle time. And, in almost all computers, the processor speed is much higher than
that of memory cycle speed. Hence, an intermediate repository of instructions is thought of
to keep a portion of memory that needs to be executed by the processor. Such a small and
fast memory between the processor and main memory is called as cache.

Figure 1.10 Cache and Main Memory

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

1.6.2 Cache Principles
The working of cache memory is depicted in Figure 1.10. The cache size will be
considerably smaller than then main memory. It contains a copy of some portion of main
memory. When the processor tries to read a byte/word from the memory, the cache is
checked first. If that byte is available in the cache, it is delivered to the processor. If not, a
block of main memory containing that byte will be stored into the cache and then it is
delivered to the processor. Figure 1.11 shows the process of read operation using cache.

Figure 1.11 Read operation using cache

1.6.3 Cache Design
The design of a cache memory has to consider following aspects:

 Cache size: Small size caches have significant impact on the performance of the
processor.

 Block size: It indicates the amount of data exchanged between cache and main
memory. Optimum selection of this size is essential. Because, if the block size is too
small, then it cannot hold many instructions and hence the main memory has to be
hit more number of times. Whereas, if the block size is too large, then it becomes
almost like a main memory and the very usage of cache will be void.

 Mapping function: This function determines the location in the cache to be
occupied by the block. It has two constraints: (i) while one block is read, another
may need to be replaced. (ii) As mapping function becomes more flexible, the design
circuitry becomes complex.

 Replacement algorithm: This algorithm decides which block has to be replaced
when a new block is loaded into the cache. And the design of this algorithm should

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

work within the constraints of mapping function. In most of the cases, least-recently-
used (LRU) method is applied.

 Write policy: If the contents of the block in the cache are modified, the same has to
be written inside the main memory. The write policy indicates when the memory
write operation has to take place.

1.7 I/O COMMUNICATION TECHNIQUES
I/O operations are possible using following three techniques:

 Programmed I/O
 Interrupt-driven I/O
 Direct Memory Access (DMA)

Each of these techniques is explained here and the diagrammatic representation is given in
Figure 1.12.

1.7.1 Programmed I/O
When the processor is executing a program and encounters an I/O instruction, then it will
inform I/O module and executes that instruction. In case of programmed I/O, the I/O
module performs the task but do not interrupt the processor about the completion of the
task. Hence, the processor must periodically keep checking the I/O module for the
completion of the task.

Thus, the processor is responsible for extracting/storing data from/to the main memory. So,
the instruction set includes the I/O instructions in the following categories:

 Control: activates an external device and informs the action to be taken.
 Status: used to test various status conditions associated with I/O module.
 Transfer: to read/write data between processor registers and external devices.

Note that, the technique of programmed I/O is time-consuming and keeps the processor
busy unnecessarily.

1.7.2 Interrupt-Driven I/O
As it is observed, the programmed I/O technique will degrade the performance of the
processor. An alternative way is to provide interrupt-driven I/O. In this technique, the
processor will issue an I/O command to the I/O module and then continue its regular
instruction execution. When the I/O module is ready, it will interrupt the processor. Then the
processor will execute the requested task and then resume its former processing.

1.7.3 Direct Memory Access
Though interrupt-driven I/O is efficient than the programmed I/O, it requires active
participation of the processor for transferring data between memory and I/O module.
Hence, both of these techniques have following drawbacks:

 I/O transfer rate is limited
 Processor is tied up in managing I/O transfer

To avoid these problems, direct memory access (DMA) is proposed. It can be put as a
separate module on the system bus or as a part of I/O module. In this technique, when the

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

processor has read/write data, it issues a command to DMA by sending following
information:

 Whether a read or write is requested
 Address of the I/O device involved
 Starting location in memory to read/write data
 Number of words to be read/written

Then, the processor continues its work. Now the job has been delegated to DMA module.
The DMA module will transfer the entire data from the memory and then interrupts the
processor. Thus, the processor is involved only at the beginning and ending of the data
transfer.

Figure 1.12 Techniques of I/O communication

1.8 INTRODUCTION TO OPERATING SYSTEM
An operating system is a program that manages the computer hardware. It also provides a
basis for application programs and acts as an intermediary between a user of a computer
and the computer hardware.

