
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

UNIT 5. DEADLOCK AND STARVATION

5.1 PRINCIPLES OF DEADLOCK
Deadlock can be defined as the permanent blocking of a set of processes that either
compete for system resources or communicate with each other. A set of processes is
deadlocked when each process in the set is blocked awaiting an event (typically the freeing
up of some requested resource) that can only be triggered by another blocked process in
the set. Deadlock is permanent because none of the events is ever triggered.

Under the normal mode of operation, a process may utilize a resource in only the following
sequence:

1. Request: If the request cannot be granted immediately (for example, the resource is
being used by another process), then the requesting process must wait until it can
acquire the resource.

2. Use: The process can operate on the resource.
3. Release: The process releases the resource.

But, if every process in the set is waiting for other processes to release the resource, then
the deadlock happens. Two general categories of resources:

 Reusable: can be safely used by only one process at a time and is not depleted
(that is not reduced) by that use. For example, Processors, I/O channels, main and
secondary memory, devices, and data structures such as files, databases, and
semaphores. Here, deadlock occurs if each process holds one resource and
requests the other.

 Consumable: one that can be created (produced) and destroyed (consumed). For
example, interrupts, signals, messages, and information in I/O buffers. Here,
deadlock may occur if a Receive message is blocking.

5.1.1 Conditions (or Characterization) for Deadlock
Following are the conditions for deadlock to present:

 Mutual exclusion: only one process can use a resource at a time
 Hold and wait: a process holding at least one resource is waiting to acquire

additional resources held by other processes.
 No preemption: a resource can be released only voluntarily by the process holding

it, after that process has completed its task.
 Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that P0 is

waiting for a resource that is held by P1, P1 is waiting for a resource that is held by
P2, and so on, Pn–1 is waiting for a resource that is held by Pn, and Pn is waiting for a
resource that is held by P0.

5.1.2 Resource Allocation Graphs
The resource allocation graph is a directed graph that depicts a state of the system of
resources and processes with each process and each resource represented by a node. It
is a graph consisting of a set of vertices V and a set of edges E with following notations:

 V is partitioned into two types:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

o P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.
o R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

 Request edge: A directed edge Pi Rj indicates that the process Pi has requested
for an instance of the resource Rj and is currently waiting for that resource.

 Assignment edge: A directed edge Rj Pi indicates that an instance of the
resource Rj has been allocated to the process Pi

The following symbols are used while creating resource allocation graph:

 A Process

 A resource with 4 instances

 Process Pi requests for Rj

 Process Pi is holding an instance of Rj

Examples of resource allocation graph are shown in Figure 5.1. Note that, in Figure 5.1(c),
the processes P2 and P4 are not depending on any other resources. And, they will give up
the resources R1 and R2 once they complete the execution. Hence, there will not be any
deadlock.

(a) Resource allocation Graph (b) With a deadlock (c) with cycle but no deadlock

Figure 5.1 Resource allocation graphs

Pi

Pi

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

Given the definition of resource allocation graph, we can understand that, if there is no
cycle in the graph, then there will not be a deadlock. If there is a cycle, there is a chance of
deadlock.

There are three general approaches exist for dealing with deadlock.

 Prevent deadlock: Ensure that the system will never enter a deadlock state.
 Avoid deadlock: Make appropriate dynamic choices based on the current state of

resource allocation.
 Detect Deadlock: Allow the system to enter a deadlock state and then recover.

5.2 DEADLOCK PREVENTION
The strategy of deadlock prevention is to design a system in such way that the possibility of
deadlock is excluded. This is possible if we ensure that one of the four conditions (mutual
exclusion, hold & wait, No preemption and circular wait) cannot hold. We will examine
these conditions now.

 Mutual Exclusion: The mutual-exclusion condition must hold for nonsharable

resources. For example, a printer cannot be simultaneously shared by several
processes. On the other hand, sharable resources do not require mutually exclusive
access, and thus cannot be involved in a deadlock. For example, simultaneous access
can be granted for read-only file. A process never needs to wait for a sharable resource.
In general, we cannot prevent deadlocks by denying the mutual-exclusion condition:
Some resources are intrinsically nonsharable.

