
This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

UNIT 1. INTRODUCTION TO DATA STRUCTURES

1.1 INFORMATION AND ITS MEANING
A computer is a device used to manipulate the information. The study of computer science
includes the study of how information is stored in a computer how it can be edited, and how
it can be used as per user’s requirements. Even through the concepts of information is a
very basic essential for the field of computer science, it is hardly difficult to define the term
information. But it can be explained using the measurable quantities. The basic unit of
information in Computer science is ‘bit’; which will take any one of two values. The binary
digits 0 and 1 are used to represent the two possible status of a particular bit of information.

1.2 ABSTRACT DATA TYPES (ADT)
The term abstract data type refers to the basic mathematical concept that defines the data
type. ADT will specify the logical properties of a data type. It is a useful tool for
implementers and programmers who wish to use the data type correctly. Whenever any
new data type (user-defined data type) is to be created, a prototype of its nature, the
possible operations on it etc. have to be thought of. In such a situation, ADT helps in
forming a prototype. Note that, the representation of ADT do not follow the syntax of any
programming language.

Even though there are several methods to specify ADT, we use the semiformal method,
which will adopt C notations.

For illustration, consider rational number in the form –

The above equation indicates that any rational number will be in the form of p divided by q,
where p and q are integers (the set Z) and the denominator q is not equal to zero.

In this case, the sum of two rational numbers (a1/a2) and (b1/b2) would be –

22

2121

2

1

2

1

*
**

ba
abba

b
b

a
a

The specification of any ADT consists of two parts –

 value definition
o here, we specify the set of possible values taken by the ADT along with some

conditions or constraints with which the ADT bounds.
 operator definition

o here, various operations which are imposed on ADT are defined. This part
contains 3 sections viz. a header, the preconditions (which is optional) and

 0 and ,/ qZqp
q
p

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

the postconditions. The term ‘abstract’ in the header indicates that this is not
a C function; rather it is an ADT operator definition. This term also indicates
that the role of an ADT is a purely logical definition of a new data type.

The following listing gives the ADT for rational numbers. The value definition here indicates
the constraints on rational number. The operator definition parts contains the definition for
various operations like creation of rational number, addtion and multiplication of rational
numbers and for checking the equality of two rational numbers.

// value definition
abstract typedef<integer, integer> RATIONAL;
condition RATIONAL[1] != 0;

//Operator definition
abstract RATIONAL createrational (a, b)
int a,b;
precondition b!=0;
postcondition createrational [0] = = a;
 createrational [1] = = b;

abstract RATIONAL add(a,b)
RATIONAL a, b;
postcondition add[0] = = a[0]*b[1] + b[0]*a[1];
 add[1] = = a[1]*b[1];
abstract RATIONAL mul(a,b)
RATIONAL a, b;
postcondition mul[0] = = a[0]*b[0];
 mul[1] = = a[1]*b[1];

abstract equal(a, b)
RATIONAL a,b;
postcondition
 equal = = (a[0]*b[1] = = b[0]*a[1]);

1.2.1 Sequences as Value Definitions
While developing the specification for various data types, to specify the value of an ADT,
we use set notation or the notation of sequences. Basically, a sequence is an ordered set
of elements denoted by,

S = <S0, S1, …. Sn-1>

If S contains n elements then S is said to be of length n. We assume the functions len(S),
first(S), last (S) etc to denote length, first element and last element respectively. A
sequence with zero length is called nilseq.

Various syntaxes for ADT specifications are as below –
 To define an ADT viz. adt1 whose values are the elements of a sequence, we write –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

abstract typedef<<type1>> adt1;

Here, type1 indicates the data type of elements in the sequence.

 To denote an ADT taking the values of different data types type1, type2, etc. we write –
abstract typedef<type1,type2,….,type n> adt2;

 To denote an ADT having a sequence of length n, where all elements are of same data

type, we write –
abstract typedef<<type, n>> adt3;

Two sequences are said to be equal if their corresponding elements are equal. If S is a
sequence, the function sub(S,i,j) refers to the subsequence of S starting at the position i in
S and consisting of j consecutive elements. The concatenation of two sequences S1 and
S2 is the sequence consisting of all elements of S1 followed by the elements of S2.

1.2.2 ADT for varying length character strings
Using the sequence notation, the specification of ADT for the varying-length character
string can be illustrated. Normally, these are four basic operations for strings viz.

 length is a function that returns length of string
 concat is returns concatenation of two strings
 pos is returns the first position of one string in the other
 substr is returns a substring of given string.

abstract typdef <<char>> STRING;

abstract length(s)
STRING s;
postcondition length = len(s);

abstract STRING concat(s1,s2)
STRING s1, s2;
postcondition concat == s1 + s2;

abstract STRING substr(s1, i, j)
STRING s1;
int i, j;
postcondition substr == sub(s1, i, j)

1.3 DATA TYPES
The C language has 4 basic data types viz. int, float, char and double. We can apply the
qualifiers like short, long and unsigned to the data type int. The maximum sizes implied by
short, long or int vary from machine to machine. The unsigned integer can store only
positive integers. The declaration of variable in C does two tasks. First, it specifies the

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

amount of storage that must be allocated for objects declared with that type. For ex, an
integer variable declaration tells the compiler to reserve 2 bytes (16 bit machine) of
memory. Second, it specifies how data represented by strings of bits are to be interpreted.

(NOTE: Detailed discussion of data types, pointers, arrays and strings in C is not
done here, as the students would have studied it in 1st semester).

1.4 POINTERS
A variable which will be used to hold the address of some other variable is called pointer
variable. For ex, if i is declared as an integer, then &i refers to the location that has been
set aside to contain the value of i. The declaration of pointer variables will be like-

int *pi;
float *pf;
char *pc;

Here, pi is a pointer which will contain the address of an integer variable. Similarly pf
indicates that it can contain an address of floating point variable. The assignment of pointer
variable can be like-

int a, *p;
a=10;
b=&a;

Here, in the pointer variable p, the address of the variable ‘a’ is going to be stored. And *p
will be nothing but the value of ‘a’ i.e. 10. If pi is a pointer to an integer, then (pi +1) is the
pointer to the integer immediately following the integer *pi in memory, whereas, (pi-1) is the
pointer to the integer immediately preceding *pi. Note that (*p+1) refers to 1 added to the
integer *pi, while *(p+1) refers to the integer following the integer at location pi.

1.5 DATA STRUCTURES
The study of data structures in C deals with the study of how the data is organized in the
memory, how efficiently the data can be retrieved from the memory, how the data is
manipulated in the memory and the possible ways in which different data items are
logically related. Thus, we can understand that the study of data structure involves the
study of memory as well.

The study of data structures also involves the study of how to implement the developed
data structures using the available data structures in C. Since the problems that arise which
implementing high-level data structures are quite complex, the study will allow to
investigate the C language more thoroughly and to gain valuable experience in the use of
this language. While implementing data structure, one should take care of efficiency, which
involves two facts viz. time and space. That is, a careful evaluation of time complexity and
space complexity should be made before data structure implementation.

Types of data structures can be depicted as given in Figure 1.1. Linear data structures are
those in which the relationship between the elements is linear/sequential. If the relationship
between the elements is hierarchical, then it is called as non-linear data structures.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

Figure 1.1 Types of Data Structures

1.6 ARRAYS
Array is one of the composite data structures which may be of ‘n’ dimension. In other
words, array is an ordered set of elements, which are of same data types, having the finite
number of elements. The general form of array declaration will be –

data_type array_name[size];
Each element of array is referred by its index. The smallest value of array index is known
as lower bound and the largest value of array index is known as upper bound of an array.
The number of elements that an array can hold is called as range or the size of an array
and is given by (upper bound – lower bound + 1). Array can be passed to a function as a
whole. Since an array variable in C is a pointer (base address of the array), while passing,
it is passed by reference and not by value.

1.6.1 Array as an ADT
An array is a derived data type. Hence, it can be represented as an ADT. The following
listing gives ADT for an array. It contains the value definition indicating how an array should
look like. The operator definition part indicates two major operations of the array viz.
extracting an element from the array and storing an element into the array.

 //value definition part

Abstract typedef <<eltype, ub>> ARRTYPE (ub, eltype);
Condition type(ub)==int;

//operator definition part
abstract eltype extract(a,i)
ARRTYPE(ub, eltype) a;
int i;
precondition 0<= i <ub;
postcondition extract==ai

abstract store(a,i, elt)

Non-linear Data Structures

- Trees, Graphs,
Dictionaries

Data Structures

Primitive Data Structures

- Basic data types like
int, float, char, double

Non-primitive Data
Structures

Linear Data Structures

- Stack, Queues, linked
lists

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

ARRTYPE(ub, eltype) a;
int i;
eltype elt;
precondition 0<= i <ub;
Postcondition a[i]==elt;

1.6.2 Using One-dimensional Array
Following is a simple example for using one dimensional array. This program is to compute
sum and average of n numbers.

Program 1.1 Example of 1-D array – finding sum and average of n numbers

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10], n, i, sum=0;
 float avg;
 clrscr();

 printf("Enter size of array:");
 scanf("%d", &n);
 printf("\nEnter elements:\n");

 for(i=0;i<n;i++)
 {
 scanf("%d",&a[i]);
 sum+=a[i];
 }
 avg=(float)sum/n;
 printf("\nSum=%d, and Avg=%f", sum,avg);
}

1.6.3 Array as Parameters
The example given below indicates how to pass an array (in other words, base address of
the array) to a function. This program is also for finding sum and average of n numbers.

Program 1.2 Passing array to a function – finding sum and average of n numbers

#include<stdio.h>
#include<conio.h>

float Avg(int x[], int n)
{
 int sum=0,i;
 float avg;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

 for(i=0;i<n;i++)
 sum+=x[i];

 avg=(float)sum/n;
 return avg;
}

void main()
{
 int a[10], n, i;
 float a;
 clrscr();

 printf("Enter size of array:");
 scanf("%d", &n);

 printf("\nEnter elements:\n");

 for(i=0;i<n;i++)
 scanf("%d", &a[i]);

 a=Avg(a,n);
 printf("\n Avg=%f", avg);
}

1.6.4 Character Strings
A character string (or just a string) in C is nothing but an array of characters. Following
simple program is to read a string and to find the length of the string.

Program 1.3 Example of string – finding length of a string

#include<stdio.h>
#include<conio.h>
void main()
{
 char str[20];
 int i;

 printf("Enter a string:");
 scanf("%s", str);

 for(i=0;str[i]!=‘\0’;i++);

 printf("\nLength of string is %d”, i);
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

UNIT 2. THE STACK

2.1 DEFINITION AND MEANING
Stack is non-primitive linear data structure into which, new items may be inserted and from
which items may be deleted. In this data structure, the insertion and deletion of the
elements are carried out at one end and is called as ‘top’ of the stack. In stack, the
element last inserted will be the first to be deleted. Hence, stack is known as Last In First
Out (LIFO) structure.

For example, consider the task of keeping books on a table one above the other. When a
person wants to take the book, he has to take the book which was kept last. Thus, the first
book kept on the table will be the last book to be taken out.

In the study of data structures, insertion of new item into the stack is called as push
operation; whereas, deletion of an item at the top of the stack is pop operation. When the
stack is full, we can’t insert any more elements. This situation is called as stack overflow.
Similarly, when stack is empty, we can’t delete element from it. This condition is known as
stack underflow.

An integer variable top is normally used for denoting current status of the stack – that is,
the value of top gives the number of items of the stack. For programming purpose, an
empty stack is denoted by setting the value of top as -1. Each time the push operation is
encountered, the top will be incremented. When the pop operation is done, top will be
decremented. Usually, we define the size of the stack at the beginning. For example, stack
of 5 elements, stack of 10 elements etc. When the value of top becomes -1 during deletion,
it is stack underflow. When the top reaches the predefined size, it is stack overflow.

Figure 2.1 depicts the example of primitive operation on an integer stack of size 3.

Figure 2.1 Demo of stack operations

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

Program 2.1 Primitive operations on stack
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

#define MAX 3

void push(int st[], int item, int *t)
{
 if(*t==MAX-1)
 {
 printf("Stack full!!");
 return;
 }
 st[++(*t)]=item;
}

int pop(int st[], int *t)
{
 int item;

 if(*t== -1)
 {
 printf("\nStack Empty!!");
 return ;
 }
 item=st[(*t) - -];
 return item;
}

void disp(int st[], int *t)
{
 int i;

 if(*t== -1)
 {
 printf("\nStack Empty!!");
 return;
 }

 printf("\nStack contents:\n");
 for(i=*t ; i>=0; i- -)
 printf("\n%d",st[i]);
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

void main()
{
 int st[MAX], top= -1, opt, item;

 for(;;)
 {
 printf("\n*****Stack Operations****\n");
 printf("\n1. Push \n 2. Pop \n 3. Display \n 4. Exit\n");
 printf("Enter your option:");
 scanf("%d", &opt);

 switch(opt)
 {
 case 1: printf("\nEnter item:");
 scanf("%d",&item);
 push(st, item, &top);
 break;
 case 2: item=pop(st, &top);
 printf("\n Deleted item is %d", item);
 break;
 case 3: disp(st, &top);
 break;
 case 4:
 default:exit(0);
 }
 }
}

2.2 APPLICATIONS OF STACK
The concept of stacks has various applications in the field of computer science. Some of
them includes conversion of arithmetic expressions, evaluation of expressions, recursion
etc.

2.2.1 Conversion of Expressions
Let us consider an arithmetic expression
 x op y

Here, x and y are two arithmetic expressions or operands and ‘op’ is the arithmetic operator
like +, -, *, / etc. For example, consider a simple arithmetic expression, (x+y). Here x and y
are operands and + is an operator. Representing the equation like this is known as ‘infix’
expression. There are two more representations for denoting an arithmetic expression:
 xy+, known as postfix expression
 +xy, known as prefix expression

The words ‘pre’, ‘post’ and ‘in’ specifies the relative position of the operator in the
expression.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

Thus, any expression having an operator in between two operands is called as an infix
expression. Any expression having an operator followed by two operands is postfix
expression. An expression, in which the operator precedes the two operands, is a prefix
expression.

Note that an infix expression may have parentheses in-between. But, postfix and prefix
expressions will not be having any parentheses. While converting a particular infix
expression into either prefix or postfix expression, one should consider precedence of
operators, as given below:

Precedence Operator_____________
 1 (or) -> parentheses
 2 ^ or $ -> exponentiation
 3 * or / -> Multiplication or division
 4 + or - -> Addition or subtraction

Example:
Convert the following infix expression into postfix and prefix expression:

((A+B)$C-(D/E)*F).

