Exploring java.lang

Here, we will discuss the classes and interfaces defined by java.fang.
As you know, java.lang is automatically imported into all programs.

It contains classes and interfaces that are fundamental to virtually all of
Java programming.

It is Java’'s most widely used package.

Several of the classes contained in java.lang contain deprecated
methods, most dating back to Java 1.0.

These deprecated methods are still provided by Java to support an ever-
shrinking pool of legacy code and are not recommended for new code.

Most of the deprecations took place prior to Java SE 6



Classes provided by java.lang

Boolean Compiler | Integer Package String Thread
Byte Double Long Process StringBuffer ThreadGroup
Character Enum Math ProcessBuilder | StringBuilder | ThreadLocal
Class Float Number | System StrictMath Throwable
ClassLoader | Runtime | Object Short Void RuntimePermission
SecurityManager StackTraceElement InheritableThreadLocal
Interfaces provided by java.fang
Appendable Comparable CharSequence | Runnable
Cloneable lterable Readable

Primitive Type Wrappers

Java uses primitive types, such as int and char, for performance reasons.

These data types are not part of the object hierarchy.

They are passed by value to methods and cannot be directly passed by
reference.

Also, there is no way for two methods to refer to the same instance of an int.

At times, you will need to create an object representation for one of these

primitive types.

For example, there are collection classes that deal only with objects; to store a
primitive type in one of these classes, you need to wrap the primitive type in a
class.

To address this need, Java provides classes that correspond to each of the
primitive types.

In essence, these classes encapsulate, or wrap, the primitive types within a
class.

Thus, they are commonly referred to as fype wrappers. 4



Number

» The abstract class Number defines a superclass that is implemented by the classes
that wrap the numeric types byte, short, int, long, float, and double.

* Number has abstract methods that return the value of the object in each of the
different number formats.

» For example, doubleValue( ) returns the value as a double, floatValue( ) returns the
value as a float, and so on.

» These methods are shown here:
— byte byteValue( )
— double doubleValue( )
- float floatValue( )
— intintValue( )
— long longValue( )
— short shortValue( )

» The values returned by these methods can be rounded.

* Number has six concrete subclasses that hold explicit values of each numeric type:
Double, Float, Byte, Short, Integer, and Long.

Note:

» Students are advised to refer text book for a list of methods provided by each of the
above classes. c

+ Few important methods are discussed hereunder.
Understanding isInfinite( ) and isNaN( ) :

* Float and Double provide the methods isInfinite{ ) and isNaN( ), which
help when manipulating two special double and float values.

+ These methods test for two unique values defined by the IEEE floating-
point specification: infinity and NaN (not a number).

+ isInfinite( ) returns true if the value being tested is infinitely large or
small in magnitude.

» isNaN( ) retums true if the value being tested is not a number.



class InfNaN

{
public static void main(String argsl])
{
Double d1 = new Double(1/0.0);
Double d2 = new Double(0/0.0);
System.out.printin(d1 + " " + d1.isInfinite() + ", " + d1.isNaN());
System.out printin(d2 + ": " + d2.isInfinite() + ", " + d2.isNaN{());
¥
¥
Output:

Infinity: true, false
NaN: false, true

Converting Numbers to and from Strings

+ One of the most common programming chores is converting the string
representation of a number into its internal, binary format.

« Java provides an easy way to accomplish this.

+ The Byte, Short, Integer, and Long classes provide the parseByte( ),
parseShort( ), parselnt(), and parseLong( ) methods, respectively.

» These methods return the byte, short, int, or long equivalent of the
numeric string with which they are called.

« Similar methods also exist for the Float and Double classes.

