
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

UNIT 7. FILE SYSTEM INTERFACE AND
IMPLEMENTATION

File system provides the mechanism for storage of data and access to data & programs.
The file system consists of two distinct parts:

 collection of files : each storing related data
 directory structure: organizes and provides information about all the files in the

system.

7.1 FILE CONCEPT
A file is a named collection of related information that is recorded on secondary storage.
From a user's perspective, a file is the smallest allotment of logical secondary storage; that
is, data cannot be written to secondary storage unless they are within a file. The
information in a file is defined by its creator. Many different types of information may be
stored in a file like source programs, object programs, executable programs, numeric data,
text, payroll records, graphic images, sound recordings etc. A file has a certain defined
structure according to its type:

 A text file is a sequence of characters organized into lines (and possibly pages).
 A source file is a sequence of subroutines and functions, each of which is further

organized as declarations followed by executable statements.
 An object file is a sequence of bytes organized into blocks understandable by the

system's linker.
 An executable file is a series of code sections that the loader can bring into

memory and execute.

7.1.1 File Attributes
A file has certain attributes, which vary from one OS to another, but typically consist of the
following:

 Name: The symbolic file name is the only information kept in human readable form.
 Identifier: This unique number identifies the file within the file system; it is the non-

human-readable name for the file.
 Type: This information is needed for those systems that support different types.
 Location: This information is a pointer to a device and to the location of the file on

that device.
 Size: The current size of the file (in bytes, words, or blocks), and possibly the

maximum allowed size are included in this attribute.
 Protection: Access-control information determines who can do reading, writing,

executing, and so on.
 Time, date, and user identification: This information may be kept for creation, last

modification, and last use. These data can be useful for protection, security, and
usage monitoring.

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

7.1.2 File Operations
File is an abstract data type. To define it properly, we need to define certain operations on
it:
 Creating a file: This includes two steps: find the space in file system and make an entry

in the directory.
 Writing a file: To write a file, we make a system call specifying both the name of the file

and the information to be written to the file. Using the name of the file, the system
searches the directory to find the location of the file. The system must keep a write
pointer to the location in the file where the next write is to take place. The write pointer
must be updated whenever a write occurs.

 Reading a file: To read from a file, we use a system call that specifies the name of the
file and where (in memory) the next block of the file should be put.

 Repositioning within a file: The directory is searched for the appropriate entry, and
the current-file-position is set to a given value. This file operation is also known as file
seek.

 Deleting a file: To delete a file, search the directory. Then, release all file space and
erase the directory entry.

 Truncating a file: The user may want to erase the contents of a file but keep its
attributes. Rather than forcing the user to delete the file and then recreate it, the
truncation allows all attributes to remain unchanged-except for file length. The file –
length is reset to zero and its file space released.

Other common operations include appending new information to the end of an existing file
and renaming an existing file.

Most of the file operations involve searching the directory for the entry associated with the
named file. To avoid this constant searching, the OS keeps small table (known as open –
file table) containing information about all open files. When a file operation is requested,
this table is checked. When the file is closed, the OS removes its entry in the open-file
table.

Every file which is open has certain information associated with it:
 File pointer: Used to track the last read-write location. This pointer is unique to each

process.
 File open count: When a file is closed, its entry position (the space) in the open-file

table must be reused. Hence, we need to track the number of opens and closes using
the file open count.

 Disk location of the file: Most file operations require the system to modify data within
the file. So, location of the file on disk is essential.

 Access rights: Each process opens a file in an access mode (read, write, append etc).
This information is by the OS to allow or deny subsequent I/O requests.

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

7.1.3 File Types
An OS can operate the file in a required manner only if it recognizes the type of that file. A
file name is split into two parts – name and extension. The file extension normally indicates
the type of a file. Table 7.1 indicates various file types.

Table 7.1 Common File Types

7.2 ACCESS METHODS
There are several methods to access the information stored in the file. Some techniques
are discussed here.

7.2.1 Sequential Access
It is the simplest method of file access. Here, information in the file are accessed one
record after the other in an order. It works on the logic: read next, write next, reset. It is
shown in Figure 7.1. (Note that, in programming languages like C, the functions like fseek(),
rewind() etc can be used).