Solution: Conversion into Postfix:
 The given expression is ((A+B) $ C – (D/E) * F)
 We have to resolve inner brackets first.
 Consider, (A+B). This will be AB+ in postfix. Let P = AB+
 Consider, (D/E). This is DE/ in postfix. Let Q= DE/
 Now, the expression will be (P$C – Q * F)
 Now resolve operators with high precedence. That is $ (power symbol) and *

(multiplication)
 That is, P$C = PC$ Let R = PC$
 And, Q * F = QF* Let S= QF*
 Then, expression is (R-S), which when converted into postfix, gives RS –
 Now, by replacing the values of R and S and in turn, the values of P and Q we will

get –
 PC$QF* –
 AB+C$DE/F*–

 The required postfix expression is AB+C$DE/F*–

Conversion into Prefix:

 Consider, ((A+B)$C – (D/E)*F)
 As we did in conversion into postfix notation, here also, we make use of some

temporary variables like P, Q etc.
 Consider (A+B). In prefix notation, this will be +AB. Let P = +AB.
 Let (D/E) = /DE = Q.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

 Now, the expression is (P$C – Q*F)
 Again, P$C=$PC = R, say and, Q*F = *QF = S
 Then, expression is (R-S) = –RS
 Now, putting the values of P, Q, R and S, we will get –

 –$PC*QF
 –$+ABC*/DEF, is the required prefix expression.

Procedure for converting an Infix expression to Postfix expression
programmatically:

 For converting an infix expression to postfix expression, one has to analyze the
precedence value of a symbol or element both in input and in stack.

 If an operator is left associative, then the input precedence value is less than the
stack precedence value.

 If the operator is right associative, then, the input precedence value is greater than
the stack precedence value.

The following table is used for writing an algorithm and program for conversion of infix to
postfix.

Symbols Input precedence
(IP)

Stack precedence
(SP)

+ or – 1 2

* or / 3 4

$ or ^ 6 5

Operands 7 8

(9 0

) 0 -

- –1

Algorithm/Pseudo code for converting infix expression into postfix expression:

1. Initialize empty stack with symbol ‘#’.
i.e. st[0]=‘#’

2. Read the character from infix expression.
i.e. symbol=infix[i]

3. while SP(st[top]) > IP(symbol)
postfix [j]=pop(st[top])

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

4. if SP(st[top]) != IP(symbol)

push(symbol)
else

pop(st[top])

5. Repeat the steps (2) to (4) till the last character of infix expression.

6. While stack becomes empty, //only for partially parenthesized expression
 postfix [j]=pop(st[top])

Observe the following figures to understand the tracing of the above algorithm.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

Program 2.2 Converting a valid infix expression into the postfix expression:

#include<stdio.h>
#include<conio.h>

int inputpre(char sym) //Function for input precedence
{
 switch(sym)
 {
 case '+' :
 case '-' : return 1;
 case '*' :
 case '/' : return 3;
 case '^' :
 case '$' : return 6;
 case '(' : return 9;
 case ')' : return 0;
 default : return 7;
 }
}

int stackpre(char sym) //Function for stack precedence
{
 switch(sym)
 {
 case '+' :

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

 case '-' : return 2;
 case '*' :
 case '/' : return 4;
 case '^' :
 case '$' : return 5;
 case '(' : return 0;
 case '#' : return -1;
 default : return 8;
 }
}

void push (char item, int *top, char s[])
{
 s[++(*top)] = item;
}

char pop(int *top, char s[])
{
 return s[(*top)--];
}

void infix_to_postfix (char ifix[], char pfix[])
{
 int top = -1, i, j = 0;
 char s[30] , sym;

 push('#',&top,s);

 for(i=0;i < strlen(ifix);i++)
 {
 sym = ifix[i];
 while (stackpre(s[top]) > inputpre(sym))
 pfix[j++] = pop(&top,s);

 if(stackpre(s[top]) != inputpre(sym))
 push(sym,&top,s);
 else
 pop(&top,s);
 }

 while(s[top] != '#')
 pfix[j++] = pop(&top,s);

 pfix[j] = '\0';
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

void main()
{
 char ifix[20], pfix[20];
 clrscr();

 printf("Enter valid infix expression\n");
 scanf("%s", ifix);
 infix_to_postfix (ifix,pfix);
 printf("The postfix expression is = %s", pfix);
}

Procedure for converting an Infix expression to Prefix expression:

To convert an infix expression into prefix expression, we have to use the following
precedence table.

Symbols Input
precedence (IP)

Stack
precedence (SP)

+ or - 2 1
* or / 4 3
$ or ^ 5 6
Operands 7 8
(0 --
) 9 0
- -1

Algorithm: The algorithm to convert an infix expression into prefix expression is given
below:

 Reverse the given infix expression.
 Follow the procedure (using above table) for obtaining postfix expression.
 Reverse the result obtained.

Program 2.3 Converting a valid infix expression into the prefix expression:

#include<stdio.h>
#include<conio.h>

int inputpre(char sym)
{
 switch(sym)
 {
 case '+' :
 case '-' : return 2;
 case '*' :
 case '/' : return 4;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

 case '^' :
 case '$' : return 5;
 case '(' : return 0;
 case ')' : return 9;
 default : return 7;
 }
}

int stackpre(char sym)
{
 switch(sym)
 {
 case '+' :
 case '-' : return 1;
 case '*' :
 case '/' : return 3;
 case '^' :
 case '$' : return 6;
 case ‘)' : return 0;
 case '#' : return -1;
 default : return 8;
 }
}

void push (char item, int *top, char s[])
{
 s[++(*top)] = item;
}

char pop(int *top, char s[])
{
 return s[(*top)--];
}

void infix_to_prefix (char ifix[], char pfix[])
{
 int top = -1, i, j = 0;
 char s[30] , sym;

 push('#',&top,s);
 strrev(ifix);

 for(i=0;i < strlen(ifix);i++)
 {
 sym = ifix[i];

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

 while (stackpre(s[top]) > inputpre(sym))
 pfix[j++] = pop(&top,s);

 if(stackpre(s[top]) != inputpre(sym))
 push(sym,&top,s);
 else
 pop(&top,s);
 }

 while(s[top] != '#')
 pfix[j++] = pop(&top,s);

 pfix[j] = '\0';
 strrev(pfix);
}

void main()
{
 char ifix[20], pfix[20];
 clrscr();

 printf("Enter valid infix expression\n");
 scanf("%s", ifix);
 infix_to_prefix (ifix,pfix);
 printf("The prefix expression is = %s", pfix);
}

Evaluation of Postfix expression:
To evaluate an infix expression, we will scan from left to right repeatedly. But if the
expression contains parentheses, evaluation becomes complex as the parentheses
changes the order of precedence. So, it is always easy to evaluate an infix expression by
converting it into either prefix or postfix expression.

Algorithm to evaluate postfix expression:

1. Scan a symbol in postfix expression from left to right.
2. If the symbol is operand, push it into stack.
3. If the symbol is an operator, pop two elements from the stack and perform the

operation indicated.
4. Push the result of step (3) into the stack.
5. Repeat the above steps till all the symbols get exhausted in the given postfix

expression.
6. Now, pop the element from the stack, which will be the result of entire postfix

expression.

Note that, here, a single digit is treated as an operand and scanned.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

Observe the following figures to understand the working of above algorithm.

Program 2.4 Evaluating a valid postfix expression:

#include<stdio.h>
#include<conio.h>
#include<math.h>

float oper(char sym, float op1, float op2)
{
 switch(sym)
 {
 case '+': return op1 + op2;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

 case '-': return op1 - op2;
 case '*': return op1 * op2;
 case '/': if(op2== 0)
 {
 printf(“Can’t evalueate”);
 exit(0);
 }
 return op1 / op2;
 case '^':
 case '$': return pow(op1,op2);
 }
}

void push(float item, int *top, float s[])
{
 s[++(*top)] = item;
}

float pop(int *top, float s[])
{
 return s[(*top)--];
}

void main()
{
 float s[20], result, op1, op2, x;
 int top = -1, i;
 char postfix[20], sym;

 printf("Enter valid postfix expression\n");
 scanf("%s",postfix);

 for(i=0;i<strlen(postfix);i++)
 {
 sym = postfix[i];

 if(isdigit(sym))
 push(sym-'0', &top, s); // character to digit conversion
 else if (isalpha(sym))
 {

 printf("Enter the value of %c: ", sym);
 scanf("%f",&x);
 push(x,&top,s);
 }

else
{

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

 op2 = pop(&top,s);
 op1 = pop(&top,s);
 result = oper(sym,op1,op2);
 push(result,&top,s);

 }
}
result = pop(&top,s);
printf("Result =%.4f",result);

}

Sample Output 1:
 Enter valid postfix expression: 941-3*/
 Result = 1.0000

Sample Output 2:
 Enter valid postfix expression: abc-d*/
 Enter value of a: -54
 Enter value of b: 23
 Enter value of c: 5
 Enter value of d: 8
 Result = -0.3750

NOTE: The sample output 1 takes the postfix expression with digits. Hence, each digit
has to be treated as one operand. Whereas, in the Sample Output 2, the postfix
expression is a series of alphabets (variables). So, the program will allow you to read the
values for each of these variables. And hence, the user can give an operand containing
more than one digit, a floating point number, a negative number etc. In the Sample
Output2, the meaning of expression (in infix format) will be –
 - 54 / ((23-5)*8) = - 0.3750.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

UNIT 3. RECURSION

3.1 Definition and meaning
Recursion is a technique of defining something in terms of itself. In the field of mathematics
and computer science, many concepts can be explained using recursion. In computer
terminology, if a function calls itself then it is known as recursive function. If the function
calls itself directly, then it is known as direct recursion.

Example:

void myfun()
{ -----

myfun();

}

If the function calls itself through another function, then it is known as indirect recursion. For
example:

void myfun()
{

fun();

}
void fun()
{

myfun();

}
Here, the function myfun() is calling the function fun(), which in turn calls myfun().

3.2 Factorial of a Number
Factorial of a non-negative integer n is defined as the product of all integers from 1 to n.
That is:
 n! = n(n-1)(n-2)…3.2.1 , for all n>=1 and
 0! = 1.
By definition we have, n!= n(n-1)!
Thus, factorial is a recursive function.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

Consider one example of finding 5! –
 5! = 5*(5-1)!
 = 5*4!
 = 5*4*3!
 = 5*4*3*2!
 = 5*4*3*2*1!
 = 5*4*3*2*1*0!
 = 5*4*3*2*1*1
 = 120

This procedure can be implemented through program given below:
#include<stdio.h>

int fact(int n)
{
 if (n==0)
 return 1;
 return n* fact(n-1);
}

void main()
{
 int n;

printf(“Enter the value of n”);
 scanf(“%d”, &n);

 if(n<0)
 printf(“Invalid input”);
 else
 printf(“\nFactorial of %d is %d “, n, fact(n)) ;
}

The output would be:
 Enter the value of n: 6
 The factorial of 6 is 720

3.3 Multiplication of two Natural Numbers
The product of two natural numbers say, m and n is nothing but the sum obtained by
adding m for n number of times. That is,

m*n = m+m+… +m (for n times).

This can be given recursively as –

m*n= m*(n-1) + m for n>1
= m for n=1

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

Consider one example of multiplying 4 and 3.
Let m=4 and n=3. Then
4*3 = 4*(3-1) +4

= 4*2 + 4
= 4 * (2-1) + 4 +4
= 4 * 1 + 4 + 4
= 12

Program:

#include<stdio.h>
int mul(int a, int b)
{

if(b==1)
return a;

return a + mul(a, b-1);
}

void main()
{

int m, n;
printf(“Enter the values of m and n”);
scanf(“%d%d”, &m, &n);

if(m<=0 || n<=0)
{

printf(“Invalid input”);
return;

}
printf(“Product of %d and %d is %d”, m, n, mul(m,n));

}

3.4 Fibonacci Sequence
A sequence of integers is called Fibonacci sequence if an element of a sequence is the
sum of its immediate two predecessors. That is:

f(x)=0 for x=1
f(x)=1 for x=2
f(x)=f(x-2)+f(x-1) for x>2

Thus the Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, ….
Consider an example of finding 6th Fibonacci number.

f(6) = f(4) + f(5)
 = f(2) + f(3) + f(3) + f(4)
 = 1 + f(1) + f(2) + f(1) + f(2) + f(2)+ f(3)
 = 1 + 0 + 1 + 0 + 1 + 1 + f(1) +(2)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

26

 = 4 + 0 + 1
 = 5

The above procedure can be illustrated through the program given below:

Finding nth Fibonacci number
#include<stdio.h>

int fibo(int n)
{
 if (n==1)
 return 0;
 else if (n==2)
 return 1;
 return fibo(n-1) + fibo (n-2);
}

void main()
{
 int n;

 printf(“Enter value of n”);
 scanf(“%d”, &n);

if(n<=0)
 printf(“invalid input”);
 else
 printf(“%d th fibonacci number is %d “, n, fibo(n));
}
The output would be:
 Enter the value of n : 10
 10th fibonacci number is 34

3.5 Binary Search
This method is applied on the sorted array. Initially, the key element is compared with the
middle element of the array. If they are equal then the search is successful. Otherwise, the
array is divided into two parts viz. from the first element to middle element and from middle
to last element. If the key element is greater than the middle element then the second sub-
array is searched for. If the key is less than the middle then the first sub-array is searched.
The procedure is repeated till the key is found or till the sub-array contains a non-matching
single element.