The design of OS is depending on the purpose for which it is being used. For example,

 Mainframe OS are designed to optimize the utilization of hardware

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

 Personal computer OS are designed to support complex games, business
applications etc.

 Handheld computer (like mobiles, tablets etc) OS provides user-friendly interface
and environment to execute programs/applications.

Hence, few OS may be convenient, few may be efficient and some may be combination of
both.

A computer system can be divided into four components as shown in Figure 1.13. They
are:

 Hardware : Consists of central processing unit (CPU), memory and I/O devices and
provides the basic computing resources

 Operating system: Controls and coordinates the use of hardware among various
application software for different users.

 Application programs: defines the ways in which the computing resources are
used to solve the problems of users. For example, word processors, spreadsheets,
compilers, browsers etc.

 Users: users of the computer.

Thus, we can say that OS is like a government. It does not perform any useful function by
itself, but provides environment within which other programs can do useful works.

OS can be explored from two viewpoints and are explained below:

 User View
 System View

1.8.1 User View
The user's view of the computer varies according to the interface being used. The design
on OS varies depending on type of the user or work to be carried out as explained below:

 User of PC: OS for personal computers is aimed at maximizing the work that the
user is performing. Hence, the OS design is mostly for the ease of use rather than
the performance. And, resource utilization is not taken into consideration.

 User of Mainframes: Some users make use of terminals connected to a mainframe
or minicomputer. There will be other people accessing the same computer through
other terminals. These users share the resources and information. Hence, the OS on
such systems is designed to maximize the resource utilization. Thus, efficient
sharing of CPU time, memory and I/O are assured for every user.

 User of Workstations: Sometimes, computers are connected to networks of
workstations and servers. The user working on such workstations may have their
own resources and they may also share the resources with other servers. Hence,
OS for such situation is designed to optimize between individual usability and
resource utilization.

 User of Handheld Computers: Handheld devices like mobiles, tablets are common
nowadays. Because of power, speed and interface limitations, they may perform
relatively less operations. So, their OS are designed for individual usability by
keeping battery life in mind.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

Some computers have little or no user view. For example, embedded computers in home
devices and automobiles may have numeric keypads and may turn indicator lights on or off
to show status, but they and their operating systems are designed primarily to run without
user intervention.

1.8.2 System View
From the computer's point of view, the OS is the program closely involved with the
hardware. In this context, we can view an OS as a resource allocator. A computer system
has many resources that may be required to solve a problem: CPU time, memory space,
file-storage space, I/O devices, and so on. The OS acts as the manager of these resources
by allocating the resources to the programs and users efficiently.

Another view of OS focuses on controlling various I/O devices and user programs. As a
control program, OS manages the execution of user programs to prevent errors and
improper use of computer.

The aim of any computer system is to execute user programs to solve user’s problems. As
computer hardware alone is not easy to use, application programs/softwares have been
created for solving the problems. Such programs require certain common operations like
controlling I/O devices etc. The common functions of controlling and allocating resources
are brought together into one piece of software known as Operating System.

The widely accepted definition of OS goes like this: OS is the program running all times
on the computer (also called as kernel), with all other programs being treated as
application programs.

Figure 1.13 Abstract view of components of a computer system

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

1.8.3 System Goals
It is easier to define an operating system by what it does than by what it is. The primary
goal of some operating system is convenience for the user. Operating systems exist
because they are supposed to make it easier to compute with them than without them. This
view is particularly clear when you look at operating systems for small PCs.

The primary goal of other operating systems is efficient operation of the computer system.
This is the case for large, shared, multi-user systems. These systems are expensive, so it
is desirable to make them as efficient as possible.

These two goals - convenience and efficiency-are sometimes contradictory. In the past,
efficiency was often more important than convenience. Thus, much of operating-system
theory concentrates on optimal use of computing resources. Operating systems have also
evolved over time. For example, UNIX started with a keyboard and printer as its interface,
limiting how convenient it could be for the user. Over time, hardware changed, and UNIX
was ported to new hardware with more user-friendly interfaces. Many graphic user
interfaces (GUIs) were added, allowing UNIX to be more convenient for users while still
concentrating on efficiency.