 Hold and Wait: To ensure that the hold-and-wait condition never occurs in the system,
we must guarantee that, whenever a process requests a resource, it does not hold any
other resources. That is, a process should request all its required resources at one time
and block that process until all its requests can be granted simultaneously. This
approach has certain problems:

o A process may be held up for a long time waiting for all its required resources.
Actually, it would have proceeded with only few of the processes.

o Resources allocated to one process may remain unused for some time,
during which they are denied to other processes.

o A process may not know in advance all the resources that it requires.
 No Preemption: This condition can be prevented in this way: If a process is holding

some resources and requests another resource that cannot be immediately allocated to
it (that is, the process must wait), then all resources currently being held are preempted.
In other words, these resources are implicitly released. The preempted resources are
added to the list of resources for which the process is waiting. The process will be
restarted only when it can regain its old resources, as well as the new ones that it is
requesting.

 Circular Wait: The circular-wait condition can be prevented by defining a linear
ordering of resources. That is, every process must request the resources in an
increasing order. Let there by two processes P1 and P2. Let there are resources Ri and
Rj such that i<j. Now, P1 has acquired Ri and requested Rj. And, P2 has acquired Rj
and requesting Rj. This condition is impossible, because it implies i<j and j<i. But, here
also, the problems seen in hold-and-wait prevention are seen.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

5.3 DEADLOCK AVOIDANCE
Deadlock prevention methods seen in the previous section requires at least one condition
should not hold. But, these methods result in low device utilization and reduced system
throughput.

An alternative method for avoiding deadlocks is to require additional information about how
resources are to be requested. For this purpose, a simplest and most useful model is
designed: each process must declare the maximum number of resources of each type that
it may need. Given a priori information about the maximum number of resources of each
type that may be requested for each process, it is possible to construct an algorithm that
ensures that the system will never enter a deadlock state. This algorithm defines the
deadlock-avoidance approach. A deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that a circular-wait condition can never exist. The
resource-allocation state is defined by the number of available and allocated resources,
and the maximum demands of the processes.

5.3.1 Safe State
A state is safe if the system can allocate resources to each process in some order and still
avoid a deadlock. More formally, a system is in a safe state only if there exists a safe
sequence. A Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi can still
request can be satisfied by currently available resources + resources held by all the Pj, with
j<i.

o If the needs of Pi are not immediately available, then Pi can wait until all Pj have
finished.

o When Pj is finished, Pi can obtain needed resources, execute, return allocated
resources, and terminate.

o When Pi terminates, Pi+1 can obtain its needed resources, and so on.

If no such sequence exists, then the system state is said to be unsafe.

Figure 5.2 Safe, unsafe and deadlock state spaces

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

A safe state is not a deadlock state. A deadlock state is an unsafe state. But, not all unsafe
states are deadlocks as shown in Figure 5.2. An unsafe state may lead to a deadlock. As
long as the state is safe, the OS can avoid unsafe (and deadlock) states. In an unsafe
state, the OS cannot prevent processes from requesting resources such that a deadlock
occurs: The behavior of the processes controls unsafe states.

5.3.2 Resource Allocation Graph Algorithm
One of the techniques for avoiding a deadlock is using resource allocation graph with an
additional edge called as claim edge. Claim edge Pi Rj indicated that process Pi may
request resource Rj at some time in future. This edge is represented by a dashed line. The
important steps are as below:

 When a process Pi requests a resource Rj, the claim edge Pi Rj is converted to a
request edge.

 Similarly, when a resource Rj is released by the process Pi, the assignment edge
Rj Pi is reconverted as claim edge PiRj.

 The request for Rj from Pi can be granted only if the converting request edge to
assignment edge do not form a cycle in the resource allocation graph.

To apply this algorithm, each process Pi must know all its claims before it starts executing.
If no cycle exists, then the allocation of the resource will leave the system in a safe state. If
the cycle is found, system is put into unsafe state and may cause a deadlock.