Program for Binary Search:

#include<stdio.h>

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

27

#include<conio.h>

int binary(int item, int a[],int low,int high)
{
 int mid;

 if(low<=high)
 {
 mid=(low+high)/2;

 if(a[mid]==item)
 return mid+1;
 if(a[mid]>item)
 return binary(item,a,low,mid-1);

 return binary(item,a,mid+1,high);
 }
 return -1;
}

void main()
{
 int a[10],n,pos,item, i;

 printf("Enter the array size:");
 scanf("%d",&n);
 printf("Enter the elements in ascending order\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);
 printf("Enter the key element:");
 scanf("%d",&item);

 pos=binary(item,a,0,n-1);

 if(pos==-1)
 printf("\nItem not found");
 else
 printf("\nItem found at position %d",pos);
}

3.6 Tower of Hanoi Problem
In the problem of Tower of Hanoi, there will be three poles, viz. A, B and C. Pole A (source
pole) contains ‘n’ discs of different diameters and are placed one above the other such that
larger disc is placed below the smaller disc. Now, all the discs from source (A) must be
transferred to destination (C) using the pole B as temporary storage.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

28

Conditions are:
 Only one disc must be moved at a time
 smaller disc is on the top of larger disc at every step

Algorithm to move n discs from source to destination is as follows –

(i) move n-1 discs from source to temporary
(ii) move nth disc from source to destination
(iii) move n-1 disc from temporary to destination

For example, consider the number of discs = 3. Then, various steps involved in transferring
3 discs from source to destination are shown below –

Initial Stage

Step 1: Step 2:

Step 3: Step 4:

Source Temp Destination

Source Temp Destination

Source Temp Destination

Source Temp Destination

Source Temp Destination

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

29

 Step 5 Step 6

 Step 7

Program:

#include<stdio.h>
int count=0;

void tower(int n, char s, char t, char d)
{
 if(n==1)
 {
 printf(“Move disc 1 from %c to %c “, s, d);
 count ++;
 return;
 }
 tower(n-1, s, d, t);
 printf(“Move disc %d from %c to %c”, n, s,d);
 count ++;
 tower(n-1, t, s, d);
}
void main()
{
 int n;
 printf(“Enter the number of discs”);
 scanf(“%d”, &n);
 tower(n, ‘A’,’B’,’C’);

Source Temp Destination Source Temp Destination

Source Temp Destination

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

30

 printf(“Total number of moves =%d”, count);
}

Output: Enter the number of discs: 3
 Move disc 1 from A to C
 Move disc 2 from A to B
 Move disc 1 from C to B
 Move disc 3 from A to C
 Move disc 1 from B to A
 Move disc 2 from B to C
 Move disc 1 from A to C
 Total number of disc moves = 7

3.7 Properties of Recursive definition or algorithm
When a function calls itself, a new set of local variables and parameters are being allocated
memory in the stack. Then the function code is executed from the top with these new
variables. A recursive call does not make a new copy of the function, only the values being
operated upon are new. When each recursive call returns, the old local variables and
parameter are removed from the stack and the execution resumes at the point of the
function call inside the function.

Some facts about recursive functions are:

 Recursive functions do not usually reduce the code size.
 They do not improve memory utilization compared to iterative functions.
 Many of the recursive functions may execute a bit slower compared to iterative

functions because of the overhead of repeated function calls.
 They may cause a stack overrun, as each new call to the recursive function creates

a new copy of variables and parameters and puts them into the stack.
 The advantage of using recursive functions is to create clearer and simpler

programs.
 Moreover, some of the algorithms do require recursive functions as the iterative

versions of them are quite difficult to write and implement.
 While writing a recursive function, a conditional statement has to be included which

will terminate the recursive function without using a recursive function call.
 Otherwise, the recursive function will enter into an infinite loop and will not terminate

at all.

Thus, any recursive function should satisfy the following conditions:

 In each and every call, the function must be nearer to the solution. (In other words,
at every step, the problem size must reduce)

 There should be at least one non-recursive exit condition.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

31

UNIT 4. QUEUES

4.1 INTRODUCTION AND DEFINITION
In our day-to-day life, we come across many situations in which we have to stand in a
queue like at a bank counter, at a cinema hall etc. In the field of computer science also we
can give the examples for queue system such as printing a several files using only one
printer, Processes waiting to be executing by CPU etc. Using this analogy, the data
structure ‘queue’ is defined.

Queue is a non-primitive linear data structure, where the elements are inserted at
rear end and deleted from the front end.

The item inserted first will be the first to be deleted. Hence it is known as First In First Out
(FIFO) data structure.

The primitive operations of a queue structure include:

 Inserting an element into queue
 Deleting element from queue
 Displaying the contents of a queue

An attempt to insert an element into a full queue is called as Queue overflow. Trying to
delete an element from an empty queue is known as queue underflow. The status of the
queue is maintained by two variables viz. front and rear. Initially, both front and rear are
set to -1 to indicate empty queue. While inserting the very first element into queue, both
front and rear are incremented. After that, in every insertion, rear will be incremented. The
front will be incremented at every deletion.

Consider the following illustration to understand the working of queue.

Empty Queue:

f = r = -1

14

Insert 14

f = r = 0

14 5 -4
Insert -4:

f=0 r=2

14 5 -4 35
Insert 35:

f=0 r=3

5 -4 35
Delete :

f=1 r=3

14 5
Insert 5 :

f=0 r=1

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

32

-4 35
Delete :

f=2 r=3

Note that, after every insertaion, rear is incremented and after every deletion, front is
incremented.

Program 4.1 Primitive operations on ordinary queue

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

#define MAX 3

void insert(int q[], int *f, int *r, int item)
{
 if(*r==MAX-1)
 {
 printf("\nQueue overflow");
 return;
 }
 q[++(*r)]=item;

 if(*f== -1)
 (*f)++;
}

void del(int q[], int *f, int *r)
{

if(*f==-1 || *f>*r)
 {
 printf("\nQueue underflow");
 return;

}
 printf("\nDeleted item is %d", q[(*f)++]);
}

void disp(int q[], int *f, int *r)
{

int i;

if(*f== -1 || *f>*r)
 {

printf("\nNo elements to display!!");

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

33

return;
 }

printf("\n Contents of queue:\n");

 for(i=*f;i<=*r;i++)
 printf("%d\t",q[i]);
}

void main()
{
 int q[MAX], f=-1, r=-1,item, opt;

 for(;;)
 {

printf("\n*****Queue operations*****");
 printf("\n1.Insert\n 2.Delete\n 3.Display \n 4.Exit");
 printf("\nEnter your option: ");
 scanf("%d",&opt);

 switch(opt)
 {
 case 1: printf("\nEnter item to be inserted:");
 scanf("%d",&item);
 insert(q,&f,&r,item);
 break;
 case 2: del(q, &f, &r);
 break;
 case 3: disp(q, &f,&r);
 break;
 case 4:
 default:exit(0);
 }
 }
}

4.2 CIRCULAR QUEUE
We have seen in Program 4.1 that when an element is deleted from the queue, the front is
incremented and when the element is inserted, rear is incremented. Such implementation
of a queue has a drawback.

Assume, we have inserted the elements into queue up to its full capacity. That is, rear
reached maximum size. Then, if we delete some elements from front end, there will be
empty spaces at the beginning of a queue. But still, we can’t insert elements into queue, as
rear is already at MAX.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

34

Let MAX=3

10 35 14

f=0 r=2

14

f=r=2

Now, if we try to insert an item, it is not possible, as the condition (r==MAX-1) is true. To
overcome this problem, we adopt circular queue.

In ordinary queue, we will just increment front and rear . Hence, there is chance that rear
will go beyond the range of the size of the queue. Hence, in circular queue, instead of using
the statements like
 f= f+1 and r=r+1,

we use
 f=(f+1)%MAX and r=(r+1)%MAX

This will ensure that both front and rear will fall within the range of MAX always. This can
be illustrated as below –

25 f=r=0

Insert 25

25
12

f=0

Insert 45 and 12

r=2

45

12

Delete twice

f=r=2

10
12

r=0

Insert 10 and increment r as r=(r+1)%MAX

f=2

Thus, we can overcome the problem with ordinary queue using circular queue.

Program 4.2 Implementation of Circular Queue

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

#define MAX 3

Delete twice:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

35

void insert(int q[], int *f, int *r, int item)
{
 if(*f==(*r+1)%MAX)
 {
 printf("\nQueue overflow");
 return;
 }
 *r=(*r+1)%MAX;
 q[*r]=item;

 if(*f== -1)
 (*f)++;
}

void del(int q[], int *f, int *r)
{

if(*f==-1)
 {
 printf("\nQueue underflow");
 return;
 }

printf("\nDeleted element is %d", q[*f]);

 if(*f==*r)
 *f=*r=-1;
 else
 *f=(*f+1)%MAX;
}

void disp(int q[], int *f, int *r)
{
 int i;

 if(*f== -1)
 {
 printf("\nNo elements to display!!");
 return;
 }
 printf("\n Contents of queue:\n");

 if(*f>*r)
 {
 for(i=*f;i<MAX;i++)
 printf("%d\t",q[i]);

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

36

 for(i=0;i<=*r;i++)
 printf("%d\t", q[i]);
 }
 else
 {
 for(i=*f;i<=*r;i++)
 printf("%d\t",q[i]);
 }
}

void main()
{

int q[10], f=-1, r=-1,item, opt;

 for(;;)
 {
 printf("\n*****Circular Queue operations*****");
 printf("\n1.Insert\n 2.Delete\n 3.Display \n 4.Exit");
 printf("\nEnter your option: ");
 scanf("%d",&opt);

 switch(opt)
 {
 case 1: printf("\nEnter item to be inserted:");
 scanf("%d",&item);
 insert(q,&f,&r,item);
 break;
 case 2: del(q, &f, &r);
 break;
 case 3: disp(q, &f,&r);
 break;
 case 4:
 default:exit(0);
 }
 }
}

4.3 PRIORITY QUEUE
Priority Queue is a data structure in which the items are served (deleted) based on their
priority levels. The insertion and deletion operations of priority queue are based on the
priority of the elements. The element with highest priority is processed first and the
element with second highest priority is processed next and so on. The use of this data
structure is in job scheduling algorithms in the design of operating system.

These are two different types of priority queues viz.

 Ascending priority queue.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

37

 Descending priority queue.

In both the methods the items are inserted in any order. But in ascending priority queue the
smallest element is deleted first, while in the descending priority queue, the largest element
is deleted first.

However, the term smallest in the above statement not necessarily mean the value of the
element, but it may be any quantity associated with the element. For example, we can think
of stack as a priority queue, in which the elements are deleted based on the time of
insertion as a priority level. That is, the item inserted most recently (i.e. least time) will be
deleted first. Similarly, ordinary queue can be thought of as a priority queue, where
deletion is based on maximum time spent by the element in a queue. That is, the item
which spent maximum time (inserted at the beginning of the process) will be deleted first.

One should note that, the meaning of deletion here (in the study of queue data structures,
as well) indicates providing the service for which the item/element is waiting in a queue.

Priority queue can be implemented using arrays. In further discussion with priority queue,
we assume a queue of integers where, the value of item itself indicates its priority. That is,
smallest item has higher priority.

As discussed earlier, in priority queue, the insertion of elements can be in any order, but
the deletion is based on priority. That is, in ascending priority queue, the smallest item
must be searched for, and then it should be deleted. Hence, element present at any in
between position of the array must be deleted and rest of elements must be re-adjusted.
Thus, the deletion process becomes difficult.

So to avoid this problem and for the sake of simplicity, we assume that the elements are
inserted in an ascending order, so that the deletion requires only deleting the element at
front end. Thus, in the programmatic implementation of priority queue, during insertion, we
should see that items are inserted in a proper position to maintain ascending order.

Program 4.3 Implementation of Priority Queue

 #include<stdio.h>
 #include<conio.h>
 #include<stdlib.h>

#define MAX 3

void insert(int PQ[], int *f, int *r, int item)
{

int j;

 if (*r==MAX-1)
 {
 printf("\nQueue overflow");

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

38

 return;
 }

 j=*r;

 while(j>=0 && item<PQ[j])
 {
 PQ[j+1]=PQ[j];
 j - -;
 }

 PQ[j+1]=item;
 (*r)++;

 if(*f== -1)
 (*f)++;
}

void del(int PQ[], int *f, int *r)
{
 if(*f==-1 || *f>*r)
 {
 printf("\nQueue underflow");
 return;
 }

 printf("\nDeleted item is %d", PQ[(*f)++]);
}

void disp(int PQ[], int *f, int *r)
{

int i;

 if(*f== -1 || *f>*r)
 {
 printf("\nQueue underflow");
 return;
 }

 printf("\nContents of priority queue:");

for(i=*f;i<=*r;i++)
 printf("%d\t", PQ[i]);
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

39

void main()
{

int PQ[MAX], f=-1,r=-1, item, opt;

 for(;;)
 {

printf("\n****Priority Queue****\n");
 printf("1.Insert\n2.Delete\n3.Display\n4.Exit\n");
 printf("\nEnter your option:");
 scanf("%d",&opt);

 switch(opt)
 {

case 1: printf("\nEnter the item to be inserted:");
 scanf("%d",&item);
 insert(PQ,&f,&r,item);
 break;
 case 2: del(PQ, &f, &r);
 break;
 case 3: disp(PQ, &f, &r);
 break;
 case 4:
 default:
 exit(0);
 }
 }
}

4.4 DOUBLE – ENDED QUEUE
A double ended queue or deque (pronounced as deck) is a set of items from which items
may be deleted from either end and items may be inserted at either end. A deque can
have some sub-types:

 Input restricted deque: deletion can be made at both the ends, but insertion can be
made at only one end.

 Output restricted deque: deletion is at only one end and insertion can be made at
both the ends.

Considering the definition of deque, the stack and queue data structures can be thought
of as special cases of deque. Deque can be implemented either using arrays or linked
lists. The implementation of deque using linked list will be discussed along with linked
list chapter.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

40

UNIT 5. LINKED LISTS

5.1 INTRODUCTION
Array is the most popular and frequently used data structure. Though we have developed
the data structures like stack and queue using array, it has certain limitations as discussed
below.

The conventional array uses static memory allocation. For example, the declaration

int a[100];
will allocate the memory for 100 integers, say 200 bytes. During runtime of the program,
neither the size of the array can be reduced, nor can it be increased. In case, the program
uses only 10 integers out of 100, the space allocated for rest of 90 integers (180 bytes) will
be wasted. On the other hand, if the program requires more integers, say 120, during run
time, it can not allocate and it will face shortage of memory.

Thus, the static memory allocation for arrays may create the problem of either shortage of
memory or wastage of memory. This problem can be avoided by using dynamic arrays.
For example, we can consider dynamic memory allocation for array as –

int *p, n;
p=(int *) malloc(sizeof(int)*n);

Now, memory for n integers, as requested by the user during execution time, will be
allocated on heap. If the program requires more space, one can use realloc() function.

But, the problem still persists: array requires contiguous memory blocks and malloc() and
realloc() may fail if heap doesn’t contain enough free space continuously !!

To understand this problem, consider the following illustration:

int *p;
p=(int *) malloc(sizeof(int)*100);

The above allocation requires 200 bytes of memory (if int requires 2 bytes) in a contiguous
blocks. Now, assume that heap has total of 300 bytes free space, but with chunks of 50,
80, 90, 70 and 10 bytes at different locations. But, our request of 200 bytes cannot be
served, as heap doesn’t contain 200 bytes at a stretch.

So, malloc() or realloc() will return NULL and hence, the program cannot be continued
further. Thus, in a nutshell, we can say that usage of arrays either with static memory
allocation or with dynamic memory allocation does not serve for all practical applications.

To overcome these problems with arrays, a new data structure called as linked list has
been designed. Linked list uses dynamic memory allocation and each element can be
stored any where in the heap.

In linked list, we have different categories based on their structure and path of accessibility
of elements:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

41

 Singly linked list
 Circular single linked list
 Doubly linked list
 Circular double linked list

Also, based on type of data that we store in the linked list, we categorize a list as
homogeneous list and heterogeneous list. A list which contains single type of data (like int
or char or float etc) is called as homogeneous list. Where as, a list with multiple types of
data like combination of int, char, float etc. is called as heterogeneous list. In a list, each
element is called as a node.