The designers of OS face many tradeoffs related to efficiency and convenience. Lot of
continuous revision and updation is necessary. Still, the success of OS depends on its
users. In past 50 years, OS evolved into different phases. And, OS and computer
architecture have influenced each other. To facilitate the use of the hardware, researchers
developed operating systems. Users of the operating systems then proposed changes in
hardware design to simplify them.

1.9 MAINFRAME SYSTEMS
Mainframe computer systems were the first computers used to tackle many commercial
and scientific applications. In this section, we trace the growth of mainframe systems.

1.9.1 Batch Systems
Early computers were huge machines and were run from a console. The common input
devices were card readers and tape drives. The common output devices were line printers,
tape drives, and card punches. The user did not interact directly with the computer
systems. Rather, the user prepared a job and submitted it to the computer operator.
Normally, a job would consist of the program, the data, and some control information about
the nature of the job (control cards). The job was usually in the form of punch cards (a
sample punch card is shown in Figure 1.15). After some time (may be minutes, hours, or
days), the output appeared. The output consisted of the result of the program, as well as a
dump of the final memory and register contents for debugging.

The operating system in these early computers was fairly simple. Its major task was to
transfer control automatically from one job to the next. The operating system was always
resident in memory as shown in Figure 1.14.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

Figure 1.14 Memory layout for simple batch system

Figure 1.15 A sample puchcard reader

The operators batched the jobs with similar needs together and ran them through the
computer as a group. Later, the output from each job would be sent back to respective
programmer. This would speed up the processing.

In this execution environment, the CPU is often idle, because the speed of I/O devices is
much slower than process. Over time, improvements in technology and the introduction of
disks resulted in faster I/O devices. However, CPU speeds increased to an even greater
extent, so the problem was not only unresolved, but became worse. The introduction of
disk technology allowed the operating system to keep all jobs on a disk, rather than in a
serial card reader. With direct access to several jobs, the operating system could perform

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

job scheduling, to use resources and perform tasks efficiently. Job scheduling is discussed
later in detail.

1.9.2 Multiprogrammed Systems
The most important aspect of job scheduling is the ability to multiprogram. A single user
cannot keep either the CPU or the I/O devices busy at all times. Multiprogramming
increases CPU utilization by organizing jobs so that the CPU always has one job to
execute.

In multiprogrammed systems, the OS keeps several jobs in memory simultaneously as
shown in Figure 1.16. The OS picks and begins to execute one of the jobs in the memory.
Eventually, the job may have to wait for some task, such as an I/O operation, to complete.
In a non-multiprogrammed system, the CPU would sit idle. In a multiprogramming system,
the OS simply switches to, and executes, another job. When that job needs to wait, the
CPU is switched to another job, and so on. Eventually, the first job finishes waiting and gets
the CPU back. As long as at least one job needs to execute, the CPU is never idle.

Figure 1.16 Memory layout for multiprogramming system

Multiprogramming creates the situation for OS to make certain decisions:

 There will be many jobs residing on the disk waiting for allocation of main memory
for processing. The OS has to take decision of choosing one job among them (This
is job scheduling).

 When the OS selects a job from the job pool, it loads that job into memory for
execution. Having several programs in memory at the same time requires some form
of memory management.

 In addition, if several jobs are ready to run at the same time, the system must
choose among them. Making this decision is CPU scheduling.

 Finally, multiple jobs running concurrently require that their ability to affect one
another be limited in all phases of the operating system, including process

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

scheduling, disk storage, and memory management. OS has to consider all these
aspects.

1.9.3 Time-sharing Systems
Multiprogrammed, batched systems provided effective use of resources, but did not provide
for user interaction with the computer system. Time sharing (or multitasking) is a logical
extension of multiprogramming. Here, the CPU executes multiple jobs by switching among
them, but the switches occur so frequently that the users can interact with each program
while it is running. The user gives instructions to the operating system or to a program
directly, using a keyboard or a mouse, and waits for immediate results. The response time
should be short, typically within 1 second.

A time-shared OS allows many users to share the computer simultaneously. As the system
switches rapidly from one user to the other, every user feels that the entire computer is
dedicated to him/her.