An illustration: Consider a resource allocation graph shown in Figure 5.3(a). Suppose P2
requests R2. Though R2 is currently free, we cannot allocate it to P2 as this action will
create a cycle in the graph as shown in Figure 5.3(b). This cycle will indicate that the
system is in unsafe state: because, if P1 requests R2 and P2 requests R1 later, a deadlock
will occur.

(a) For deadlock avoidance (b) an unsafe state

Figure 5.3 Resource Allocation graphs

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

5.3.3 Banker’s Algorithm
The resource-allocation graph algorithm is not applicable when there are multiple instances
for each resource. The banker's algorithm addresses this situation, but it is less efficient.
The name was chosen because this algorithm could be used in a banking system to ensure
that the bank never allocates its available cash such that it can no longer satisfy the needs
of all its customers.

When a new process enters the system, it must declare the maximum number of instances
of each resource type that it may need. This number may not exceed the total number of
resources in the system. When a user requests a set of resources, the system must
determine whether the allocation of these resources will leave the system in a safe state. If
it will, the resources are allocated; otherwise, the process must wait until some other
process releases enough resources.

Data structure for Banker’s algorithms is as below –
Let n be the number of processes in the system and m be the number of resource types.

 Available: Vector of length m indicating number of available resources. If
Available[j] = k, there are k instances of resource type Rj available.

 Max: An n x m matrix defines the maximum demand of each process. If Max [i,j] = k,
then process Pi may request at most k instances of resource type Rj.

 Allocation: An n x m matrix defines the number of resources currently allocated to
each process. If Allocation[i, j] = k then Pi is currently allocated k instances of Rj.

 Need: An n x m matrix indicates remaining resource need of each process. If
Need[i,j] = k, then Pi may need k more instances of Rj to complete its task. Note
that,

Need [i,j] = Max[i,j] – Allocation [i,j].

The Banker’s algorithm has two parts:

1. Safety Algorithm: It is for finding out whether a system is in safe state or not. The

steps are as given below –
1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available
Finish [i] = false for i = 1, 2, 3, …, n.

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work

If no such i exists, go to step 4.
3. Work = Work + Allocationi

Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

2. Resource – Request Algorithm: Let Requesti be the request vector for process Pi. If
Requesti [j] = k then process Pi wants k instances of resource type Rj.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

1. If Requesti Needi go to step 2. Otherwise, raise error condition, since process
has exceeded its maximum claim.

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources
are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as follows:
 Available = Available - Requesti;
 Allocationi = Allocationi + Requesti;
 Needi = Needi – Requesti;

If the resulting resource allocation is safe, then the transaction is complete and
the process Pi is allocated its resources. If the new state is unsafe, then Pi must
wait for Requesti , and the old resource-allocation state is restored

Example for Banker’s algorithm:
Consider 5 processes P0 through P4 and 3 resources A (10 instances), B (5 instances), and
C (7 instances). Snapshot at time T0 the snapshot of the system is as given in Table 5.1.

Table 5.1 Snapshot of the system at time To
Process Allocation

(A B C)
Max

(A B C)
Available
(A B C)

P0 (0 1 0) (7 5 3)
P1 (2 0 0) (3 2 2)
P2 (3 0 2) (9 0 2)
P3 (2 1 1) (2 2 2)
P4 (0 0 2) (4 3 3)

(3 3 2)

The matrix Need = Max – Allocation. It is given by the Table 5.2.

 Table 5.2 Need Matrix Table 5.3 New State

We can apply Safety algorithm to check whether the system is safe. We can find that the
sequence <P1, P3, P4, P2, P0> is one of the safety sequences.

Suppose, now the process P1 makes a request (1, 0, 2). To check whether this request can
be immediately granted, we can apply Resource-Request algorithm. If we assume that this
request is fulfilled, the new state would be as shown in Table 5.3. Now, by checking using
safety algorithm, we see that the sequence <P1, P3, P4, P0, P2> is in safe state. Hence,
this request can be granted.