5.2 SINGLE (or SINGLY) LINKED LIST
In a singly linked list, every node consists of two parts viz. data field and link field as shown:

Data Link

The data field consists of the item to be stored in the list. The link field of every node
contains the address of next node in the list, and the link field of last node contains NULL to
indicate end of the list. Thus, every time we need a new node, we request memory from
heap.

The memory required for one node =

memory required for the item + memory required for a pointer

The diagrammatic representation of singly linked list may look like as shown in Figure 5.1.

55 6012 48 6100 32 5096 10 N

1200 6012 6100 5096
Figure 5.1 Representation of singly linked list

Various operations that can be performed on any linked list:

 Insert at front
 Insert at rear
 Delete from front
 Delete from rear
 Display the contents
 Insert at any position
 Delete from any position
 Search for a particular item
 Delete a particular item
 Creating ordered (ascending or descending) list

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

42

To perform various operations, first we should construct a linked list, or better to say a
node. As discussed earlier, a node in singly linked list consists of a data part and link part.

For the initial stage of discussion, let us assume that we are going to create a linked list of
integers. The one element (that is, node) in the list need to contain one integer and one
pointer to another node.

Since we need two entities which are related to each other, but are of different types
(integer and a pointer), we use a structure to design a node. That is, we can use something
similar to the following:

 struct node
 {
 int data;
 _____ *link;
 };

Here, we have to think, what is the type of the pointer “link”?. The question is: the
pointer link is going to store the address of what type of element?. The answer is: it is going
to store the address of another node. Because, the linked list looks like this:

This is another node,
which again a
combination of integer
and a pointer to next
node.

Thus, the structure looks like:

struct node
{

int data;
struct node *link;

};

Now, refer Figure 5.1. It clearly indicates that, we are interested in the address of every
node of linked list, which is the most important information needed to maintain any linked
list.

So, for doing any operation, we need to create a pointer to struct node. For example,

struct node *n1;
struct node *n2; etc.

To reduce the typing job, we can use typedef as –

typedef struct node *NODE;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

43

Now, whenever we need to create a node in linked list, we can just declare –
NODE n1;
NODE n2; etc.

We know that, each time we need a new node, we should request memory from the heap
using malloc() function. To avoid repetitive task, we will write a function called getnode() to
get heap memory and thus to create a new node.

NODE getnode()
{

NODE x;
x=(NODE) malloc(sizeof(struct node));

if(x==NULL)
{

printf("no memory in heap");
exit(0);

}
return x;

}

On successful allocation of memory, the above function returns the address of one block of
memory, which is equivalent to the size of one node.

Similarly, to free a node, we can create a function like:

void freenode(NODE x)
{

free(x);
}

But, since the freenode() function contains only one statement, it makes no sense to call
this function, instead, it is better to use a built-in function free().

By referring to the Figure 5.1, it can be observed that, if we have the address of first node
in our hand, we can trace the entire list. Thus, for doing all operations on singly linked list,
we keep starting node as a reference, and we declare that node as –

NODE start;

Now, we will start implementing the code for various operations on singly linked list.
Initially, we will implement 5 basic operations viz. insert_front, insert_rear, delete_front,
delete_rear and display.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

44

Program 5.1 Implementation of Singly linked list

#include<stdio.h>
#include<alloc.h>
#include<conio.h>
#include<stdlib.h>

struct node
{
 int data;
 struct node *link;
};
typedef struct node *NODE;

NODE getnode()
{
 NODE x;
 x=(NODE) malloc(sizeof(struct node));
 if(x==NULL)
 {
 printf("no memory in heap");
 exit(0);
 }
 return x;
}

NODE insert_front(int item, NODE start)
{
 NODE temp;
 temp = getnode();

temp->data=item;
temp->link=start;
return temp;

}

NODE delete_front(NODE start)
{
 NODE temp;

 if(start==NULL)
 {
 printf("no element to delete\n");
 return start;
 }

 temp=start;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

45

 printf(“Deleted item=%d", temp->data);
 start=start->link;
 free(temp);
 return start;
}

NODE insert_rear(int item, NODE start)
{
 NODE temp, cur;
 temp=getnode();
 temp->data=item;
 temp->link=NULL;

 if (start==NULL)
 return temp;

 cur=start;
 while(cur->link!=NULL)
 cur=cur->link;

 cur->link=temp;
 return start;
}

void display(NODE start)
{
 NODE temp;
 if(start==NULL)
 {
 printf("No element to display\n");
 return ;
 }
 printf("The contents of list:\n");

 temp=start;

 while(temp!=NULL)

{
 printf("%d\n", temp->data);

 temp=temp->link;
 }
}

NODE delete_rear(NODE start)
{

NODE prev, cur;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

46

 if(start==NULL)
 {

 printf("no element to delete\n");
 return start;
 }

 if(start->link==NULL)
 {

 printf("\nDeleted element is%d", start->data);
 free(start);
 return NULL;
 }
 prev=NULL;
 cur=start;

while(cur->link!=NULL)
 {

 prev=cur;
 cur=cur->link;
 }
 printf("\nDeleted element is %d", cur->data); .
 free(cur);
 prev->link=NULL;
 return start;
}

void main()
{

int opt, item;
 NODE start=NULL;

 for(;;)
 {
 printf("1.Insert Front\n 2.Insert Rear\n 3. Display\n”);
 printf(“ 4.Delete Front\n 5.Delete Rear\n");
 printf("enter your option:");

scanf("%d",&opt);

 switch(opt)
 {

case 1: printf("\nenter item");
scanf("%d",&item);

 start=insert_front(item,start);
break;

 case 2: printf("\nenter item");

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

47

 scanf("%d",&item);
 start=insert_rear(item,start);

 break;
 case 3: display(start);
 break;
 case 4: start=delete_front(start);

 break;
 case 5: start=delete_rear(start);

break;
 default: exit(0);
 }
 }
}

5.2.1 Creating Ordered Linked List
A linked list in which all the items are stored in some specified order viz. ascending or
descending is known as an ordered linked list. Note that after the insertion of one item into
an ordered list, the order should be maintained. Thus, the insertion process must be done
as explained below:

 If the item to be inserted is less than the first item of the existing list, then this ‘new
node’ should become the ‘start’ of resulting list.

 If the item to be inserted is grater than the last item of the existing list, then ‘new
node’ must be the last node of the resulting list.

 But if the item is somewhere between the linked list then it must be inserted at
appropriate position using the ‘link’ field of the nodes.

NOTE: Instead of insert_front() and insert_rear() functions in the linked list program, if you
use the following function i.e. insert_order(), then you will get an ordered linked list.

Code Snippet for creating ordered linked list:

NODE insert-order(int item, NODE start)
{
 NODE temp, prev, cur;
 temp=getnode();
 temp->data = item;
 temp->link = NULL;

 if(start == NULL)
 return temp;

 if(item < start ->data)
 {
 temp->link =start;
 return temp;
 }

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

48

 prev = NULL;
 cur = start;
 while(cur != NULL && item >= cur->data)
 {
 prev = cur;
 cur = cur->Link;
 }

 prev->link = temp;
 temp->link=cur;
 return start;
}

5.2.2 Stack and Queue using Linked lists
We have discussed earlier that stack is LIFO data structure and queue is a FIFO data
structure. And, they can be implemented using either arrays or linked lists. Array
implementation of these data structures have been discussed in the previous chapters. The
linked-list representation can be done as give below:

 Stack: Implement insert_front(), delete_front() and display() functions using singly
linked list. That is, insertion and deletion from the same end is nothing but stack.

 Queue: Implement insert_rear(), delete_front() and display() functions.
 Priority Queue: Implement insert_order(), delete_front() and display() functions.
 Deque:

o General Deque: Implement insert_front(),insert_rear(), delete_front(),
delete_rear() and display() functions.

o Input Restricted Deque: Implement insert_rear(), delete_front(),
delete_rear() and display() functions.

o Output Restricted Deque: Implement insert_rear(),insert_front(),
delete_front() and display() functions.

5.2.3 Searching for a particular node
This operation is used to find whether a given key item is present in the list or not. If the
item is there in the list, it is known as successful search, otherwise an unsuccessful search.
A function to search for an item in the existing list is given below. Use appropriate main()
function and insert() functions and then use ‘search’ function for a working of full program.

Code snippet for searching a particular node:

void search(int key, NODE start)
{

NODE cur;
int pos;

if (start = = NULL)

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

49

{
printf(“List is empty”);
return;

}
cur = start;
pos = 1;

while(cur!=NULL && key!=cur->data)
{

cur = cur->link;
pos++;

}
if(cur==NULL)
{

printf(“key not found”);
return;

}
printf(“Key is found at position %d”, pos);

}

5.2.4 Deletion of a node whose data field is given
Sometimes, we may need to delete a particular node from the list, based on its value. That
is, when we are given a ‘data’ field of some node, then the entire list must be traversed to
find that node, and then it must be deleted.

Following function is for deleting a particular node. Use appropriate main() function and
insert() function for the complete implementation.

NODE delete_data(int item, NODE start)
{
 NODE prev, cur;

 if(start = = NULL)
 {
 printf(“No item to delete”);
 return start;
 }

 if(item= = start->data)
 {
 cur = start;
 start=start->link;
 free (cur);
 return start;
 }

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

50

 prev = NULL;
 cur = start;

 while(cur!=NULL && item !=cur->data)
 {
 prev = cur;
 cur= cur->link;
 }

if(cur = = NULL)
{

printf(“Item not found);
return start;

}

prev->link = cur->link;
free(cur);

return start;

}

5.2.5 Header Nodes
To simplify the design of linked list, sometimes we will have a special node at the beginning
of the list. Usually, the ‘data’ field of this node would be empty, and it will not represent any
item of the linked list. Such a node is called as header node.

Sometimes the integer value representing the number of nodes present in the list will be
stored in header node. But, in this case each time an insertion or deletion occurs, the ‘data’
field of header node must be updated to keep track of the actual information. If the list is
empty, then link field of header node contains NULL or else it will contains the address of
first node of the linked list.

For example, following diagram shows a singly linked list with a header node, where the
data field of header node contains total number of nodes in the list.

Here, the first node with the address 1200 is a header node. Its data field contains the
number 3 indicating there are 3 nodes in the list.

5.2.6 Non-homogenous List

3 6012 48 6100 32 5096 10 N

1200 6012 6100 5096

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

51

All the examples that we discussed till now were having the ‘data’ field of a node as an
integer variable. But, in fact, a ‘data’ field of a node in a singly linked list may also contain
the variables of some other data type. Moreover, a node can contain more than one value
in its data field. That is, it is capable of storing various information.

For example, we can define our structure as-

struct student
{

char name[20];
int stdid;
int sem;
struct student *link;

};

Then, each of the member field can be stored in ‘data’ field of a linked list. That is, one
node of the linked list may look like –

Suppose we have declared a variable like-

struct student *temp;

Then, the member variables can be accessed as

temp -> name;
temp -> stdid;
temp -> sem; etc.

The operations for non-homogenous or non-integer linked list are same as those of integer
linked list. But the functions like insert-front() and insert-rear() should have the parameters
like char, int etc. instead of only one parameter.

Consider following example program to illustrate non-homogenous list.

Program 5.2 Illustration of non-homogenous (or heterogenous) list
Question: Write a C program to construct a singly linked list consisting of the following
information in each node: student_id (integer), student_name (character string) and
semester (integer). Perform insert front and display operations on this non-homogenous
linked list

Answer:

#include<stdio.h>
#include<conio.h>
#include<string.h>
#include<stdlib.h>

name stdid sem link

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

52

struct node
{

int sid;
 char sname[15];
 int sem;
 struct node *link;
};
typedef struct node *NODE;

NODE getnode()
{
 NODE x;
 x = (NODE) malloc (sizeof (struct node));
 if (x == NULL)
 {
 printf("No memory space\n");
 exit(0);
 }
 return x;
}

NODE insert_front (int stuid, char stuname[], int semester, NODE start)
{
 NODE temp;
 temp = getnode();
 temp->sid = stuid;
 strcpy(temp->sname, stuname);
 temp->sem = semester;
 temp->link = start;

 return temp;
}

void display (NODE start) //Display the contents of the list.
{
 NODE temp;

 if (start == NULL)
 {
 printf("List is empty\n");
 return;
 }

 printf("\nThe contents of the list are :\n");
 temp = start;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

53

 printf("S-ID \t\t S-NAME \t\t SEMESTER\n");

 while (temp != NULL)
 {
 printf("%d \t %s \t \t %d\n", temp->sid, temp->sname, temp->sem);
 temp = temp->link;
 }
}

void main()
{
 NODE start = NULL;
 int opt, stuid,semester;
 char stuname[15];

 for(;;)
 {

printf("1: Insert \n 2.Display \n 3: EXIT\n");
 printf("Enter your option\n");
 scanf("%d",&opt);

 switch (opt)
 {

case 1: printf("Enter the student id \n");
 scanf("%d",&stuid);
 printf("Enter the student name \n");
 scanf("%s", stuname);
 printf("Enter the semester\n");
 scanf("%d",&semester);
 start = insert_front(stuid, stuname, semester, start);
 break;
 case 2: display(start); break;
 case 3:

default: exit(0);
}

}
}

5.3 CIRCULAR LINKED LISTS
Circular singly linked list is quite similar to singly linked list. The only difference is – the
‘link’ field of a last node in a circular singly linked list contains the address of first node,
instead of NULL. The diagrammatic representations is -

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

54

In a singly linked list, we can trace the list in one direction. That is, if we are at 10th node,
we can’t trace back to access 9th node, instead, we have trace from the beginning once
again. This is time consuming. Hence, we make use of circular list to avoid this problem up
to some extent.

Because, in a circular list, from any node we can trace rest of the nodes processing in a
forward direction (refer diagram given in previous slide). Theoretically, any node in a
circular list can be treated as a first node, and its previous node as a last node. But, since,
there won’t be NULL in any node to indicate end of list, the circular lists have to be
processed properly, otherwise, it may lead to infinite loop.

In most of the real time applications, we will be interested in first node and the last node of
a linked list. So, if we keep the first node in our hand, we have to trace the whole list to get
a last node, as we did in singly linked list. So, in a circular list, we will keep last node as a
tool in our hand, whose next node itself will be the first node, and hence, we can get both
the nodes without much trace.

All the operations performed on an ordinary singly linked list can be implemented on
circular singly linked list.