A time-shared OS makes use of CPU scheduling and multiprogramming to provide a small
portion of a time-shared computer to every user. Each user has at least one separate
program in memory. A program loaded into memory and executing is commonly
referred to as a process. A process normally executes only for a short time and waits to
perform I/O. As I/O is depending on the speed of the user, which is very low compared to
that of a system, the user gets enough time. Meanwhile, the OS takes up another process
to execute.

In both time-sharing and multiprogrammed OS, several jobs must be kept simultaneously in
memory. Hence, the OS should have memory management and protection. To obtain a
reasonable response time, jobs may have to be swapped in and out of main memory to the
disk. This is achieved by virtual memory, which is a technique that allows the execution of a
job that may not be completely in memory. The main advantage of the virtual-memory
scheme is that programs can be larger than physical memory. Further, it abstracts main
memory into a large, uniform array of storage, separating logical memory as viewed by the
user from physical memory. This arrangement frees programmers from concern over
memory-storage limitations.

Time-sharing systems must also provide a file system. As the file system resides on a
collection of disks, the disk management must be provided by OS. Also, time-sharing
systems provide a mechanism for concurrent execution, which requires sophisticated CPU-
scheduling schemes. To ensure orderly execution, the system must provide mechanisms
for job synchronization and communication and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another.

1.10 DESKTOP SYSTEMS
Personal computers appeared in the 1970s. During their first decade, the CPUs in PCs
lacked the features needed to protect an OS from user programs. Therefore, OS in PC
were neither multiuser nor multitasking. However, the goals of these OS have changed with
time. Instead of maximizing CPU and peripheral utilization, the systems opt for maximizing

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

user convenience and responsiveness; for example, Microsoft Windows and Apple
Macintosh. The MS-DOS from Microsoft has been superseded by multiple flavors of
Microsoft Windows, and IBM has upgraded MS-DOS to the OS/2 multitasking system. The
Apple Macintosh operating system has been ported to more advanced hardware, and now
includes new features, such as virtual memory and multitasking. With the release of
MacOS X, the core of OS is now based on Mach and FreeBSD UNIX for scalability,
performance, and features, but it retains the same rich GUI. Linux, a UNIX-like operating
system available for PCs, has also become popular recently.

OS for these computers have benefited in several ways from the development of OS for
mainframes. Microcomputers were immediately able to adopt some of the technology
developed for larger OS. On the other hand, the hardware costs for microcomputers are
becoming less that an individual user can bear, and CPU utilization is no longer a prime
concern. Thus, some of the design decisions made in OS for mainframes may not be
appropriate for smaller systems.

Other design decisions still apply. For example, initially file protection was not necessary on
a personal machine. However, these computers are now often tied into other computers
over LAN or other Internet connections. When other computers and other users can access
the files on a PC, file protection again becomes a necessary feature of the OS. The lack of
such protection has made it easy for malicious programs to destroy data on systems such
as MS-DOS and Macintosh. These programs may be self-replicating, and may spread
rapidly via worm or virus mechanisms and disrupt entire companies or even worldwide
networks. Advanced timesharing features such as protected memory and file permissions
are not enough, on their own, to safeguard a system from attack. But, recent
advancements in technology are safeguarding a system up to some extent.

1.11 MULTIPROCESSOR SYSTEMS
Nowadays, many systems are single-processor systems having only one main CPU.
However, multiprocessor systems (also known as parallel systems or tightly coupled
systems) are growing in importance. Such systems have more than one processor in close
communication, sharing the computer bus, the clock, and sometimes memory and
peripheral devices.

Multiprocessor systems have three main advantages:

 Increased throughput: By increasing the number of processors, we hope to get
more work done in less time. The speed-up ratio with N processors is not N; rather,
it is less than N. When multiple processors cooperate on a task, a certain amount of
overhead is incurred in keeping all the parts working correctly. This overhead, plus
conflict for shared resources, lowers the expected gain from additional processors.
Similarly, a group of N programmers working closely together does not result in N
times the amount of work being accomplished.