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

Figure 7.1 Sequential Access

7.2.2 Direct Access
Another method is direct access (or relative access). A file is made up of fixed length
logical records that allow programs to read and write records rapidly in no particular order.
The direct-access method is based on a disk model of a file, since disks allow random
access to any file block. For direct access, the file is viewed as a numbered sequence of
blocks or records. A direct-access file allows arbitrary blocks to be read or written. Thus, we
may read block 14, then read block 53, and then write block 7. There are no restrictions on
the order of reading or writing for a direct-access file.

7.2.3 Other Access Methods
There are several access methods based on direct access method. One of such methods
uses an index for a file. Index contains pointers to various blocks. To find a record in the
file, we first search the index, and then use the pointer to access the file directly and to find
the desired record. The working of indexed file is shown in Figure 7.2.

Figure 7.2 Example of index and relative files

7.3 DIRECTORY STRUCTURE
The file systems of computers can be very large. To manage all these data, we need to
organize them. The disks are split into one or more partitions. Typically, each disk on a
system contains at least one partition, which is a low-level structure in which files and
directories reside. Sometimes, partitions are used to provide several separate areas within

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

one disk, each treated as a separate storage device, whereas other systems allow
partitions to be larger than a disk to group disks into one logical structure.

Each partition contains information about files within it. This information is kept in a device
directory or volume table of contents. The device directory records information-such as
name, location, size, and type-for all files on that partition. Figure 7.3 shows file-system
organization.

Figure 7.3 A typical file-system organization

Various operations that are to be performed on a directory:
 Search for a file: We need to be able to search a directory structure to find the entry for

a particular file.
 Create a file: New files need to be created and added to the directory.
 Delete a file: When a file is no longer needed, we want to remove it from the directory.
 List a directory: We need to be able to list the files in a directory, and the contents of

the directory entry for each file in the list.
 Rename a file: As the name of a file represents its contents to its users, the name must

be changeable when the contents or use of the file changes. Renaming a file may also
allow its position within the directory structure to be changed.

 Traverse the file system: Files may need to be copied into another storage device like
tape, pen-drive etc. and the disk space of that file released for reuse by another file.

7.3.1 Single – Level Directory
The simplest directory structure is the single-level directory. All files are contained in the
same directory, which is easy to support and understand. It is shown in Figure 7.4. There
are certain limitations for single-level directory:

 As all files will be in one directory, each file should have a unique name.
 If there are more users on the same system, each one of them should remember

their file names – which is difficult.
 It is not possible to group the related files together.

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Figure 7.4 Single – level directory structure

7.3.2 Two – Level Directory
A solution to the problems faced with single-level directory is to create a separate directory
for each user. In the two-level directory structure, each user has his/her own user file
directory (UFD). Each UFD has a similar structure, but lists only the files of a single user.
When a user job starts or a user logs in, the system's master file directory (MFD) is
searched. The MFD is indexed by user name or account number, and each entry points to
the UFD for that user. Two – level directory is shown in Figure 7.5.

When a user refers to a particular file, only his own UFD is searched. Thus, different users
may have files with the same name, as long as all the file names within each UFD are
unique.

Figure 7.5 Two – level directory structure

7.3.3 Tree – Structured Directories
The generalization of two-level directory is a tree structure. Here, users can have any
number of directories and sub-directories and files inside each directory as shown in Figure
7.6. Tree – structure is a most common directory structure applied in almost all OS.

Here, every file has a path name. Path names can be of two types: absolute and relative.
An absolute path name is a sequence of directory names starting from root to file name. A
relative path name defines a path from current directory. For example, in the tree-structured
file system of Figure 7.6, if the current directory is root/spell/mail, then the relative path
name prt/first refers to the same file as does the absolute path name root/spell/mail/prt/first.

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

Figure 7.6 Tree – structure directory system

7.3.4 Acyclic – Graph Directories
A tree structure prohibits the sharing of files or directories. An acyclic graph allows
directories to have shared subdirectories and files (Figure 7.7). The same file or
subdirectory may be in two different directories. This is useful when more than one
programmers are working on a same project and need to share the files.

Figure 7.7 Acyclic graph directory structure

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

7.4 FILE – SYSTEM MOUNTING
Just as a file must be opened before it is used, a file system must be mounted before it can
be available to processes on the system. More specifically, the directory structure can be
built out of multiple partitions, which must be mounted to make them available within the file
system name space.