Program 5.3 Operations on Circular linked lists

#include<stdio.h>
#include<alloc.h>
#include<conio.h>
#include<stdlib.h>

struct node
{
 int data;
 struct node *link;
};
typedef struct node *NODE;

NODE getnode()
{
 NODE x;
 x=(NODE) malloc(sizeof(struct node));
 if(x==NULL)
 {
 printf("no memory in heap");

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

55

 exit(0);
 }
 return x;
}

NODE insert_front(int item, NODE last)
{
 NODE temp;
 temp = getnode();

 temp->data=item;
 temp->link=temp;

 if(last==NULL)
 return temp;

 temp ->link = last->link;
 last ->link=temp;
 return last;
}

NODE insert_rear(int item, NODE last)
{
 NODE temp;
 temp=getnode();

 temp->data=item;
 temp->link=temp;

 if (last==NULL)
 return temp;

 temp->link=last->link;
 last->link=temp;
 return temp;
}

void display(NODE last)
{
 NODE temp;

 if(last==NULL)
 {
 printf("No element to display\n");
 return ;
 }

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

56

 temp=last->link;
 printf("The contents of list:\n");

 while(temp!=last)
 {
 printf(“%d\n” temp->data);
 temp=temp->link;
 }

 printf(“%d”, temp->data);
}

NODE delete_front(NODE last)
{
 NODE temp;
 if(last==NULL)
 {
 printf("no element to delete\n");
 return NULL;
 }
 if(last->link==last)
 {
 printf(“The item deleted is %d”, last->data);
 free(last);
 return NULL;
 }
 temp=last->link;
 last->link=temp->link;
 printf(“Item deleted is %d”, temp->data);
 free(temp);
 return last;
}

NODE delete_rear(NODE last)
{
 NODE prev;
 if(last==NULL)
 {
 printf("no element to delete\n");
 return NULL;
 }
 if(last->link==last)
 {
 printf(“The item deleted is %d”, last->data);
 free(last);

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

57

 return NULL;
 }
 prev=last->link;
 while(prev->link!=last)
 prev=prev->link;

 prev->link=last->link;
 printf("\nDeleted element is %d", last->data);
 free(last);
 return prev;
}

void main()
{

int opt, item;
 NODE last=NULL;

 for(;;)
 {

printf("1.Insert Front\n 2.Insert Rear\n 3.Display\n”)
 printf(“ 4.Delete Front\n 5.Delete Rear\n");
 printf("Enter your option:");

scanf("%d",&opt);

 switch(opt)
 {

case 1: printf("\nenter item");
scanf("%d",&item);

 last=insert_front(item,last);
break;

 case 2: printf("\nenter item");
scanf("%d",&item);

 last=insert_rear(item,last);
break;

 case 3: display(last);
break;

 case 4: last=delete_front(last);
break;

 case 5: last=delete_rear(last);
 break;

 default: exit(0);
 }
 }
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

58

5.4 DOUBLE LINKED LISTS
In a singly linked list and a circular singly linked list, we can traverse a list in a forward
direction. That is, when we are at nth node and would like to access (n-1)th node, then we
have to traverse in a forward direction only. This is time consuming.

To avoid such problem, we will go for double linked list in which each node consists of two
link fields (viz. left link and right link) and one data field as shown:

Left Link Data Right Link

Here, right link is used to store the address of next node and left link is used to store the
address of previous node. In ordinary doubly linked list, the left link field of first node and
the right link field of last node contain NULL.

A typical doubly linked list may look like this –

N 20 1100
1800

1800 25 1400
1100

1100 -5 2100
1400

1400 35 N
2100

A circular doubly linked list may look like this –

2100 20 1100
1800

1800 25 1400
1100

1100 -5 2100
1400

1400 35 1800
2100

NOTE: All the primitive operations done using singly linked list can be applied for doubly
linked list and circular doubly linked list.

The structure declaration for a node will be –
 struct node
 {
 struct node *llink;
 int data;
 struct node *rlink;
 };

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

59

UNIT 6. SORTING

6.1 INTRODUCTION
Sorting is a process of arranging a set of data in some order. Usually, sorting will be either
in ascending order or in descending order. Sorting technique can be mainly divided into two
categories viz. internal sorting and external sorting. If all the data to be sorted all stored in
the main memory, then it is called as internal sorting. If the data are stored in the auxiliary
storage i.e. in floppy, tape etc, then the sorting is said to be external sorting. Let us discuss
about different internal sorting techniques one by one.

6.2 SELECTION SORT
Selection sort is a simplest method of sorting technique. To sort the given list in ascending
order, we will compare the first element with all the other elements. If the first element is
found to be greater then the compared element, then they are interchanged. Thus at the
end of first interaction, the smallest element will be stored in first position, which is its
proper position. Then in the second interaction, we will repeat the procedure from second
element to last element. The algorithm is continued till we get sorted list. If there are n
elements, we require (n-1) iterations, in general.

Consider the example----

25 12 30 8 7 43 32

First: Iteration

25 12 30 8 7 43 32

12 25 30 8 7 43 32

12 25 30 8 7 43 32

8 25 30 12 7 43 32

7 25 30 12 8 43 32

7 25 30 12 8 43 32

 25 30 12 8 43 32

7

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

60

 Second Iteration

 25 30 12 8 43 32

 25 30 12 8 43 32

 12 30 25 8 43 32

 8 30 25 12 43 32

8 30 25 12 43 32

 30 25 12 43 32

Third Iteration

 30 25 12 43 32

 25 30 12 43 32

 12 30 25 43 32

 12 30 25 43 32

 30 25 43 32

Fourth Iteration

7 8 12 30 25 43 32

7 8 12 25 30 43 32

7 8 12 25 30 43 32

7 8 12 25 30 43 32

Fifth Iteration

7 8 12 25 30 43 32

7 8 12 25 30 43 32

7 8 12 25 30 43 32

7

7

7

7

7

7 8

7 8

7 8

7 8

7 8

7 8 12

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

61

Sixth Iteration

7 8 12 25 30 43 32

7 8 12 25 30 32 43

Thus sorted list is:
7, 8, 12, 25, 30, 32, 43

Program:

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10],n,i,temp,j;
 clrscr();
 printf("Enter the size of the array:");
 scanf("%d",&n);
 printf("\nEnter array elements:\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

 for(i=0;i<n-1;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if(a[i]>a[j])
 {
 temp=a[i];
 a[i]=a[j];
 a[j]=temp;
 }
 }
 }
 printf("\nSorted list is:\n");
 for(i=0;i<n;i++)
 printf("%d\t",a[i]);
 getch();
}

6.3 BUBBLE SORT
The bubble sort technique for sorting a list of data in ascending order is as follows: In the
first iteration, the first element of the array is compared with the second element. If the first
element is found to be greater than the second element, they are interchanged. Now, the

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

62

second element is compared with the third and interchanged if required. In the same way,
comparison is done till the last element. At the end of first iteration, the largest element will
be stored at the last position. In the second iteration, again the comparison is done from
the first element to last-but-one element. At the end of this iteration, the second largest
element will be placed in its proper position. If there are ‘n’ elements in the given list, then
after (n-1) iterations, the array gets sorted.

Consider the following list of integers to be sorted:
 25 12 30 7 32 8

1st Iteration:
 25 12 30 7 32 8 25>12 interchange

 12 25 30 7 32 8 25<30 no interchange

 12 25 30 7 32 8 30>7 interchange

 12 25 7 30 32 8 30<32 no interchange

 12 25 7 30 32 8 32>8 interchange

 12 25 7 30 8 32 placed in its position

2nd Iteration:
 12 25 7 30 8 12<25 no interchange

 12 25 7 30 8 25>7 interchange

12 7 25 30 8 25<30 no interchange

 12 7 25 30 8 30>8 interchange

 12 7 25 8 30 also placed

32

32

32

32

32

32 30

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

63

3rd Iteration:
 12 7 25 8 12>7 interchange

 7 12 25 8 12<25 no interchange

 7 12 25 8 25>8 interchange

 7 12 8 25 is placed now

4th Iteration:
 7 12 8 7<12 no interchange

 7 12 8 12>8 interchange

 7 8 12 is placed now

5th Iteration:
 7 8 7<8 no interchange

 7 8 is placed

Thus, the sorted list is:
 7 8 12 25 30 32

Program:

#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10],n,i,temp,j;
 clrscr();
 printf("Enter the size of the array:");
 scanf("%d",&n);
 printf("\nEnter array elements:\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

32 30

32 30

32 30

32 30 25

32 30 25

32 30 25

32 30 25 12

32 30 25 12

32 30 25 12 8

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

64

 for(i=0;i<n;i++)
 {
 for(j=0;j<n-i-1;j++)
 {
 if(a[j]>a[j+1])
 {
 temp=a[j];
 a[j]=a[j+1];
 a[j+1]=temp;
 }
 }
 }
 printf("\nSorted list is:\n");
 for(i=0;i<n;i++)
 printf("%d\t",a[i]);
 getch();
}

6.4 INSERTION SORT
This sorting technique involves inserting a particular element in proper position. In the first
iteration, the second element is compared with the first. In second iteration, the third
element is compared with second and then the first. Thus in every iteration, the element is
compared with all the elements before it. If the element is found to be greater than any of
its previous elements, then it is inserted at that position and all other elements are moved
to one position towards right, to create the space for inserting element. The procedure is
repeated till we get the sorted list.

Consider an example
25 12 30 8 7 43 32

I iteration

25 12 30 8 7 43 32 (12<25, so insert 12 at first position)

12 25 30 8 7 43 32

 II iteration

12 25 30 8 7 43 32 (30>25, so don’t compare 30 with 12)

12 25 30 8 7 43 32

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

65

III iteration

12 25 30 8 7 43 32 (8<30,25,12 so insert 8 at 1st position)

IV iteration

8 12 25 30 7 43 32 (7<30,25,12,8. So insert 7 at 1st pos)

V iteration

7 8 12 25 30 43 32 (43>30. So, don’t compare 43 with other)

VI iteration

7 8 12 25 30 43 32 (32<43 but 32>30. So, insert in-between)

Sorted list:

7 8 12 25 30 32 43

Program:
#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10],n,i,item,j;
 clrscr();
 printf("Enter the size of the array:");
 scanf("%d",&n);
 printf("\nEnter array elements:\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

 for(i=1;i<n;i++)
 {
 item=a[i];
 for(j=i-1;j>=0 && item<a[j];j--)
 a[j+1]=a[j];
 a[j+1]=item;
 }

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

66

 printf("\nSorted list is:\n");
 for(i=0;i<n;i++)
 printf("%d\t",a[i]);
 getch();
}

6.5 QUICK SORT
As the name suggests, Quick Sort is a technique that will sort a list of data significantly
faster than any other sorting techniques. This algorithm is based on the fact that – it is
always easier and faster to sort two small arrays than one single big array.

Here, the given array is divided into two sub-arrays such that the elements at the left-side
of some key element are less than the key element and the elements at the right-side of the
key element are greater than the key element.

The dividing procedure is done with the help of two index variables and one key element as
explained below –

i) Usually the first element of the array is treated as key. The position of the

second element is taken as the first index variable left and the position of the
last element will be the index variable right.

ii) Now the index variable left is incremented by one till the value stored at the
position left is greater than the key.

iii) Similarly right is decremented by one till the value stored at the position right
is smaller than the key.

iv) Now, these two elements are interchanged. Again from the current position,
left and right are incremented and decremented respectively and exchanges
are made appropriately, if required.

v) This process is continued till the index variables crossover. Now, exchange
key with the element at the position right.

vi) Now, the whole array is divided into two parts such that one part is containing
the elements less than the key element and the other part is containing the
elements greater than the key. And, the position of key is fixed now.

vii) The above procedure (from step i to step vi) is applied on both the sub-arrays.
After some iteration we will end-up with sub-arrays containing single element.
By that time, the array will be stored.

 Let us illustrate this algorithm using an example. Consider an array

a[7] ={25, 12, 30, 8, 7, 43, 32}

 Let key =25
 left = 1, the position of 12
 right =6, the position of 32

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

67

 First step: Compare key with a[left]

 key left right

 25 12 30 8 7 43 32

Now, key > a[left] (i.e. 25 > 12) is true.
So increment left. So, now left will be at the element 30.

 Second step: Compare key with a[left]

key left right
25 12 30 8 7 43 32

Now, key > a[left] (i.e. 25 > 30) is false.
So stop incrementing left.

 Third step: Compare key with a[right].

key left right
25 12 30 8 7 43 32

Now, key < a[right] (i.e. 25 < 32) is true.
So, decrement right. Thus, right will be at the element 43 now.

 Fourth step: Compare key with a[right].

key left right
25 12 30 8 7 43 32

 Now, key < a[right] (i.e. 25 < 43) is true.
 So, decrement right. Thus, right will be now at 7.

 Fifth step: Compare key with a[right].

key left right
25 12 30 8 7 43 32

 Now, key < a[right] (i.e. 25 < 7) is false.
 So, stop decrementing right.

 Sixth step: Exchange the values of a[left] (30) and a[right] (7). Thus, array will be –

key left right
25 12 7 8 30 43 32

 Seventh step: Again start the procedure from beginning. That is, compare key with
a[left].

key left right
25 12 7 8 30 43 32

 Now, key > a[left] (i.e. 25 > 7) is true.
 So, increment left. Now, left will be at 8.

Eighth step: Compare key with a[left].

key left right
25 12 7 8 30 43 32

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

68

 Now, key > a[left] (i.e. 25 > 8) is true.
 So, increment left. Now, left will be at 30.

Ninth step: Compare key with a[left].

key left, right
25 12 7 8 30 43 32

 Now, key > a[left] (i.e. 25 > 30) is false.
 So, stop incrementing left.

Tenth step: Compare key with a[right].

key left, right
25 12 7 8 30 43 32

 Now, key < a[right] (i.e. 25 < 30) is true.
 So, decrement right. Thus, right will be at 8 now.

Eleventh step: The array looks like –

key right left
25 12 7 8 30 43 32

As the index variables left and right cross-over, exchange key (25) with a[right] (8).

The array would be –
 8 12 7 25 30 43 32

Thus, all the elements at the left-side of key(i.e. 25) are less than key and all the elements
at the right-side of key are greater than key. Hence, we have got two sub-arrays as –
 {8, 12, 7} 25 {30, 43, 32}
Now, the position of 25 will not get changed. But, we have to sort two sub-arrays
separately, by referring the above explained steps.

Proceeding like this, we will get the sorted list.