 Economy of scale: Multiprocessor systems can save more money than multiple
single-processor systems, because they can share peripherals, mass storage, and
power supplies. If several programs operate on the same set of data, it is cheaper to

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

store those data on one disk and to have all the processors share them, than to
have many computers with local disks and many copies of the data.

 Increased reliability: If functions can be distributed properly among several
processors, then the failure of one processor will not halt the system, only slows
down. If we have ten processors and one fails, then each of the remaining nine
processors must take a share of the work of the failed processor. Thus, the entire
system runs only 10 percent slower, rather than failing altogether. This ability to
continue providing service proportional to the level of surviving hardware is called
graceful degradation. Systems designed for graceful degradation are also called
fault tolerant.

Continued operation in the presence of failures requires a mechanism to allow the failure to
be detected, diagnosed, and, if possible, corrected. The Tandem system uses both
hardware and software duplication to ensure continued operation despite faults. The
system consists of two identical processors, each with its own local memory. The
processors are connected by a bus. One processor is the primary and the other is the
backup. Two copies are kept of each process: one on the primary processor and the other
on the backup. At fixed checkpoints in the execution of the system, the state information of
each job including a copy of the memory image-is copied from the primary machine to the
backup. If a failure is detected, the backup copy is activated and is restarted from the most
recent checkpoint. This solution is expensive, since it involves considerable hardware
duplication.

The most common multiple-processor systems now use symmetric multiprocessing (SMP),
in which each processor runs an identical copy of the OS, and these copies communicate
with one another as needed. Some systems use asymmetric multiprocessing, in which
each processor is assigned a specific task. A master processor controls the system; the
other processors either look to the master for instruction or have predefined tasks. This
scheme defines a master-slave relationship. The master processor schedules and allocates
work to the slave processors. SMP means that all processors are peers; no master-slave
relationship exists between processors. Each processor concurrently runs a copy of the
operating system.

A typical SMP architecture is shown in Figure 1.17. An example of the SMP system is
Encore's version of UNIX for the Multimax computer. This computer can be configured such
that it employs dozens of processors, all running copies of UNIX. The benefit of this model
is that many processes can run simultaneously-N processes can run if there are N CPUs-
without causing a significant deterioration of performance. However, we must carefully
control I/O to ensure that the data reach the appropriate processor. Also, since the CPUs
are separate, one may be sitting idle while another is overloaded, resulting in inefficiencies.
These inefficiencies can be avoided if the processors share certain data structures. A
multiprocessor system of this form will allow processes and resources to be shared
dynamically among the various processors. Almost all modern OS including Windows NT,
Solaris, Digital UNIX, OS/2, and Linux will support SMP.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

Figure 1.17 Symmetric multiprocessing architecture

The difference between symmetric and asymmetric multiprocessing may be the result of
either hardware or software. Special hardware can differentiate the multiple processors, or
the software can be written to allow only one master and multiple slaves. For instance,
Sun's operating system SunOS Version 4 provides asymmetric multiprocessing, whereas
Version 5 (Solaris 2) is symmetric on the same hardware.

As microprocessors become less expensive and more powerful, additional OS functions
are off-loaded to slave processors (or back-ends). For example, it is fairly easy to add a
microprocessor with its own memory to manage a disk system. The microprocessor could
receive a sequence of requests from the main CPU and implement its own disk queue and
scheduling algorithm. Thus, the main CPU is relieved from overhead of disk scheduling.

1.12 DISTRIBUTED SYSTEMS
Distributed systems depend on networking for their functionality. A network is a
communication path between two or more systems. By being able to communicate,
distributed systems are able to share computational tasks, and provide a rich set of
features to users.

Networks vary by the protocols used, the distances between nodes, and the transport
media. TCP/IP is the most common network protocol. Similarly, OS support of protocols
varies. Most OS support TCP/IP, including Windows and UNIX. Some systems support
proprietary protocols to suit their needs. To an OS, a network protocol needs an interface
device (for example, a network adapter) with a device driver to manage it, and software for
sending/receiving packet data.

Networks are typecast based on the distances between their nodes; for example, LAN,
WAN, MAN etc. The media to carry networks are equally varied. They include copper
wires, fiber strands, and wireless transmissions between satellites, microwave dishes and
radios. When computing devices are connected to cellular phones, they create a network.
Even very short-range infrared communication can be used for networking. These networks
also vary by their performance and reliability.