+ The following program demonstrates parselnt( ). It sums a list of integers
entered by the user. It reads the integers using readLine( ) and uses
parselnt({ ) to convert these strings into their int equivalents.



import java.io.”;
class ParseDemo

{

public static void main{String args[]) throws IOException

{

BufferedReader br = hew BufferedReader{new InputStreamReader{System.in));
String str;
inti, sum=0;

System.out.printin{"Enter humbers, 0 to quit.");

do
{ str = br.readLine();
try
{
i = Integer.parselnt(str);
} catch(NumberFormatException &)
{
System.out.printin{"Ilnvalid format");
i=0;
i .
sum += i;
1 while(i 1= 0);

System.out.printin{"sum is: " + sum);

* To convert a whole number into a decimal string, use the
versions of toString( ) defined in the Byte, Short, Integer, or
Long classes.

* The Integer and Long classes also provide the methods
toBinaryString( ), toHexString(), and toOctalString( ),
which convert a value into a binary, hexadecimal, or octal
string, respectively.

» The following program demonstrates binary, hexadecimal,
and octal conversion:

10



class StringConversions

{

public static void main(String args])

{
int num = 19648;

System.out.printihn(hnum + " in binary. " + Integer.toBinaryString(num));
System.out.printin(hnum + " in octal: " + Integer.toOctalString(numy));
System.out.printin(hum + " in hexadecimal: " + Integer.toHexString(num));

The output of this program is shown here:

19648 in binary: 100110011000000
19648 in octal: 46300
19648 in hexadecimal: 4cc0

11

System
» The System class holds a collection of static methods and variables.

» The standard input, output, and error output of the Java run time are
stored in the in, out, and err variables.

+ Many of the methods throw a SecurityException if the operation is not
permitted by the security manager.

Note: Refer textbook for list of methods supported by System class.

Object

+ Object is a super class of all other classes.
+ Object defines the various methods which are available to every object.

Note: Refer textbook for list of methods supported by Object class.

12



Class

Class encapsulates the run-time state of an object or interface.
Objects of type Class are created automatically, when classes are loaded.
You cannot explicitly declare a Class object.

Generally, you obtain a Class object by calling the getClass() method defined by
Object.

Class is a generic type that is declared as shown here:
class Class<T>

Here, T is the type of the class or interface represented.

The methods defined by Class are often useful in situations where run-time type
information about an object is required.

The methods are provided that allow you to determine additional information
about a particular class, such as its public constructors, fields, and methods.

Among other things, this is important for the Java Beans functionality. 13
class X
{ inta;} Outpqt: _
class Y extends X X is obj_ect of type: X
{ doublec;} y is object of type: Y

y’s superclass is X

class RTTI
{ public static void main{String args(])
{ X %= new X{);
Y y = new Y();

Class<7> clObj;
clObj = x.getClass();
System.out. printin{"x is object of type: " + ¢clObj.getName());

clObj = y.getClass();
System.out.printIin{"y is object of type: " + clObj.getName());

clObj = clObj.getSuperclass();
System.out. printin("y's superclass is " + clObj.getName());

14



Class Loader

» The abstract class ClasslLoader defines how classes
are loaded.

* Your application can create subclasses that extend
ClassLoader, implementing its methods.

» Doing so allows you to load classes in some way other
than the way they are normally loaded by the Java run-
time system.

 However, this is not something that you will normally
heed to do.

15

Math

The Math class contains all the floating-point functions that
are used for geometry and trigonometry, as well as several
general-purpose methods.

Math defines two double constants: E (approximately 2.72)
and Pl (approximately 3.14).

The trigonometric functions includes sin, cos, tan, asin
(sine-inverse), acos, atan, sinh (sine-hyperbolic), cosh, tanh
etc.

The exponential functions include cbrt, exp, fog, pow, sqrt
etc.

The rounding functions include abs, ceil, floor, max, min,
round etc.

16



Thread, ThreadGroup and Runnable

The Runnable interface and the Thread and ThreadGroup
classes support multithreaded programming.

The Runnable Interface

Th

The Runnable interface must be implemented by any class
that will initiate a separate thread of execution.

Runnable only defines one abstract method, called run( ),
which is the entry point to the thread.

It is defined like this:
void run( )
Threads that you create must implement this method.