Program:

#include<stdio.h>

quick_sort(int x[], int low, int high) //Function to apply quick sort technique
{
 int pos;
 if (low < high)
 {
 pos = partition(x,low,high);
 quick_sort(x,low,pos-1);
 quick_sort(x,pos+1,high);
 }
 return;
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

69

int partition(int x[], int low, int high) //Function for partitioning the array
{
 int key, temp, true = 1;
 int left, right;

 key = x[low];
 left = low +1;
 right = high;

 while(true)
 {
 while ((left < high) && (key >= x[left]))
 left++;
 while(key < x[right])
 right--;
 if(left < right)
 {
 temp = x[left];
 x[left] = x[right];
 x[right] = temp;
 }
 else
 {
 temp = x[low];
 x[low] = x[right];
 x[right] = temp;
 return(right);
 }
 }
 return 0;
}

void main()
{
 int a[10],n,i,low,high;
 clrscr();

 printf("Enter array size\n");
 scanf("%d",&n);

 printf("Enter the elements\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

 low = 0;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

70

 high = n-1;

 quick_sort(a,low,high);

 printf("The sorted list is \n");
 for(i=0;i<n;i++)
 printf("%d\t",a[i]);

 getch();
}

NOTE: The bubble sort and quick sort techniques are usually called as exchange sort
techniques. Because, both of these involves the procedure of exchanging the elements in
some or the other situation.

6.6 SHELL SORT
This sorting technique is almost similar to that of insertion sort. Instead of comparing
adjacent element as in insertion sort, here we will compare the element at equal distance.

In this sorting technique, first we will divide the array into sub-arrays by taking the elements
at equal distances. Usually the distance will be n/2, where n is the size of the array. Now,
these sub arrays are sorted using insertion sort. Again in the next step we will reduce the
distance to the half of the previous distance and create sub-arrays. Again, these arrays are
sorted. By continuing this way, at the end, are sub-arrays will be of single element and then
after sorting, the entire array will get sorted.

NOTE that, if the array size is small, we can take the initial distance d=n/2 and later d=d-1
also.

Consider an example

25 12 30 8 7 43 32
a[0] a[1] a[2] a[3] a[4] a[5] a[6]

Here, n=7. Let d = 3
Now, sub-arrays will be
a[0], a[3], a[6]
a[1], a[4]
a[2], a[5].
Tracing of algorithm is a follows

25 12 30 8 7 43 32

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

71

Now, three sub-arrays are:
 25, 8, 32
 12, 7
 30, 43
Sorting these arrays using insertion sort, we will get
 8, 25, 32
 7, 12
 30, 43

Now take d = 2

8 7 30 25 12 43 32

Now, the sub arrays are:
 8, 30, 12, 32
 7, 25, 43
Sort these arrays using insertion sort. We get –
 8, 12, 30, 32
 7, 25, 43

Now take d = 1

8 7 12 25 30 43 32

Now, every element is at the distance 1, sort this array using insertion sort. We will get –

7 8 12 25 30 32 43

Program:
#include<stdio.h>
#include<conio.h>

void ShellSort(int n, int a[10])
{
 int i,j,d,item, k;

 for(d=(n-1)/2;d>0;d=d/2)
 {
 for(k=0;k<d;k++)
 {

for(i=0;i<n;i=i+d)
 {
 item=a[i];
 j=i-d;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

72

 while(j>=0 && item<a[j])
 {
 a[j+d]=a[j];
 j=j-d;
 }
 a[j+d]=item;
 }
 }
 }
}

void main()
{
 int a[10],n,i;
 clrscr();
 printf("Enter the size of the array:");
 scanf("%d",&n);
 printf("\nEnter array elements:\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);
 ShellSort(n,a);

 printf("\nSorted list is:\n");
 for(i=0;i<n;i++)
 printf("%d\t",a[i]);
 getch();
}

6.7 MERGE SORT
The procedure for merge sort contains two main parts viz. divide and merge.

 Divide: The original array is divided into two equal parts. Then each sub-array is
divided into two equal parts. This method is continued till each sub array contains
only one element.

 Merge: The first element of first sub-array is compared with first element of the
second sub-array. The lesser among these is put into result-array. The remaining
element is compared with the second element of the other array. The procedure is
continued till both the arrays get exhausted.

The divide and merge parts are done recursively on given array to get sorted list.

Consider an array: 3, 0, -8, 5, 2, 15, 13, 6, -4

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

73

Program:

#include<stdio.h>
#include<conio.h>

void Merge(int b[10], int c[10],int a[20],int p, int q)
{
 int i=0,j=0,k=0;

3,0,-8,5 2, 15, 13, 6, -4

3,0 -8,5
2, 15 13,6,-4

3 0 -8 5

0, 3 -8, 5

2 15 13 6,-4

2, 15 6

-4,2,6,13,15

3, 0,-8, 5, 2, 15, 13, 6,-4

-8, 0, 3, 5

-4

-4, 6

-4,6,13

-8,-4, 0, 2, 3, 5, 6, 13, 15

D
I
V
I
D
E

P
A
R
T

M
E
R
G
E

P
A
R
T

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

74

 while(i<p && j<q)
 {
 if(b[i]<c[j])
 {
 a[k]=b[i];
 i++;
 }
 else
 {
 a[k]=c[j];
 j++;
 }
 k++;
 }
 while(i<p)
 {
 a[k]=b[i];
 i++;
 k++;
 }
 while(j<q)
 {
 a[k]=c[j];
 j++;
 k++;
 }
}

void MergeSort(int a[20],int n)
{
 int b[20],c[20],i,j,p,q;

 if(n>1)
 {
 for(i=0;i<n/2;i++)
 b[i]=a[i];
 p=i;

 for(i=n/2,j=0;i<n;i++,j++)
 c[j]=a[i];
 q=j;

 MergeSort(b,p);
 MergeSort(c,q);
 Merge(b,c,a,p,q);
 }

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

75

 return;
}

void main()
{
 int a[20],n,i;
 clrscr();
 printf("Enter the size of array:");
 scanf("%d",&n);
 printf("\nEnter elements:\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

 MergeSort(a,n);

 printf("\nSorted list is:\n");
 for(i=0;i<n;i++)
 printf("%d\t",a[i]);
 getch();
}

NOTE:
When there are two sorted arrays, then also we can sort them using merge sort. This
technique is called as merging the sorted array. The procedure is explained as below using
an example –

Sorted Array (i) : 4, 8, 11, 34, 45
Sorted Array (ii) : -4, 0, 7, 15, 35, 48, 56, 76

Procedure:

4 8 11 34 45

-4 0 7 15 35 48 56 76

Result:
-4 0 4 7 8 11 15 34 35 45 48 56 76

The program for implementing merge sort when two sorted arrays are given, is as below.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

76

Program:
#include<stdio.h>
#include<conio.h>

void MergeSort(int a[10], int b[10],int c[20],int m, int n)
{
 int i=0,j=0,k=0;

 while(i<m && j<n)
 {
 if(a[i]<b[j])
 {
 c[k]=a[i];
 i++;
 k++;
 }
 else
 {
 c[k]=b[j];
 j++;
 k++;
 }
 }
 while(i<m)
 {
 c[k]=a[i];
 i++;
 k++;
 }
 while(j<n)
 {
 c[k]=b[j];
 j++;
 k++;
 }
}

void main()
{
 int a[10],b[10],c[20],m,n,i;
 clrscr();
 printf("Enter the size of first array:");
 scanf("%d",&m);
 printf("\nEnter first array(in sorted order):\n");
 for(i=0;i<m;i++)
 scanf("%d",&a[i]);

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

77

 printf("Enter the size of second array:");
 scanf("%d",&n);
 printf("\nEnter second array(in sorted order):\n");
 for(i=0;i<n;i++)
 scanf("%d",&b[i]);

 MergeSort(a,b,c,m,n);

 printf("\nSorted list is:\n");
 for(i=0;i<m+n;i++)
 printf("%d\t",c[i]);
 getch();
}

6.8 RADIX SORT
The radix sort is based on the idea that the number which is having the highest significant
digit greater than the corresponding digit of another number will be larger. That is, if we
consider two numbers viz. 673 and 512, compare highest significant digits i.e. 6 and 5.
Then as 6 is greater than 5, the number 673 is greater than 512. If the two digits are same,
we will take next digit and compare. The process continues till we get the result. For a
sorting method by radix sort; we assume that all the numbers to be sorted are having equal
number of digits i.e. all are two digit numbers or all are three digit numbers etc. There will
be ten packets numbering from 0 to 9. Initially all the packets are empty. We will scan all
the numbers to be sorted one by one and separate the least significant digit and insert that
number into appropriate packet. If the packet is non-empty, the element is inserted into
rear-end of the packet. Once all the elements have been scanned, they are removed from
the packets. The process is repeated till the array gets sorted.

Consider an example for radix sort. We have to sort the numbers-
 212, 310, 451, 117, 256, 813, 514, 315, 789, 618, 912, 513.

Step (i): Scan each number and put it into the appropriate packets based on last digit (least
significant digit) of a number as below-

0 1 2 3 4 5 6 7 8 9
310 451 212 813 514 315 256 117 618 789
 912 513

Step (ii): Now, remove elements from the packets-
 310, 451, 212, 912, 813, 513, 514, 315, 256, 117, 618, 789

Put these elements into packets based on 2nd digit as follows –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

78

0 1 2 3 4 5 6 7 8 9
 310 451 789
 212 256
 912
 813
 513
 315
 117
 618

Again remove elements from packets:
310, 212, 912, 813, 513, 514, 315, 117, 618, 451, 256, 789.

Step (iii) Now consider highest significant digit (first digit) and put the elements into
packets.
0 1 2 3 4 5 6 7 8 9
 117 212 313 451 513 618 789 813 912
 256 315 514

Remove from the packets-
117, 212, 256, 313, 315, 451, 513, 514, 618, 789, 819, 912
This is a sorted list.

To implement radix sort in C programming, we need a function which will separate the
required significant digits, a function to insert an element at the rear-end of the list and to
find the largest. For these, we go for linked list data structure as below –

include<stdio.h>
include<math.h>
include<process.h>
include<alloc.h>

struct node
{
 int data;
 struct node *link;
};
typedef struct node *NODE;

/* Use a function getnode() from linked list example*/
/* Use a function insert_rear() which is used for single list program*/

int separate(int item, int j)
{
 return item/(int) pow(10, j-1)%10;
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

79

int largest(int a[], int n)
{
 int i, big;
 big=a[0];
 for(i=1;i<n;i++)
 if(a[i]>big)
 big=a[i];
 return big;
}
void radix_sort(int a[], int n)
{
 int i, j, k, m, big, digit;
 NODE p[10], temp;
 big=largest(a,n);
 m=log 10(big)+1;
 For(j=1;j<=m;j++)
 {
 for(i=0;i<=9;i++) //0-9 packets
 p[i]=NULL;
 for(i=0;i<n;i++)
 {
 digit=separate (a[i],j);
 p[digit]=insert_rear(a[i], p[digit]);
 }
 k=0;
 for(i=0;i<=9;i++)
 {
 temp=p[i];
 while(temp!=NULL)
 {
 a[k++]=temp->data;
 temp=temp->link;
 }
 }
 }
}

void main()
{
 int n, i, a[20];
 printf(“enter array size”);
 scanf(“%d”,&n);
 printf(“enter elements:\n”);
 for(i=0;i<n;i++)
 scanf(“%d”, &a[i]);

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

80

 radix_sort(a,n);
 printf(“\n sorted list”);
 for(i=0;i<n;i++)
 printf(“%d”,a[i]);
}

6.9 ADDRESS CALCULATION SORT

NOTE: The readers are advised to understand the Hashing technique which is
discussed in the next chapter (Searching) before reading this sorting technique.

The address calculation sort is also known as sorting by hashing. In this method, a function
f is applied on each element, where the function f should be such that,

if x<=y, then f(x)<=f(y)

Such function is called as order preserving function. In this sorting method also, we assume
that all the numbers to be sorted are having equal number of digits i.e. all are two digit
numbers or all are three digit numbers etc. That is, if we consider two numbers viz. 673
and 512, compare highest significant digits i.e. 6 and 5. Then as 6 is greater than 5, the
number 673 is greater than 512. If the two digits are same, we will take next digit and
compare. The process continues till we get the result.

With the above assumption, the simplest function satisfying the above given equation,
would be considering most significant digit of every number. That is,

f(452)= 4,
f(127)=1 etc.

The sorting procedure is as follows: There will be ten packets numbering from 0 to 9
(similar to hash table). Initially all the packets are empty. Then, most significant digit of
every item is computed, the item is hashed into respective packet. In case of hash
collision, we use, open hashing (or separate chaining) using linked list. While inserting new
item into a packet, we should see that the items in that packet are inserted in a sorted
manner. After hashing all items into a hash table, just remove all the numbers from packet
0 till packet 9 sequentially. This will be a sorted list.

For example, consider the numbers: 21, 45, 13, 67, 42, 90, 78, 23, 54, 12, 35

Considering a hash function which results in most significant digit of a given number, the
hash table would look like:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

81

 0 1 2 3 4 5 6 7 8 9

Observe that, while inserting 42, the number 45 was already hashed. But, 42 is inserted
before 45. So, during each insertion into a packet, we should maintain an ordered list.
Now, remove all the elements from packet 0 in an order. We will get a sorted list as:
 12, 13, 21, 23, 35, 42, 45, 54, 67, 78, 90

#include<stdio.h>
#include<alloc.h>
#include<conio.h>
#include<stdlib.h>

struct node //taken from linked list chapter
{
 int data;
 struct node *link;
};
typedef struct node *NODE;

NODE list[10]={NULL};

NODE getnode() //taken from linked list chapter
{
 NODE x;
 x=(NODE) malloc(sizeof(struct node));
 if(x==NULL)
 {
 printf("no memory in heap");
 exit(0);
 }
 return x;
}

NODE insert(int item, NODE start) //insert_order() function of linked lists
{
 NODE temp, cur, prev;
 temp = getnode();

12 21 67 54 90 78 35 42

45 23 13

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

82

 temp->data=item;
 temp->link=NULL;

 if(start == NULL)
 return temp;

 if(item < start ->data)
 {
 temp->link =start;
 return temp;
 }
 prev = NULL;
 cur = start;
 while(cur != NULL && item >= cur->data)
 {
 prev = cur;
 cur = cur->link;
 }
 prev->link = temp;
 temp->link=cur;
 return start;
}

int msd(int x) //hash function to retrieve most significant digit of number
{
 while(x>10)
 x=x/10;

 printf("\n%d",x);
 return x;
}

void addcal(int arr[], int n)
{
 int i, j=0, pos;

 for(i=0;i<n;i++)
 {
 pos=msd(arr[i]);
 list[pos]=insert(arr[i],list[pos]);
 }

 for(i=0;i<10;i++)
 {
 while(list[i]!=NULL)
 {

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

83

 arr[j++]=list[i]->data;
 list[i]=list[i]->link;
 }
 }

 printf("\nSorted list is:\n");
 for(i=0;i<n;i++)
 printf("%d\t",arr[i]);

}

void main()
{
 int n, a[20], i;
 clrscr();
 printf("Enter size of the array:");
 scanf("%d",&n);
 printf("\nEnter array elements:\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

 addcal(a,n);
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

84

UNIT 7. SEARCHING

7.1 INTRODUCTION
Searching is an operation which finds the location of a given element in the list. The search
is said to be successful if the element is found in the list, otherwise the search is said to be
unsuccessful. Some of the search techniques that we are going to discuss:

 Sequential or linear search
 Searching an ordered table
 Indexed sequential search
 Binary Search (already discussed during Recursion chapter)
 Interpolation Search
 Tree search

7.2 SEQUENTIAL / LINEAR SEARCH
Linear search method searches for a key element in the given list by comparing key with
every element of an array. Here, each element is compared with the key element till the
end of the list is reached or the element is found in between. In general, the linear search
takes n comparisons for an array consisting of n elements.