1.12.1 Client-Server Systems
As PCs have become faster, more powerful, and cheaper, designers have shifted away
from the centralized system architecture. Terminals connected to centralized systems are
now being replaced by PCs. Similarly, user-interface functionality that was handled directly

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

by the centralized systems is now being handled by the PCs. As a result, centralized
systems today act as server systems to satisfy requests generated by client systems. The
general structure of a client-server system is shown in Figure 1.18. Server systems can be
broadly categorized as follows:

 Compute-server systems provide an interface to which clients can send requests
to perform an action, in response to which they execute the action and send back
results to the client.

 File-server systems provide a file-system interface where clients can create,
update, read, and delete files.

Figure 1.18 General structure of client-server system

1.12.2 Peer-to-peer Systems
The growth of computer networks like the Internet and World Wide Web (WWW) has major
influence on the recent development of OS. When PCs were introduced in the 1970s, they
were designed for personal use. With the beginning of internet for electronic mail, ftp, and
gopher, many PCs became connected to computer networks in 1980s. With the
introduction of the Web in the mid 1990s, network connectivity became an essential
component of a computer system.

Virtually all modern PCs and workstations are capable of running a web browser. OS like
Windows, OS/2, MacOS, UNIX etc also include the system software (such as TCP/IP and
PPP) that enables a computer to access the Internet via a LAN or telephone connection.

In contrast to the tightly coupled systems discussed earlier, the computer networks used in
these applications consist of a collection of processors that do not share memory or a
clock. Instead, each processor has its own local memory. The processors communicate
with one another through various communication lines, such as high-speed buses or
telephone lines. These systems are usually referred to as loosely coupled systems (or
distributed systems).

A network OS is an OS that provides features such as file sharing across the network, and
that includes a communication scheme that allows different processes on different
computers to exchange messages. A computer running a network OS acts autonomously
from all other computers on the network, although it is aware of the network and is able to

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

communicate with other networked computers. A distributed OS is a less autonomous
environment. Here, the different OS communicate closely enough to provide the illusion
that only a single operating system controls the network.

1.13 CLUSTERED SYSTEMS
In clustered systems, multiple CPUs are gathered together to perform computational work.
Clustered systems are composed of two or more individual systems coupled together. The
clustered computers share storage and are closely linked via LAN networking.

Clustering is usually performed to provide high availability. A layer of cluster software runs
on the cluster nodes. Each node can monitor one or more of the others (over the LAN). If
the monitored machine fails, the monitoring machine can take ownership of its storage, and
restart the application(s) that were running on the failed machine. The failed machine can
remain down, but the users and clients of the application would only see a brief interruption
of service.

In asymmetric clustering, one machine is in hot standby mode while the other is running the
applications. The hot standby host (machine) just monitors the active server. If that server
fails, the hot standby host becomes the active server. In symmetric mode, two or more
hosts are running applications, and they are monitoring each other. This mode is obviously
more efficient, as it uses all of the available hardware.

Other forms of clusters include parallel clusters and clustering over a WAN. Parallel
clusters allow multiple hosts to access the same data on the shared storage. Since most
OS lack support for this simultaneous data access by multiple hosts, parallel clusters are
usually accomplished by special versions of software and special releases of applications.
For example, Oracle Parallel Server is a version of Oracle's database that has been
designed to run on parallel clusters. Each machine runs Oracle, and a layer of software
tracks access to the shared disk. Each machine has full access to all data in the database.

Most systems do not offer general-purpose distributed file systems. Therefore, many
clusters do not allow shared access to data on the disk. For this, distributed file systems
must provide access control and locking to the files to ensure no conflicting operations
occur. This type of service is commonly known as a distributed lock manager (DLM).

Cluster technology is rapidly changing. Cluster directions include global clusters, in which
the machines could be anywhere in the. Such projects are still the subject of research and
development. Clustered system use and features should expand greatly as storage-area
networks (SANS) become prevalent. SANs allow easy attachment of multiple hosts to
multiple storage units. Current clusters are usually limited to two or four hosts due to the
complexity of connecting the hosts to shared storage.