The mount procedure is as follows: The OS is given the name of the device, and the
location within the file structure at which to attach the file system (or mount point). Typically,
a mount point is an empty directory at which the mounted file system will be attached. For
instance, on a UNIX system, a file system containing user's home directories might be
mounted as home; then, to access the directory structure within that file system, one could
precede the directory names with /home, as in /home/jane. Mounting that file system under
/users would result in the path name /users/jane to reach the same directory.

Next, the OS verifies that the device contains a valid file system. It does so by asking the
device driver to read the device directory and verifying that the directory has the expected
format. Finally, the OS notes in its directory structure that a file system is mounted at the
specified mount point. This scheme enables the operating system to traverse its directory
structure, switching among file systems as appropriate.

7.5 FILE SHARING
File sharing is very essential for users who want to collaborate and to reduce the effort
required to achieve a computing goal. Therefore, user-oriented OS must accommodate the
need to share files in spite of the difficulties.

7.5.1 Multiple Users
When an OS accommodates multiple users, the issues of file sharing, file naming, and file
protection become important. The system either can allow a user to access the files of
other users by default, or it may require that a user specifically grant access to the files.

To implement sharing and protection, the system must maintain more file and directory
attributes than on a single-user system. Mainly, the attributes file/directory owner (or user)
and group are included. The owner is the user who may change attributes, grant access,
and has the most control over the file or directory. The group attribute of a file is used to
define a subset of users who may share access to the file. Exactly which operations can
be executed by group members and other users is definable by the file's owner.

7.5.2 Remote File Systems
Networking allows the sharing of resources spread within a campus or even around the
world. One obvious resource to share is data, in the form of files. Through the evolution of
network and file technology, file-sharing methods have changed. In the first implemented
method, users manually transfer files between machines via programs like FTP. The
second major method is a distributed file system (DFS) in which remote directories are
visible from the local machine. In some ways, the third method, the World Wide Web, is a
reversion to the first. A browser is needed to gain access to the remote files, and separate
operations (essentially a wrapper for ftp) are used to transfer files. FTP is used for both

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

anonymous and authenticated access. Anonymous access allows a user to transfer files
without having an account on the remote system. The World Wide Web uses anonymous
file exchange almost exclusively. DFS involve a much tighter integration between the
machine that is accessing the remote files and the machine providing the files.

7.6 PROTECTION
When information is kept in a computer system, we want to keep it safe from physical
damage (reliability) and improper access (protection).

Reliability is generally provided by keeping duplicate copies of files. Many computers have
systems programs that automatically copy disk files to tape at regular intervals. File
systems can be damaged by hardware problems (such as errors in reading or writing),
power surges or failures, head crashes, dirt, temperature extremes, and vandalism. Files
may be deleted accidentally. Bugs in the file-system software can also cause file contents
to be lost.

Protection can be provided in many ways. For a small single-user system, we might provide
protection by physically removing the floppy disks and locking them in a desk drawer or file
cabinet. In a multiuser system, however, other mechanisms are needed.

7.6.1 Types of Access
Protection of files can be achieved by restricting the users for accessing those files.
Protection mechanisms provide controlled access by limiting the types of file access that
can be made. Access is permitted or denied depending on several factors, one of which is
the type of access requested. Several different types of operations may be controlled:

 Read: Read from the file.
 Write: Write or rewrite the file.
 Execute: Load the file into memory and execute it.
 Append: Write new information at the end of the file.
 Delete: Delete the file and free its space for possible reuse.
 List: List the name and attributes of the file.

7.6.2 Access Control
Usually, protection is achieved by controlling file-access depending on the identity of the
user. Various users may need different types of access to a file or directory. Hence, an
access-control list (ACL) is attached with every file and directory. It specifies user name
and types of access allowed for each user. When a user requests access to a particular
file, the OS checks the access list associated with that file. If that user is listed for the
requested access, the access is allowed. Otherwise, a protection violation occurs, and the
user job is denied access to the file.

The main problem with access lists is their length. If we want to allow everyone to read a
file, we must list all users with read access. This technique has two undesirable
consequences:

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

 Constructing such a list may be a tedious and unrewarding task, especially if we do
not know in advance the list of users in the system.

 The directory entry, previously of fixed size, now needs to be of variable size,
resulting in more complicated space management.