#include<stdio.h>
#include<conio.h>

int linear(int a[], int key, int n)
{
 int i;

 for(i=0;i<n;i++)
 if(a[i]==key)
 return i+1;

 return -1;
}

void main()
{
 int a[20], n, key, i, pos;

 printf("Enter size of the array:");
 scanf("%d",&n);
 printf("\nEnter array elements:\n");

 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

 printf("\nEnter the key to be searched:");

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

85

 scanf("%d",&key);

 pos=linear(a, key, n);
 if(pos==-1)
 printf("\nUnsuccessful search!!");
 else
 printf("\nKey found at position %d",pos);
}

7.2.1 Searching an Ordered Table
To reduce the time complexity (that is, the number of comparisons) of linear search, we can
apply linear search technique on a sorted list – this method is known as searching an
ordered table.

Here, the key is compared with the elements in the array till the match is found or the key
becomes greater than any in-between element.

#include<stdio.h>
#include<conio.h>

int linear(int a[], int key, int n)
{
 int i;

 for(i=0;i<n;i++)
 if(a[i]==key)
 return i+1;
 else if(a[i]>key)
 break;

 return -1;
}

void main()
{
 int a[20], n, key, i, pos;

 printf("Enter size of the array:");
 scanf("%d",&n);
 printf("Enter array elements in ascending order:");

 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

 printf("\nEnter the key to be searched:");
 scanf("%d",&key);

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

86

 pos=linear(a, key, n);
 if(pos==-1)
 printf("\nUnsuccessful search!!");
 else
 printf("\nKey found at position %d",pos);
}

7.3 INDEXED SEQUENTIAL SEARCH
This technique is also used on sorted list, to reduce time complexity. But, this technique
uses extra space.

Here, apart from original input array (which must be a sorted list), we will maintain another
array called as index table. Index table consists of two parts:

 only few elements (called as kindex) of original array, which are equidistant.
 A pointer (called pindex) to the element in original array which corresponds to

kindex.

The index table also must be a sorted list. Refer the diagram given in next slide to
understand this. While searching for a key element, the index table is searched for. Then,
only the respective sub-array of the original array is searched in a sequential manner.

Refer the following diagram:

Item Array
index

-8 0
-5 1
0 2
10 3
18 4
21 5
27 6
32 7
41 8
45 9
59 10
62 11
74 12
81 13
89 14

kindex pindex

18 4

45 9

89 14

Index Table

Original Array

Now, if we want to search for the key
element 10, the Index table is searched
for.

Since 10<18, the first subarray of the
original array {-8, -5, 0, 10, 18} is
searched using a sequential search
method. This is a successful search.

Now, assume we would like to search
75. Search the Index Table for 75.
Since, 75 is in-between 45 and 89, we
have to search in 3rd subarray : {59, 62,
74, 81, 89}. This is unsuccessful
search.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

87

7.4 INTERPOLATION SEARCH
This searching technique is also applied on a sorted list. If the elements are uniformly
distributed between the first element and the last element then this algorithm works better
than the binary search algorithm.

Consider the array:
 a0 , a1 , a2 , a3 , ………. an-1

Now, if a1 – a0 = a2 - a1 = a3 – a2 and so on…., then we can say that array elements are
uniformly distributed. Note, that, the difference between every two elements need not be
exactly equal, but it can be almost equal. Now, the interpolation search follows almost
same procedure as that of binary search, except for the calculation of middle element.

//Interpolation Search
int interpol(int item, int a[],int low,int high)
{ int mid;

 if(low<=high)
 {
 mid=low+(high-low)*((item-a[low])/(a[high]-a[low]));

 if(a[mid]==item)
 return mid+1;
 if(a[mid]>item)
 return interpol(item,a,low,mid-1);

 return interpol(item,a,mid+1,high);
 }
 return -1;
}

void main()
{
 int a[10],n,pos,item, i;

 printf("Enter the array size:");
 scanf("%d",&n);
 printf("Enter items in ascending order\n");
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);

 lowahigha

lowakeylowhighlowmid

 *

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

88

 printf("Enter the key element:");
 scanf("%d",&item);

 pos=interpol(item,a,0,n-1);
 if(pos==-1)
 printf("\nItem not found");
 else
 printf("\nItem found at %d",pos);
}

7.5 HASHING
Hashing is a way of representing dictionaries. Dictionary is an abstract data type with a set
of operations searching, insertion and deletion defined on its elements. The elements of
dictionary can be numeric or characters or most of the times, records. Usually, a record
consists of several fields; each may be of different data types. For example, student record
may contain student id, name, gender, marks etc. Every record is usually identified by
some key.

Here we will consider the implementation of a dictionary of n records with keys k1, k2 …kn.
Hashing is based on the idea of distributing keys among a one-dimensional array

H[0…m-1], called hash table.
For each key, a value is computed using a predefined function called hash function. This
function assigns an integer, called hash address, between 0 to m-1 to each key. Based
on the hash address, the keys will be distributed in a hash table.

For example, if the keys k1, k2, …., kn are integers, then a hash function can be
 h(K) = K mod m.

Let us take keys as 65, 78, 22, 30, 47, 89. And let hash function be,

h(k) = k%10.
Then the hash addresses may be any value from 0 to 9. For each key, hash address will
be computed as –
 h(65) = 65 %10 = 5
 h(78) = 78%10 = 8
 h(22)= 22 % 10 =2
 h(30)= 30 %10 =0
 h(47) = 47 %10 = 7
 h(89)=89 % 10 = 9

Now, each of these keys can be hashed into a hash table as –

30 22 65 47 78 89
0 1 2 3 4 5 6 7 8 9

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

89

In general, a hash function should satisfy the following requirements:
 A hash function needs to distribute keys among the cells of hash table as evenly as

possible.
 A hash function has to be easy to compute.

7.5.1 Hash Collisions
Let us have n keys and the hash table is of size m such that m<n. As each key will have an
address with any value between 0 to m-1, it is obvious that more than one key will have
same hash address. That is, two or more keys need to be hashed into the same cell of
hash table. This situation is called as hash collision.

In the worst case, all the keys may be hashed into same cell of hash table. But, we can
avoid this by choosing proper size of hash table and hash function. Anyway, every hashing
scheme must have a mechanism for resolving hash collision. There are two methods for
hash collision resolution, viz.

 Open hashing
 closed hashing

7.5.2 Open Hashing (or Separate Chaining)
In open hashing, keys are stored in linked lists attached to cells of a hash table. Each list
contains all the keys hashed to its cell. For example, consider the elements
 65, 78, 22, 30, 47, 89, 55, 42, 18, 29, 37.

If we take the hash function as h(k)= k%10, then the hash addresses will be –

h(65) = 65 %10 = 5 h(78) = 78%10 = 8
h(22)= 22 % 10 =2 h(30)= 30 %10 =0
h(47) = 47 %10 = 7 h(89)=89 % 10 = 9
h(55)=55%10 =5 h(42)=42%10 =2
h(18)=18%10 =8 h(29)=29%10=9
h(37)=37%10 =7

The hash table would be –

0 1 2 3 4 5 6 7 8 9

65 7830 22 47

55 1842

89

37 29

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

90

Operations on Hashing:
 Searching: Now, if we want to search for the key element in a hash table, we need

to find the hash address of that key using same hash function. Using the obtained
hash address, we need to search the linked list by tracing it, till either the key is
found or list gets exhausted.

 Insertion: Insertion of new element to hash table is also done in similar manner.
Hash key is obtained for new element and is inserted at the end of the list for that
particular cell.

 Deletion: Deletion of element is done by searching that element and then deleting it
from a linked list.

7.5.3 Closed Hashing (or Open Addressing)
In this technique, all keys are stored in the hash table itself without using linked lists.
Different methods can be used to resolve hash collisions. The simplest technique is linear
probing.

This method suggests to check the next cell from where the collision occurs. If that cell is
empty, the key is hashed there. Otherwise, we will continue checking for the empty cell in a
circular manner. Thus, in this technique, the hash table size must be at least as large as
the total number of keys. That is, if we have n elements to be hashed, then the size of hash
table should be greater or equal to n.

Example:

Consider the elements 65, 78, 18, 22, 30, 89, 37, 55, 42
Let us take the hash function as h(k)= k%10, then the hash addresses will be –
 h(65) = 65 %10 = 5 h(78) = 78%10 = 8

h(18)=18%10 =8 h(22)= 22 % 10 =2
h(30)= 30 %10 =0 h(89)=89 % 10 = 9
h(37)=37%10 =7 h(55)=55%10 =5
h(42)=42%10 =2

Since there are 9 elements in the list, our hash table should at least be of size 9. Here we
are taking the size as 10.

Now, hashing is done as below –

Drawbacks:

 Searching may become like a linear search and hence not efficient.

30 89 22 42 65 55 37 78 18
0 1 2 3 4 5 6 7 8 9

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

91

UNIT 8. TREES

8.1 INTRODUCTION
The data structures that we studied till now such as stack, queue, linked list etc, were of
linear in nature. That is, the inter-relationship between the elements of those data
structures is linear. But, in the field of computer science, we come across many situations
where the data are interrelated in hierarchical structure. In this case, a linear representation
of data is not possible. The solution for this problem is a data structure called tree, which is
a non-primitive non-linear data structure.

Tree is a data structure used to represent hierarchical relationship existing among several
data items. Here, each data item is referred to as node. Each node may be empty or may
be connected to some other nodes.

Example of a tree:
 Root

 Level 0

 Level 1

 Level 2

 Internal Level 3
 nodes

 Leaf or external nodes

Referring to the above diagram, let us define some of the terminologies used in trees. In
the diagram,

 A, B, C etc. are known as nodes of a tree.
 A is known as the root.
 B, C and D are called as children of A. Similarly, J and K are children of H and so

on.
 A is referred as father of B, C and D.
 B, C and D are known as siblings of each other.
 The node, which is not a having any children is called as leaf or terminal or

external node.
 A tree structure, which is connected to root is known as a subtree.
 The number of subtrees connected to a node is known as a degree of that node. In

the figure, A is having degree 3, B is of degree 2, C is of degree 1 etc.
 The maximum number representing the degree of any node in a tree is called as

degree of a tree. Here, degree of tree is 3.

A

C D B

G H F E

I J K

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

92

 The entire tree structure is leveled such that the root is at level 0 and any other node
is having the level one more than the level of its father.

 The depth or height of a tree is the maximum level of that tree.
 Collection of disjoint trees is known as the forest.

8.2 BINARY TREES
Binary tree is a finite set of data items, which is either empty or partitioned into three
disjoint subsets. The first subset contains only one item known as root. The other two
subsets are themselves binary trees known as left subtree and right subtree. Thus, in a
binary tree, maximum degree of any node is at most 2.
Ex:

In the above figure, A is the root of a binary tree. A tree structure having B as a root is
known as left subtree of the tree with root A. Similarly, the tree structure having C as root is
the right subtree of the given tree.

A binary tree in which any node is either empty or consisting of both left subtree and right
subtree is known as strictly binary tree.

For ex:

A strictly binary tree is which the number of nodes at any level i is 2i then the tree is said to
be complete binary tree.
Ex:
 Level, i=0 Number of nodes=2i =1

 Level, i=1 Number of nodes=2i =2

 Level, i=2 Number of nodes=2i=4

8.2.1 Applications of Binary Trees
Binary tree is a useful data structure while taking two-way decisions at each point of a
process. Consider an example to illustrate this fact.

A

B C

D E

A

B C

F G D E

A

B C

E F D

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

93

Suppose an array of numbers is given. The problem is to find duplicate numbers in the
array. If the array is large, comparing each element with the other is quite difficult and is
time consuming. So, for the sake of simplicity the applications of tree concept can be used.
The procedure is as follows: Take a first number in the array and put it as a root of the
binary tree. Now, take the second number compare it with the root. If the match is found,
we can conclude that the number is duplicate. If the number is smaller than the root put it
as a left subtree otherwise put it as a right subtree. Now the next number is compared
with root then with left subtree and right subtree if necessary. The procedure is repeated till
the array is completed.

Binary tree concept can be used for the efficient method of searching and sorting also. It
can also be used for evaluating an expression by creating an expression tree.

8.2.2 Operations on Binary Trees
Few of important operations on trees are-

 Traversing a tree
 Insertion of a node
 Deletion of a node
 Searching for a node

8.2.3 Traversing a Tree
Traversal of a tree is a method of visiting each node of a tree exactly once in a systematic
way. There are three different methods for tree traversal, viz.

i) Pre-order traversal
ii) In-order traversal
iii) Post-order traversal

The rules for these traversals are as below-

Pre-order traversal:

i) Visit the root.
ii) Traverse left subtree using pre-order traversal method.
iii) Traverse right subtree using pre-order traversal method.

In-order traversal:

i) Traverse left subtree using in-order traversal method.
ii) Visit the root.
iii) Traverse right subtree using in-order traversal method.

Post-order traversal:

i) Traverse left subtree using post-order traversal method.
ii) Traverse right subtree using pos-order traversal method.
iii) Visit the root.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

94

Example:

Pre-order:
 ABDECFG 15, 25, 31, 42, 92, 13, 34, 61
In-order:
 DBEACGF 31, 42, 25, 92, 15, 34, 13, 61
Post-order:
 DEBGFCA 42, 31, 92, 25, 34, 61, 13, 15

8.2.4 Representation of Binary Trees
For programmatic implementation, tree can be represented in two ways.

 Array Representation
Here, each element of a tree is treated as an element of the array i.e. in a binary
tree, assumption is made that each node is present at all the levels and leaving
blank space for absent nodes, the array elements are filled-up.

Ex: Consider a binary tree in fig(a).

 Fig(a) Fig(b)

Since this binary tree is having a maximum level of 2, fill-up all the nodes till level
2 as in fig (b). Now, the array representations will be-

 A B C D E

But, as we know, the array requires contiguous memory blocks to store the
elements; we will go for node representations of trees.

 Node/Linked list Representation
Here, each of the elements in a binary tree is treated as a node in doubly linked list
having three fields viz, left link, data and right link.