1.14 REAL-TIME SYSTEMS
A real-time system is used when there is a time requirements on the operation of a
processor or the flow of data. Thus, it is used as a control device in a dedicated application.
Sensors bring data to the computer. The computer must analyze the data and possibly

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

26

adjust controls to modify the sensor inputs. Systems that control scientific experiments,
medical imaging systems, industrial control systems, and certain display systems are real-
time systems. Some automobile-engine fuel-injection systems, home-appliance controllers,
and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing must be done within
the defined constraints, or the system will fail. For instance, a robot arm must be instructed
to halt before it reaches a wall. A real-time system functions correctly only if it returns the
correct result within its time constraints. So in real-time system, a quick response is
expected; whereas in batch system time constraints are not at all there.

Real-time systems may be hard or soft. A hard real-time system guarantees that critical
tasks be completed on time. That is, various tasks like retrieval of stored data, process by
OS etc are bounded by time. Secondary storage is usually limited with data being stored in
read-only memory (ROM). ROM is located on nonvolatile storage devices that retain their
contents even in the case of electric outage; most other types of memory are volatile. Most
advanced OS features are absent too, since they tend to separate the user from the
hardware. And this result in uncertainty about the amount of time an operation will take. For
example, virtual memory is almost never found on real-time systems. Therefore, hard real-
time systems conflict with the operation of time-sharing systems, and the two cannot be
mixed. None of the existing general-purpose OS support hard real-time functionality.

A soft real-time system is less restrictive, where a critical real-time task gets priority over
other tasks, and retains that priority until it completes. Here also, the OS kernel delays
need to be bounded: A real-time task cannot be kept waiting indefinitely for the kernel to
run it. Soft real time is an achievable goal that can be mixed with other types of systems.
But, soft real-time systems have limited utility than hard real-time systems. Given their lack
of deadline support, they are risky to use for industrial control and robotics. They are useful
in areas like multimedia, virtual reality, and advanced scientific projects-such as undersea
exploration and planetary rovers. These systems need advanced OS features that cannot
be supported by hard real-time systems. Because of the expanded uses for soft real-time
functionality, it is finding its way into most current operating systems, including major
versions of UNIX.

1.15 HANDHELD SYSTEMS
Handheld systems include personal digital assistants (PDAs), cell phones, tablets
with/without internet connection. Developers of handheld systems and applications face
many challenges, most of which are due to the limited size of such devices. Due to limited
size, most handheld devices have a small amount of memory, slow processors, and small
display screens. The handheld devices have following limitations:

 Limited Memory: Many handheld devices have between 512 KB and 2 GB of
memory. As a result, the operating system and applications must manage memory
efficiently. This includes returning all allocated memory back to the memory
manager once the memory is no longer being used. Virtual memory allows
developers to write programs that behave as if the system has more memory than

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

27

actual availability. Currently, many handheld devices do not use virtual memory
techniques, thus forcing program developers to work within the limited physical
memory.

 Less Speed: Processors for most handheld devices run at a fraction of the speed of
a processor in a PC. Faster processors require more power. To include a faster
processor in a handheld device would require a larger battery that would have to be
replaced (or recharged) more frequently. To minimize the size of most handheld
devices, smaller, slower processors which consume less power are typically used.
Therefore, the OS and applications must be designed accordingly.

 Small Display: Handheld devices have a display of about 3-5 inches, whereas, PCs
will be having display of about 14 – 40 inches. Familiar tasks, such as reading e-mail
or browsing web pages, must be condensed onto smaller displays. One approach
for displaying the content in web pages is web clipping, where only a small subset of
a web page is delivered and displayed on the handheld device.

1.16 FEATURE MIGRATION
Overall examination of OS for mainframes and microcomputers shows that features once
available only on mainframes have been adopted by microcomputers. The same concepts
are appropriate for the various classes of computers: mainframes, minicomputers,
microcomputers, and handhelds. Figure 1.19 shows the migration of OS features.
However, to start understanding modern OS, you need to realize the theme of feature
migration and to recognize the long history of many OS features.