17

read

Thread creates a new thread of execution. It defines the following commonly used
constructors:

— Thread( )

— Thread{Runnable threadOb)

— Thread{Runnable threadOb, String threadName)

— Thread(String threadName)

— Thread{ThreadGroup groupOb, Runnable threadOb)

— Thread{ThreadGroup groupOb, Runnable threadOb, String threadName)
— Thread{ ThreadGroup groupOb, String threadName)

— —— i — — —

Here, threadOb is an instance of a class that implements the Runnable interface and
defines where execution of the thread will begin.

The name of the thread is specified by threadName.
When a name is not specified, one is created by the Java Virtual Machine.
groupOb specifies the thread group to which the new thread will belong.

When no thread group is specified, the new thread belongs to the same group as the
parent thread.

The following constants are defined by Thread: MAX_PRIORITY, MIN_FPRIORITY,
NORM_PRIORITY. 18



ThreadGroup

ThreadGroup creates a group of threads.

It defines these two constructors:

— ThreadGroup(String groupName) . creates a new group that has the current thread as
its parent

— ThreadGroup(ThreadGroup parenfOb, String groupMName) : the parent is specified by
parentOb

For both forms, groupName specifies the name of the thread group.
Thread groups offer a convenient way to manage groups of threads as a unit.

This is particularly valuable in situations in which you want to suspend and
resume a humber of related threads.

For example, imagine a program in which one set of threads is used for printing a
document, another set is used to display the document on the screen, and
another set saves the document to a disk file.

If printing is aborted, you will want an easy way to stop all threads related to
printing.

Thread groups offer this convenience. 19

Throwable

 The Throwable class supports Java's exception-handling

system and is the class from which all exception classes are
derived.

20



The Collections Framework

+ The Collections Framework is one of the most important subsystems of
Java, included within java.utif package.

» The Collections Framework is a sophisticated hierarchy of interfaces and
classes that provide state-of-the-art technology for managing groups of
objects.

Collections Overview
+ Collections were added to J2SE 1.2.

» Prior to this, there were ad hoc classes such as Dictionary, Stack etc. but
they lacked uniform usage.

» Moreover, those classes were not extendable.

» To avoid such problems, Collection class and interfaces have been
introduced. 29

* The Collections Framework was designed to meet several goals.

* First, the framework had to be high-performance. The implementations for the
fundamental collections (dynamic arrays, linked lists, trees, and hash tables) are highly
efficient.

*  We need not code these data structures manually.

*  Second, the framework had to allow different types of collections to worlkc in a similar
manner and with a high degree of interoperability.

+  Third, extending andfor adapting a collection had to be easy.

+  Toward this end, the entire Collections Framewuork is built upon a set of standard
interfaces.

*  We can use several standard implementations (such as LinkedList, HashSet, and
TreeSet) as they are.

*  You may also implement your own collection, if you choose.

*  Various special-purpose implementations are created for your convenience, and some
partial implementations are provided that make creating your own collection class easier.

* Finally, mechanisms were added that allow the integration of standard arrays into the
Collections Framework.
22



Algorithms are another important part of the collection mechanism.

Algorithms operate on collections and are defined as static methods
within the Collections class.

The algorithms provide a standard means of manipulating collections.

Another item closely associated with the Collections Framework is the
Iterator interface.

An fferator offers a general-purpose, standardized way of accessing the
elements within a collection, one at a time.

Thus, an iterator provides a means of enumerating the contents of a
collection.

Because each collection implements lterator, the elements of any
collection class can be accessed through the methods defined by
Iterator.

Thus, with only small changes, the code that cycles through a set can
also be used to cycle through a list, for example. 23

Collections Interfaces
The Collections Framework defines several interfaces.

Beginning with the collection interfaces is hecessary because they determine
the fundamental nature of the collection classes.

Put differently, the concrete classes simply provide different implementations of
the standard interfaces.

To provide the greatest flexibility in their use, the collection interfaces allow
some methods to be optional.

The optional methods enable you to modify the contents of a collection.
Collections that support these methods are called modifiable.

Collections that do not allow their contents to be changed are called
unmodifiable.

If an attempt is made to use one of these methods on an unmodifiable
collection, an UnsupportedOperationException is thrown.