These problems can be resolved by use of a condensed version of the access list. To
condense the length of the access control list, many systems recognize three
classifications of users in connection with each file:

 Owner: The user who created the file is the owner.
 Group: A set of users who are sharing the file and need similar access is a group, or

work group.
 Universe: All other users in the system constitute the universe.

In most of the OS, the access is denoted by r, w, x indicating read, write and execute. A
sequence of these characters is used to understand the type of access provided to each
user.

7.7 FILE – SYSTEM STRUCTURE
Disks provide the bulk of secondary storage on which a file system is maintained. They
have two characteristics which will help for convenient storage of multiple files:

 They can be rewritten in place; it is possible to read a block from the disk, to modify
the block, and to write it back into the same place.

 They can access directly any given block of information on the disk.

To provide an efficient and convenient access to the disk, the OS imposes one or more file
systems to allow the data to be stored, located, and retrieved easily. The file system is
composed of many different levels. The Figure 7.8 is an example of a layered design. Each
level in the design uses the features of lower levels to create new features for use by higher
levels.

Figure 7.8 Layered File System

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

The lowest level I/O control consists of device drivers and interrupt-handlers to transfer
information between the main memory and the disk system. The basic file system needs
only to issue generic commands to the appropriate device driver to read and write physical
blocks on the disk. The file-organization module knows about files and their logical blocks,
as well as physical blocks. The logical file system manages metadata information

7.8 FILE – SYSTEM IMPLEMENTATION
Several on-disk and in-memory structures are used to implement a file system. These
vary depending on the OS and the file system, but some general principles are common for
all OS.

On-disk, the file system may contain information about how to boot an OS stored there, the
total number of blocks, the number and location of free blocks, the directory structure, and
individual files. The on-disk structures include:

 A boot control block can contain information needed by the OS to boot from that
partition. If the disk does not contain an OS, this block can be empty. It is typically
the first block of a partition.

 A partition control block contains partition details, such as the number of blocks in
the partition, size of the blocks, free-block count and free-block pointers, and free
FCB count and FCB pointers.

 A directory structure is used to organize the files
 An FCB contains many of the file's details, including file permissions, ownership,

size, and location of the data blocks.

The in-memory information is used for both file-system management and performance
improvement via caching. The structures can include:

 An in-memory partition table containing information about each mounted partition.
 An in-memory directory structure that holds the directory information of recently

accessed directories.
 The system-wide open-file table contains a copy of the FCB of each open file, as

well as other information.
 The per-process open-file table contains a pointer to the appropriate entry in the

system-wide open-file table, as well as other information.

A typical file control block is shown in Figure 7.9.

Figure 7.9 A typical File Control Block (FCB)

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

The operating structures of a file – system implementations for file open and file read are
shown in Figure 7.10.

Figure 7.10 In-memory file-system structures: (a) File Open (b) File Read

7.9 DIRECTORY IMPLEMENTATION
The selection of directory-allocation and directory-management algorithms has a large
effect on the efficiency, performance, and reliability of the file system.

7.9.1 Linear List
The simplest method of implementing a directory is to use a linear list of file names with
pointers to the data blocks. A linear list of directory entries requires a linear search to find a
particular entry. This method is simple to program but time-consuming to execute.

 To create a new file, we must first search the directory to be sure that no existing file
has the same name. Then, we add a new entry at the end of the directory.

 To delete a file, we search the directory for the named file, then release the space
allocated to it.

To reuse the directory entry, we can do one of several things.
 Mark the entry as unused (by assigning it a special name, such as an all-blank

name, or with a used-unused bit in each entry)
 Attach it to a list of free directory entries
 Copy the last entry in the directory into the freed location, and to decrease the length

of the directory.
A linked list can also be used to decrease the time to delete a file.

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

The real disadvantage of a linear list of directory entries is the linear search to find a file.
Directory information is used frequently, and users would notice a slow implementation of
access to it.