A good example of this movement occurred with the MULTIplexed Information and
Computing Services (MULTICS) operating system. MULTICS was developed from 1965 to
1970 at the Massachusetts Institute of Technology (MIT) as a computing utility. It ran on a
large, complex mainframe computer (the GE 645). Many of the ideas that were developed
for MULTICS were subsequently used at Bell Laboratories (one of the original partners in
the development of MULTICS) in the design of UNIX. The UNIX operating system was
designed circa 1970 for a PDP-11 minicomputer. Around 1980, the features of UNIX
became the basis for UNIX-like operating systems on microcomputer systems, and they
are being included in more recent operating systems such as Microsoft Windows NT, IBM
0S/2, and the Macintosh operating system. Thus, the features developed for a large
mainframe system have moved to microcomputers over time.

At the same time as features of large operating systems were being scaled down to fit PCs,
more powerful, faster, and more sophisticated hardware systems were being developed.
The personal workstation is a large PC-for example, the Sun SPARCstation, the HP/Apollo,
the IBM RS/6000, and the Intel Pentium class system running Windows NT or a UNIX
derivative. Many universities and businesses have large numbers of workstations tied
together with local-area networks. As PCs gain more sophisticated hardware and software,
the line dividing the two categories-mainframes and microcomputers-is blurring.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

28

Figure 1.19 Migration of OS concepts and features

1.17 COMPUTING ENVIRONMENTS
Here, we will discuss how multiprogrammed, time-shared, handheld computers are used in
variety of computing environment settings.

1.17.1 Traditional Computing
As the time passes by, the computing environment is getting matured. Just a few years
ago, a typical office environment consisted of PCs connected to a network, with servers
providing file and print service. Remote access was not so easy, and portability was
achieved by carrying laptops. Terminals attached to mainframes were common at many
companies as well, with even fewer remote access and portability options.

The current trend is toward more ways to access these environments. Web technologies
are stretching the boundaries of traditional computing. Companies implement portals which
provide web accessibility to their internal servers. Network computers are essentially
terminals that understand web-based computing. Handheld computers can synchronize
with PCs to allow very portable use of company information. They can also connect to
wireless networks to use the company's web portal.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

29

At home, most users had a single computer with a slow modem connection to the office
and Internet. Network connections with good speed are now available for lower cost. Those
fast data connections are allowing home computers to serve up web pages and to contain
their own networks with printers, client PCs, and servers. Some homes even have firewalls
to protect these home environments from security breaches.

1.17.2 Web-based Computing
The Web has become ubiquitous, leading to more access by a wider variety of devices
than was imagined few years ago. PCs are still the most common access devices, with
workstations (high-end graphics-oriented PCs), handheld PDAs, and even cell phones also
providing access.

Web computing has increased the emphasis on networking. Now, devices have
wired/wireless networks with faster connectivity. The implementation of web-based
computing has given rise to new categories of devices, such as load balancers which
distribute network connections among a pool of similar servers. Operating systems like
Windows 95, which acted as web clients, have evolved into Windows ME and Windows
2000, which can act as web servers as well as clients. Generally, the Web has increased
the complexity of devices as their users require them to be web-enabled.

1.17.3 Embedded Computing
Embedded computers are the most common form of computers in existence. They run
embedded real-time OS. These devices are found everywhere, from car engines and
manufacturing robots to VCRs and microwave ovens. They tend to have very specific
tasks. The systems they run on are usually primitive, lacking advanced features, such as
virtual memory, and even disks. Thus, the OS provide limited features. They usually have
little or no user interface, preferring to spend their time monitoring and managing hardware
devices, such as automobile engines and robotic arms.

As an example, consider firewalls and load balancers. Some are general-purpose
computers, running standard OS like UNIX-with special-purpose applications loaded to
implement the functionality. Others are hardware devices with a special-purpose OS
embedded within, providing just the functionality desired.

The use of embedded systems will increase over the time. Their need as a standalone
device or as a member of network/web is increasing. Entire houses can be computerized,
so that a central computer-either a general-purpose computer or an embedded system-can
control heating and lighting, alarm systems, and even coffee makers. Web access can let a
home-owner tell the house to heat up before he arrives home. Someday, the refrigerator
may call the grocery store when it notices the milk is gone.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