All the built-in collections are modifiable. 24



Interfaces available in Collections Framework

Interface Description

Collection Enables you to work with groups of objects; it is at
the top of the collections hierarchy.

Deque Extends Queue to handle a double-ended queue.
(Added by Java SE 6.)

List Extends Collection to handle sequences (lists of
objects).

NavigableSet Extends SortedSet to handle retrieval of elements
based on closest-match searches. (Added by Java
SE 6.)

Queue Extends Collection to handle special types of lists
in which elements are removed only from the
head.

Set Extends Collection to handle sets, which must
contain unigue elements.

SortedSet Extends Set to handle sorted sets. -

The Collection Interface

The Collection interface is the foundation upon which the
Collections Framework is built because it must be
implemented by any class that defines a collection.

Collection is a generic interface that has this declaration:
interface Collection<E>

Here, E specifies the type of objects that the collection will
hold.

Collection extends the Iterable interface.

This means that all collections can be cycled through by use
of the for-each style for loop.

(H':ollection declares the core methods that all collections will
ave.

26



Few important Methods available in Collection Interface

Method Description
boolean add(E obj) Adds obj to the invoking collection. Returns true if obj was
added
to the collection. Returns false if obj is already a member of
the
collection and the collection does not allow duplicates.
void clear( ) Removes all elements from the invoking collection.

boolean contains({Object
obj)

Returns true if obj is an element of the invoking collection.
Otherwise, returns false.

boolean equals{Object obj)

Returns true if the invoking collection and obj are equal.
Otherwise, returns false.

boolean isEmpty{ )

Returns true if the invoking collection is empty. Otherwise,
returns false.

lterator<E> iterator( )

Returns an iterator for the invoking collection.

boolean remove{Object
obj)

Removes one instance of obj from the invoking collection.
Returns

true if the element was removed. Otherwise, returns false.

int size( )

Returns the number of elements held in the invoking colBttion.

The List Interface

* The List interface extends Collection and declares the
behavior of a collection that stores a sequence of elements.

« Elements can be inserted or accessed by their position in the
list, using a zero-based index.

+ A list may contain duplicate elements.

« Listis a generic interface that has this declaration:
interface List<E>
+ Here, E specifies the type of objects that the list will hold.

* |n addition to the methods defined by Collection, List
defines some of its own methods.

28




The Queue Interface

 The Queue interface extends Collection and
declares the behavior of a queue, which is often a
first-in, first-out list.

« However, there are types of queues in which the
ordering is based upon other criteria.

* Queue is a generic interface that has this

declaration:

interface Queue<E>
« Here, E specifies the type of objects that the queue

will hold.

« The methods defined by Queue are shown in the
following Table. 29

Methods available in Queue Interface

Method

Description

E element( )

Returns the element at the head of the queue. The
element is not removed. It throws
NoSuchElementException if the queue is empty.

boolean offer(E obj)

Attempts to add obj to the queue. Returns true if obj was
added and false otherwise.

E peek( ) Returns the element at the head of the queue. It returns
null if the queue is empty. The element is not removed.

E poll( ) Returns the element at the head of the queue, removing
the element in the process. It returns null if the queue is
empty.

E remove( ) Removes the element at the head of the queue, returning

the element in the process. It throws
NoSuchElementException if the queue is empty.

30




The Collection Classes

 Here, we will examine the standard classes that
implement various interfaces discussed earlier.

« Some of the classes provide full implementations
that can be used directly.

« Others are abstract, providing skeletal
implementations that are used as starting points for
creating concrete collections.

« The standard collection classes are summarized in

the following table:

31

Collection Classes

Class

Description

AbstractCollection

Implements most of the Collection interface.

AbstractList Extends AbstractCollection and implements most of the List
interface.

AbstractQueue Extends AbstractCollection and implements parts of the Queue
interface.

AbstractSequentialli | Extends AbstractList for use by a collection that uses sequential

st rather than randomaccess of its elements.