7.9.2 Hash Table
Another data structure that has been used for a file directory is a hash table. In this method,
a linear list stores the directory entries, but a hash data structure is also used. The hash
table takes a value computed from the file name and returns a pointer to the file name in
the linear list. Therefore, it can greatly decrease the directory search time. Insertion and
deletion are also straightforward, although some provision must be made for collisions-
situations where two file names hash to the same location. The major difficulties with a
hash table are its generally fixed size (if collision is resolved using linear probing) and the
dependence of the hash function on that size

7.10 ALLOCATION METHODS
The direct-access nature of disks allows us flexibility in the implementation of files. In
almost every case, many files will be stored on the same disk. The main problem is how to
allocate space to these files so that disk space is utilized effectively and files can be
accessed quickly. Three major methods of allocating disk space are: contiguous, linked,
and indexed.

7.10.1 Contiguous Allocation
In contiguous allocation, files are assigned to contiguous areas of secondary storage. A
user specifies in advance the size of the area needed to hold a file to be created. If the
desired amount of contiguous space is not available, the file cannot be created. A
contiguous allocation of disk space is shown in Figure 7.11.

Figure 7.11 Contiguous allocation of disk space

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

One advantage of contiguous allocation is that all successive records of a file are normally
physically adjacent to each other. This increases the accessing speed of records. It means
that if records are scattered through the disk it is accessing will be slower. For sequential
access the file system remembers the disk address of the last block and when necessary
reads the next block. For direct access to block B of a file that starts at location L, we can
immediately access block L+B. Thus contiguous allocation supports both sequential and
direct accessing.

The disadvantage of contiguous allocation algorithm is, it suffers from external
fragmentation. As files are allocated and deleted, the free disk space is broken into little
pieces. Depending on the total amount of disk storage and the average file size, external
fragmentation may be a minor or a major problem.

7.10.2 Linked Allocation
Linked allocation solves all problems of contiguous allocation. With linked allocation, each
file is a linked list of disk blocks; the disk blocks may be scattered anywhere on the disk.
The directory contains a pointer to the first and last blocks of the file as shown in Figure
7.12.

Figure 7.12 Linked Allocation of disk space

Linked allocation solves the problem of external fragmentation, which was present in
contiguous allocation. But, still it has a disadvantage: Though it can be effectively used for
sequential-access files, to find ith file, we need to start from the first location. That is,
random-access is not possible.

7.10.3 Indexed Allocation
This method allows direct access of files and hence solves the problem faced in linked
allocation. Each file has its own index block, which is an array of disk-block addresses.

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

The ith entry in the index block points to the ith block of the file. The directory contains the
address of the index block as shown in Figure 7.13.

Figure 7.13 Indexed allocation of disk space

7.11 FREE – SPACE MANAGEMENT
Since disk space is limited, we need to reuse the space from deleted files for new files, if
possible. To keep track of free disk space, the system maintains a free-space list. The free-
space list records all free disk blocks-those not allocated to some file or directory. To create
a file, we search the free-space list for the required amount of space, and allocate that
space to the new file. This space is then removed from the free-space list. When a file is
deleted, its disk space is added to the free-space list. Free-space management is done
using different techniques as explained hereunder.

7.11.1 Bit Vector
Frequently, the free-space list is implemented as a bit map or bit vector. Each block is
represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0. For
example, consider a disk where blocks 2, 3,4,5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27
are free, and the rest of the blocks are allocated. The free-space bit map would be –
 001111001111110001100000011100000

This technique is simple and efficient in finding the first free block, or n consecutive free
blocks on the disk. But, bit vectors are inefficient unless the entire vector is kept in main
memory. Keeping it in main memory is possible for smaller disks, such as on
microcomputers, but not for larger ones.

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

7.11.2 Linked List
Another approach to free-space management is to link together all the free disk blocks,
keeping a pointer to the first free block in a special location on the disk and caching it in
memory. This first block contains a pointer to the next free disk block, and so on.

However, this scheme is not efficient. To traverse the list, we must read each block, which
requires substantial I/O time. Fortunately, traversing the free list is not a frequent action.
Usually, the OS simply needs a free block so that it can allocate that block to a file, so the
first block in the free list is used.

7.11.3 Grouping
A modification of the free-list approach is to store the addresses of n free blocks in the first
free block. The first n-1 of these blocks are actually free. The last block contains the
addresses of another n free blocks, and so on. The importance of this implementation is
that the addresses of a large number of free blocks can be found quickly, unlike in the
standard linked-list approach.

7.11.4 Counting
Another approach is to keep the address of the first free block and the number n of free
contiguous blocks that follow the first block. Each entry in the free-space list then consists
of a disk address and a count.