Process

Allocation
(A B C)

Need
(A B C)

Available
(A B C)

P0 (0 1 0) (7 4 3)
P1 (3 0 2) (0 2 0)
P2 (3 0 2) (6 0 0)
P3 (2 1 1) (0 1 1)
P4 (0 0 2) (4 3 1)

(2 3 0)

Process Need
(A B C)

P0 (7 4 3)
P1 (1 2 2)
P2 (6 0 0)
P3 (0 1 1)
P4 (4 3 1)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

5.4 DEADLOCK DETECTION
If a system does not make use of either a deadlock-prevention or a deadlock avoidance
algorithm, then a deadlock situation may occur. In this environment, the system must
provide:

 An algorithm that examines the state of the system to determine whether a deadlock
has occurred

 An algorithm to recover from the deadlock

Note that a detection-and-recovery scheme has some system overhead and run-time cost
is more.

5.4.1 Single Instance of Each Resource Type
If all resources have only a single instance, then we can define a deadlock detection
algorithm that is similar to resource-allocation graph, called a wait-for graph. We obtain
this graph from the resource-allocation graph by removing the resource-nodes and
collapsing the appropriate edges. That is, an edge from Pi to Pj in a wait-for graph implies
that process Pi is waiting for process Pj to release a resource that Pi needs.

Consider Figure 5.4 showing a resource allocation graph and its respective wait-for graph.

 Figure 5.4 (a) Resource Allocation graph (b) corresponding wait-for graph

A deadlock exists in the system if and only if the wait-for graph contains a cycle. To detect
deadlocks, the system needs to maintain the wait-for graph and periodically to invoke an
algorithm that searches for a cycle in the graph.

5.4.2 Several Instances of a Resource Type
The wait-for graph scheme is not applicable to a resource-allocation system with multiple
instances of each resource type. If resources have many instances, we use another
algorithm which is similar to Banker’s algorithm. The data structures used are:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

 Available: A vector of length m indicates the number of available resources of
each type.

 Allocation: An n x m matrix defines the number of resources of each type
currently allocated to each process.

 Request: An n x m matrix indicates the current request of each process. If
Request [i, j] = k, then process Pi is requesting k more instances of resource type
Rj.

The detection algorithm given below investigates every possible allocation sequence for
the processes that remain to be completed.

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
(a) Work = Available
(b) For i = 1,2, …, n

 if Allocationi 0, then
Finish[i] = false;

Else
 Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] = false
(b) Requesti Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then Pi is deadlocked.

5.4.3 Detection Algorithm Usage
The detection algorithm should be invoked based on following factors:

 How often is a deadlock likely to occur?
 How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked frequently.
Resources allocated to deadlocked processes will be idle until the deadlock can be broken.

Deadlocks occur only when some process makes a request that cannot be granted
immediately. So, we could invoke the deadlock detection algorithm every time a request for
allocation cannot be granted immediately. In this case, we can identify not only the set of
processes that is deadlocked, but also the specific process that "caused" the deadlock.
Another alternative is to invoke the algorithm in periodic intervals, say, once in an hour or
whenever CPU utilization drops below certain level.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

5.5 RECOVERY FROM DEADLOCK
When a detection algorithm determines that a deadlock exists, several alternatives
available. One possibility is to inform the operator that a deadlock has occurred, and to let
the operator deal with the deadlock manually. The other possibility is to let the system
recover from the deadlock automatically. There are two options for breaking a deadlock.
One solution is simply to abort one or more processes to break the circular wait. The
second option is to preempt some resources from one or more of the deadlocked
processes.

5.5.1 Process Termination
Processes can be aborted for eliminating deadlock in two different ways:

 Abort all deadlocked processes: This method clearly will break the deadlock
cycle. But, these processes may have computed for a long time, and the results of
these partial computations must be discarded and probably recomputed later.

 Abort one process at a time until the deadlock cycle is eliminated: This method
incurs considerable overhead, since, after each process is aborted, a deadlock-
detection algorithm must be invoked to determine whether any processes are still
deadlocked.

Aborting a process may not be easy. If the process was in the midst of updating a file,
terminating it will leave that file in an incorrect state. Similarly, if the process was in the
midst of printing data on the printer, the system must reset the printer to a correct state
before printing the next job. Many factors may determine which process is chosen to abort:

 Priority of the process.
 How long process has computed, and how much longer to completion.
 How many and what type of resources the process has used.
 How many more resources process needs to complete.
 How many processes will need to be terminated?
 Is process interactive or batch?