LinkedList Implements a linked list by extending AbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

ArrayDeque Implements a dynamic double-ended queue by extending
AbstractCollection and implementing the Deque interface.

AbstractSet Extends AbstractCollection and implements most of the Set
interface.

EnumSet Extends AbstractSet for use with enum elements.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet Extends HashSet to allow insertion-order iterations.

PriorityQueue Extends AbstractQueue to support a priority-based queue.

TreeSet Implements a set stored in a tree. Extends AbstractSet. e




The ArrayList Class

The ArrayList class extends AbstractList and implements the List interface.

ArrayList is a generic class that has this declaration:
class ArraylList<E>

Here, E specifies the type of objects that the list will hold.
ArrayList supports dynamic arrays that can grow as needed.
In Java, standard arrays are of a fixed length.

After arrays are created, they cannot grow or shrink, which means that you must
know in advance how many elements an array will hold.

But, sometimes, you may not know until run time precisely how large an array
you heed.

To handle this situation, the Collections Framework defines ArrayList.

In essence, an ArrayList is a variable-length array of object references.

That is, an ArrayList can dynamically increase or decrease in size. 33

Array lists are created with an initial size.

When this size is exceeded, the collection is automatically enlarged.
When objects are removed, the array can be shrunk

ArrayList has the constructors shown here;

ArrayList( ) . builds an empty array list.
ArrayList(Collection<? extends E> ¢): builds an array list

that is initialized with the elements of the collection ¢.

ArrayList(int capacity) . builds an array list that has the specified initial
capacity.

The capacity is the size of the underlying array that is used to store the
elements.

The capacity grows automatically as elements are added to an array list.

34



import java.util.™;

class ArrayListDemo

{

Qutput:

Initial size of al: 0

Size of al after additions: 7
Contents of al;[C, A2, A, E, B, D, F]
Size of al after deletions: 5

{ :
ArrayList<String> al = new ArrayList<String>(); Rohtents orallh. e EB.E

System.out.printIn{"Initial size of al: " + al.size());

public static void main(String args[])

al.add("C");
al.add("A");
al.add("E");
al.add("B");
al.add("D");
al.add("F";
al.add(1, "A2");
System.out.printIn{"Size of al after additions: " + al.size());

System.out.printin{"Contents of al: " + al);

al.remove("F");

al.remove(2);

System.out.printin("Size of al after deletions: " + al.size());
System.out.printin("Contents of al: " + al);

35

Notice that a1 starts out empty and grows as elements are added to it.
When elements are removed, its size is reduced.

Although the capacity of an ArrayList object increases automatically as
objects are stored in it, you can increase the capacity of an ArrayList object
manually by calling ensureCapacity().

By increasing its capacity at the beginning, you can prevent several
reallocations later.

Since reallocations are costly in terms of time, prevention will improve the
performance.

The signature for ensureCapacity( ) is shown here:
void ensureCapacity(int cap)

Here, cap is the new capacity.

Conversely, if you want to reduce the size of the array that underlies an
ArrayList object so that it is precisely as large as the number of items that it
Is currently holding, call trimToSize( ), shown here:

void trimToSize( ) 36



Obtaining an Array from an ArrayList

+  When working with ArrayList, you will sometimes want to obtain an
actual array that contains the contents of the list.

* You can dothis by calling toArray( ), which is defined by Collection.

» Several reasons for converting a collection into an array:
— To obtain faster processing times for certain operations

— To pass an array to a method that is not overloaded to accept a
collection

— To integrate collection-based code with legacy code (older versions
of Java code) that does not understand collections

+ There are two versions of toArray():
— Object[ ] toArray( ) . returns an array of Object

— <T> T[] toArray(T array[ ]) : returns an array of elements that have
the same type as T. This form is more convenient because it returns

the proper type of array. 47

import java.util.*;

class ToArrayDemo

{

public static void main(String args[])

{

ArrayList<integer> al = new ArrayList<Integer=(),

al.add(1);
al.add(2);
al.add(3);
al.add(4);
System.out.printin("Contents of al: " + al);

Integer ia[] = new Integer[al.size{)];

ia = al.toArray(ia); Qutput:
int sum = 0; Contents of al: [1, 2, 3, 4]
Sum is: 10

for(inti:ia) //note autoboxing
sum +=1i;
System.out.printin("Sum is: " + sum);

} 38



The LinkedList Class

 The LinkedList class extends AbstractSequentialList and
implements the List, Deque, and Queue interfaces.