15

25 13

34 61 31 92

42

A

B C

F

G

D E

A

B C

D E

A

B
C

D E

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

95

Ex: For the tree in fig (a), the node representation will be as in fig (b).

 1000

 2000 3000

 4000 5000
 Fig(a) Fig(b)

For the programming purpose, we create a node in a tree as-

struct node
{
 struct node *llink;
 int data;
 struct node *rlink;
};
typedef struct node * NODE;

8.3 BINARY SEARCH TREES
Binary search tree is a binary tree in which for each node, the elements in left subtree are
less than it and the elements in right subtree are greater than or equal to it. Every node of
binary search tree must satisfy this condition.
Ex:

To insert a new node into BST, it is compared with root. If it is less than the root, traverse
towards left subtree. If it is greater than or equal to root, traverse towards right subtree and
insertion is made appropriately. Care to be taken such that after insertion also, the tree
remains BST. Similary, for deletion of a node also, such precaution is to be taken.

Note that in-order traversal of a BST will give the sorted list in ascending order. So, binary
tree sort is nothing but a creation of BST and then its in-order traversal.

A

B C

D E

2000 A 3000

N B N 4000 C 5000

N D N N E N

150

100 180

200 50 110

120 85

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

96

Program: Implementation (creation) of Binary Search Trees and Traversal
Techniques

#include<stdio.h>
#include<conio.h>

struct node
{
 struct node *llink;
 struct node *rlink;
 int data;
};
typedef struct node *NODE;

NODE getnode() //Function to get memory from heap
{
 NODE x;
 x = (NODE) malloc (sizeof (struct node));
 if (x == NULL)
 {
 printf("No memory space\n");
 exit(0);
 }
 return x;
}

NODE insert (int item, NODE root) //Function to create binary search tree by inserting
elements
{
 NODE temp,prev,cur;

 temp = getnode();
 temp->data = item;
 temp->rlink = NULL;
 temp->llink = NULL;

 if(root == NULL)
 return temp;

 prev = NULL;
 cur = root;

 while (cur != NULL)
 {
 prev = cur;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

97

 cur = (item < cur->data) ? cur->llink : cur->rlink;
 }
 if (item < prev->data)
 prev->llink = temp;
 else
 prev->rlink = temp;

 return root;
}

void preorder(NODE root) //Function to traverse tree in pre-order
{
 if(root != NULL)
 {
 printf("%d\t",root->data);
 preorder(root->llink);
 preorder(root->rlink);
 }
}

void inorder(NODE root) //Function to traverse tree in in-order
{
 if(root != NULL)
 {
 inorder(root->llink);
 printf("%d\t",root->data);
 inorder(root->rlink);
 }
}

void postorder(NODE root) //Function to traverse tree in post-order
{
 if(root != NULL)
 {
 postorder(root->llink);
 postorder(root->rlink);
 printf("%d\t",root->data);
 }
}

void main()
{
 NODE root = NULL;
 int opt,item;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

98

 for(; ;)
 {
 printf("\nCreating a Binary Tree and Traversing the tree\n");
 printf("Enter your option\n");
 printf("1:Insert an element to tree\n");
 printf("2:Pre-Order Traversal\n");
 printf("3:In-Order Traversal\n");
 printf("4:Post-Order Traversal\n");
 printf("5:Exit\n");
 scanf("%d",&opt);
 switch(opt)
 {
 case 1: printf("Enter the element to be inserted \n");
 scanf("%d",&item);
 root = insert(item,root);
 break;
 case 2: printf("PREORDER TRAVERSAL\n");
 preorder(root);
 break;
 case 3: printf("INORDER TRAVERSAL\n");
 inorder(root);
 break;
 case 4: printf("POSTORDER TRAVERSAL\n");
 postorder(root);
 break;
 case 5:
 default: exit(0);
 }
 }
}

Following is a function for deleting a node from BST. This function can be included
in the above program, if you want delete option.

/* Function to delete a node whose data field is given*/
NODE deletenode(int key, NODE root)
{
 NODE cur, parent, suc, q;

 if(root= =NULL)
 {
 printf(“empty tree”);
 return root;
 }

 parent=NULL;

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

99

 cur=root;

 while(cur!=NULL && key!=cur->data)
 {
 parent=cur;
 cur=(item<cur->data)? cur->llink : cur->rlink;
 }

 if(cur= =NULL)
 {
 printf(“key not found”);
 return root;
 }

 if(cur->llink= =NULL)
 q= cur ->rlink;
 else if(cur->rlink= =NULL)
 q=cur->llink;
 else
 {
 suc=cur->rlink;
 while(suc->llink!=NULL)
 suc=suc->llink;

suc->llink=cur->llink;
 q=cur->rlink;
 }

 if(parent= =NULL)
 return q;
 if(cur= =parent->llink)
 parent->llink=q;
 else
 parent->rlink=q;
 freenode(cur);
 return root;
}

8.4 HEAPS
Heap is a complete binary tree. There are two different types of heap viz. max-heap and
min-heap. In a tree, if every node is greater than its children, then it is a max-heap or
descending heap. If every node is less than its children, then it is a min-heap or ascending
heap.

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

100

Example:

 Max-heap Min-heap

While inserting an element into the heap and deleting an element from the heap proper
care should be taken so that after insertion/deletion, the resulting tree should be a heap of
the same type as before.

8.4.1 Construction of a Heap
To construct a heap from a given set of elements, a binary tree is formed first. Then,
starting from the level one less than the maximum level of a binary tree, the heap must be
formed, considering the children of each node. The procedure is repeated till entire tree
becomes a help of a specific type.

Ex. Consider the elements: 15, 23, 45, 41, 8, 24, 3. The problem is to construct a max-
heap.

Step (i) Form a tree-

 Level 0

 Level 1

 Level 2

Step(ii) Consider the element 45. As 45 is greater than both of its children (24 and 3), no
change occurs. Now compare the children of 23.

41>8 and 41>23 also. So, exchange 41 with 23. Thus, the tree would be –

Step(iii) Now, compare 41 and 45. As 45>15, they are exchanged and the tree will be –

90

82 75

31 42 69 53

12

21 32

61 49 52 39

15

23 45

24 3 41 8

15

41 45

24 3 23 8

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

101

Step (iv) Again compare 15 with 24 and 3. Since 24>15, they are exchanged.

 which is a max-heap

Using same methodology, one can build min-heap also.

8.4.2 Heap Sort
Following are the steps for sorting a set of n elements using heap sort.

i) Construct a max-heap from the given elements.
ii) Exchange the first and last elements of this heap.
iii) Discard the last element now, and re-construct the heap using remaining n-1

elements.
iv) Repeat step (ii) and step (iii) till only one element remains in the heap.
v) Write all the discarded elements in the reverse order and this will be the sorted

list.

For example, consider the elements used in the previous section. After creating a heap, the
elements will be –

 45, 41, 24, 23, 8, 15, 3
Now, exchange 45 and 3. Eliminate 45. So, the list becomes-
 3, 41, 24, 23, 8, 15
Now, create a max-heap-

Write in-order: 41, 23, 24, 3, 8, 15
Exchange 41&15 and eliminate 41. So, the list becomes –

 15, 23, 24, 3, 8.
Create a heap:

45

41 15

24 3 23 8

45

41 24

15 3 23 8

41

23

24

15

3

8

3

23

24

15

41

8

23

3

24

15

41

8

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

102

Write in-order: 24, 23, 15, 3, 8
Exchange 24 & 8. Eliminate 24. The remaining list is –
 8,23,15,3
Create a heap:

Write in the order: 23, 8, 15, 3.
Exchange 23 and 3 and then eliminate 23. The list remained is –
 3, 8, 15
Create heap:

Write in the order: 15, 8, 3
Exchange 15 and 3 and eliminate 15. The list is –
 3, 8
Create a heap:

Write in order: 8, 3
Exchange 8 and 3 and eliminate 8. Now the list contains only one element viz. 3
Now, write all the eliminated items –
 45, 41, 24, 23, 15, 8, 3
The reverse of this list is the sorted list.

23

3

24

15

8

23

3

15

24

8

23

3

15

8

8

3

15

23

8 15

3

8 3

15

8

3

3

8

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

103

/*Program for heap sort*/
include<stdio.h>
void createheap(int a[], int n)
{
 int i,j,k,item;
 for(k=1;k<n;k++)
 {
 item=a[k];
 i=k;
 j=(i-1)/2;

while(i>0 && item>a[j])
 {
 a[i]=a[j];
 i=j;
 j=(i-1)/2;
 }
 a[i]=item;
 }
}

void heapsort(int a[],int n)
{
 int i, temp;
 createheap(a,n);
 for(i=n-1;i>0;--)
 {
 temp=a[0];
 a[0]=a[i];
 a[i]=temp;
 createheap(a,i);
 }
}
void main()
{
 int a[20],n, i;
 printf(“enter number of elements in array”);
 scanf(“%d”, &n);
 printf(“enter elements:\n”);
 for(i=0;i<n;i++)
 scanf(“%d”, &a[i]);
 heapsort(a,n);
 printf(“\n sorted list:\n”);
 for(i=0;i<n;i++)
 printf(“%d\n”, a[i]);
}

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

104

8.5 BALANCED SEARCH TREES (AVL TREES)
We have seen that, major application of binary search tree is for searching. But, if our
binary search tree is skewed at one side, as shown in the below diagram, then search
process will be linear, and it is not efficient.

To overcome this, problem, we balance the height of BST such a way that, the difference
between heights of left subtree and right subtree of any node is either 0 or 1 or -1. Such a
tree is called as balanced search tree. Balanced Search Tree is also known as AVL (G M
Adelson-Velsky and E M Landis) trees.

Balanced Search Tree is a Binary Search tree in which the balance factor for every
node is either -1, 0 or 1.

Balance factor = height of left subtree – height of right subtree

After every insertion and deletion, we have to compute the balance factor for every node. If
tree is unbalanced, then we have to balance it and then proceed further for next
insertion/deletion.

To balance a tree, we transform the tree by rotation. A rotation in an AVL tree is a local
transformation of its sub tree rooted at a node whose balance has become either +2 or -2.
If there are several such nodes, we rotate the tree rooted at the unbalanced node that is
nearer to the newly inserted node (normally, from bottom of the tree).

There are 4 types of rotations.

Single Right Rotation (R-Rotation):

• This rotation is performed after a new element is inserted into left sub tree of the left
child of tree, whose root had the balance factor 1 before insertion.

• The general form is –

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

105

Single Left Rotation (L-Rotation):

• This rotation is performed when a new element is inserted into right sub tree of the
right child of tree, whose root had the balance factor -1 before insertion.

• The general form is –

Double Left-Right Rotation (LR-Rotation):

• It is a combination of left and right rotations.
• We will perform L-rotation of the left sub tree of root r followed by R-rotation of the

new tree rooted at r.
• This rotation is done when a new node is inserted into right sub tree of the left child

of a tree whose root had the balance factor of 1 before insertion.

r

c

T1 T2

T3

Newly
inserted node

c

T1 r

T2 T3

Newly
inserted node

c

r

T1 T2

T3

Newly
inserted node

Newly
inserted node

r

T1 c

T2 T3

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

106

Double Right-Left Rotation (RL-Rotation):

• It is a mirror image of LR rotations.
• This rotation is done when a new node is inserted into left sub tree of the right child

of a tree whose root had the balance factor of -1 before insertion.

Creation of AVL Tree:
Given a set of numbers, the creation of AVL tree has following steps:

1. Take first element as root.

r

c

g
T1

T3 T2

T4

 or

g

c r

T4 T3

T2

or

T1

r

c

g

T1

T3 T2

T4

 or

g

r

T1

c

T4 T3

T2

or

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

107

2. Compare the next element with the root and place it as a left child if it is lesser than
the root. If the element is greater than the root, place it as a right child. (Same as
Binary Search Tree).

3. Compute the balance factor for every node. If there is an imbalance at any node,
apply suitable rotation only on that portion and balance the tree.

4. Apply steps (2) and (3) till you insert all the elements into an AVL tree.

Consider an example as shown below:

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

108

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

109

8.6 THREADED BINARY TREES
Since each of the traversal methods are recursive in nature, every time the program needs
to push the items into the stack and to pop-up from the stack. This is a time consuming
process. Consider the example –

 1000

 2000 3000

 4000
The inorder traversal of this tree would be B D A C. To traverse this tree, program control
reaches ‘A’ first. Then as it is found to have left subtree, A is pushed into the stack. Then as
B don’t have any left subtree, it gets printed. Then its right subtree, D gets printed. Now,
program control will visit the stack to search for the elements and as A is found in it, it gets
printed. In this manner, the flow continues, and all the elements get printed.

Note the point that if we would have had the address of the node A in the right link of D,
searching in the stack was not necessary i.e if the node for D was like-

A

C B

D

2000 A 3000

N B 4000 N C N

N D N

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

110

then we would have directly printed A. But, during program execution it may not be possible
to identify that whether the address 1000 is of right child of the node D or it is of the
immediate inorder-successor of D. Hence, we will introduce one more field to indicate this
concept. As a solution for this problem, we will construct the structure as-
struct node
{
 int data;
 int lchild;
 int rchild;
 struct node *llink;
 struct node *rlink;
};
typedef struct node *NODE;

Here, lchild and rchild will take the values 0 or 1. The field lchild having the value 0
indicates the address at the field llink is not the address of left child but it is of immediate in-
order predecessor. The value 1 indicates the address at llink is of left child. Similarly, the
same concept holds for right child i.e. rchild field and rlink field.

The operations on threaded binary tree are done depending on the values of lchild and
rchild and keeping the logic as that of ordinary binary tree.

In general, the link fields of a tree can be used to store the address of higher-level nodes.
The link field which keeps the address of higher-level node is called as thread. A binary
tree having threads is threaded binary tree.

Threading may correspond to any of the three traversals.

– In-order Threading
– Pre-order Threading
– Post-order Threading

Each of these type may be of

– One-way threading
– Two-way threading

In-Order Threading

• One-way In-order Threading: The right link field of the node will have the address
of its in-order successor.
For example, In-order traversal of tree is D B F E G A C

N D 1000

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

This document can be downloaded from www.chetanahegde.in with most recent updates.
Notes for Data Structures using C (13MCA21)

© Dr. Chetana Hegde, Associate Professor, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

111

Here, dotted lines indicate the link fields containing the address of their in-order
successors.

• Two-way In-order Threading: The right link field of the node will have the address
of its in-order successor. And the left link field of the node will have the address of its
in-order predecessor. It is also known as Fully threaded binary tree.

For example, In-order traversal of tree is D B F E G A C

In the similar manner, we can create threaded binary trees for pre-order and post-order.

 A

B N C

E

N G N F

N D

 A

B C N

E

 G F

N D

http://www.chetanahegde.in
mailto:chetanahegde@ieee.org