5.5.2 Resource Preemption
To eliminate deadlocks using resource preemption, we successively preempt some
resources from processes and give these resources to other processes until the deadlock
cycle is broken. Following issues have to be considered:

 Selecting a victim: Which resources and which processes are to be preempted? We

must determine the order of pre-emption to minimize cost. Cost factors may include
parameters like the number of resources a deadlock process is holding, and the amount
of time a deadlocked process has thus far consumed during its execution.

 Rollback: If we preempt a resource from a process, it cannot continue its normal
execution and hence we must roll back the process as far as necessary to break the
deadlock. This method requires the system to keep more information about the state of
all the running processes.

 Starvation: In a system where victim selection is based primarily on cost factors, it may
happen that the same process is always picked as a victim. As a result, this process

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

never completes its designated task, a starvation situation that needs to be dealt with in
any practical system. Clearly, we must ensure that a process can be picked as a victim
only a (small) finite number of times.

5.6 AN INTEGRATED DEADLOCK STRATEGY
There are strengths and weaknesses to all of the strategies for dealing with deadlock.
Rather than attempting to design an OS facility that employs only one of these strategies, it
might be more efficient to use different strategies in different situations. One of the
approaches could be –

 Group resources into a number of different resource classes.
 Use the linear ordering strategy for the prevention of circular wait to prevent

deadlocks between resource classes.
 Within a resource class, use the algorithm that is most appropriate for that class.

The resource classes can be

 Swappable space: Blocks of memory on secondary storage for use in swapping
processes

 Process resources: Assignable devices, such as tape drives, and files
 Main memory: Assignable to processes in pages or segments
 Internal resources: Such as I/O channels

5.7 DINING PHILOSOPHERS PROBLEM
The dining philosopher’s problem can be explained as below: Five philosophers live in a
house, where a table is laid for them. The life of each philosopher consists of thinking and
eating. The food they eat is spaghetti. Each philosopher requires two forks to eat spaghetti.
The eating arrangements are simple as shown in Figure 5.5. There is a round table on
which is set a large serving bowl of spaghetti, five plates, one for each philosopher, and five
forks. A philosopher wishing to eat goes to his or her assigned place at the table and, using
the two forks on either side of the plate, takes and eats some spaghetti.

Figure 5.5 Dining arrangement for philosophers

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

The problem: Devise an algorithm that will allow the philosophers to eat. The algorithm
must satisfy mutual exclusion (no two philosophers can use the same fork at the same
time) while avoiding deadlock and starvation.

Key points of dining philosopher’s problem:

 illustrates basic problems in deadlock and starvation
 reveal many of the difficulties in concurrent programming
 deals with the coordination of shared resources, which may occur when an

application includes concurrent threads of execution
 it is a standard test case for evaluating approaches to synchronization

5.7.1 Solution using Semaphores
 The dining philosopher’s problem can be solved using semaphores as shown in the code
(Figure 5.6).

Each philosopher picks up the fork on the left side first and then the fork on the right. After
the philosopher is finished eating, the two forks are replaced on the table. This solution
leads to deadlock: If all of the philosophers are hungry at the same time, they all sit down,
they all pick up the fork on their left, and they all reach out for the other fork, which is not
there. In this undignified position, all philosophers starve.

To overcome the risk of deadlock, we could buy five additional forks or teach the
philosophers to eat spaghetti with just one fork. As another approach, we could consider
adding an attendant who only allows four philosophers at a time into the dining room. With
at most four seated philosophers, at least one philosopher will have access to two forks.

Figure 5.6 Solution to Dining Philosopher’s problem

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Operating Systems (13MCA23)

By: Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

5.7.2 Solution using Monitors
Here, some condition variables are set to see that each philosopher must wait for the
availability of the fork. A function (for entering a monitor) has to be written so that, a
philosopher must seize two forks on his left and right sides. If anyone fork is not available,
he must wait. Now, another philosopher can enter the monitor and try his luck. Another
function has to be written for releasing the forks when a philosopher finishes eating. In this
solution, deadlock will not occur.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