« |t provides a linked-list data structure.

« LinkedList is a generic class that has this declaration:
class LinkedList<E>

+ Here, E specifies the type of objects that the list will hold.

 LinkedList has the two constructors shown here:
— LinkedList( ) - builds an empty linked list

— LinkedList{Collection<? extends E> ¢) - builds a linked list that is
initialized with the elements of the collection ¢.

39
import java.util.*;
class LinkedListDemao
{ public static void main(String args[])
{
LinkedList<String> Il = new LinkedList<String=>();
IlLadd{"F"y; ll.add{"B"; Output:
lLadd{"D"); Il.add{("E™; Original contents of II: [A, A2, F, B, D, E, C, Z]
lLadd{"C"; Il.addLast("Z"); Contents of Il after deletion: [A, A2, D, E, C, Z]
IlLaddFirst("A"); IlLadd{1, "A2"); Il after deleting first and last: [AZ2, D, E, C]
Il after change: [A2, D, E Changed, C]

System.out.printin("Original contents of II. " + II);

Lremove("F");
IL.remove(2);
System.out.printin{"Contents of Il after deletion: " + II);

Il.removeFirst();

Il.removelast();

System.out.printin{"ll after deleting first and last: " + [I);
String val = Il.get(2);

ll.set(2, val + " Changed");

System.out.printIn("ll after change: " + II); 40
}




The HashSet Class

+ HashSet extends AbstractSet and implements the Set interface.
» |t creates a collection that uses a hash table for storage.

» HashSet is a generic class that has this declaration:
class HashSet<E>
» Here, E specifies the type of objects that the set will hold.

* A hash table stores information by using a mechanism called hashing.

» |In hashing, the informational content of a key is used to determine a unique
value, called its hash code.

» The hash code is then used as the index at which the data associated with the
key is stored.

» The transformation of the key into its hash code is performed automatically— you
never see the hash code itself.

» Also, your code can’t directly index the hash table.

» The advantage of hashing is that it allows the execution time of add( ), 41
contains(), remove( ), and size( ) to remain constant even for large sets.

+ The following constructors are defined:
— HashSet() : constructs a default hash set

— HashSet(Collection<? extends E> ¢) :initializes the hash set by using
the elements of ¢

— Hash&et(int capacity) : inttializes the capacity of the hash set to
capacity. (The default capacity is 16.)

— HashSet(int capacity, float fifiRatfio) : initializes both the capacity and
the fill ratio (also called foad capacity) of the hash set from its
arguments. The fill ratio must be between 0.0 and 1.0, and it
determines how full the hash set can be before it is resized upward.
Specifically, when the number of elements is greater than the
capacity of the hash set multiplied by its fill ratio, the hash set is
expanded. For constructors that do not take a fill ratio, 0.75 is used.

+ ltis important to note that HashSet does not guarantee the order of its
elements, because the process of hashing doesn't usually lend itself to

the creation of sorted sets.
42



import java.util.*;

class HashSetDemo

{

public static void main(String args|])

{
HashSet<String> hs = new HashSet<String>();

hs.add("A";
hs.add("B");
hs.add("C");
hs.add("D");
hs.add("E");
hs.add("F");
System.out.printin(hs);

}
}

Output:
[D, E F A B C]

Note: Output may vary.
43

The TreeSet Class

+ TreeSet extends AbstractSet and implements the
NavigableSet interface.

» It creates a collection that uses a tree for storage.
» Objects are stored in sorted, ascending order.

* Access and retrieval times are quite fast, which makes
TreeSet an excellent choice when storing large amounts of
sorted information that must be found quickly.

 TreeSet is a generic class that has this declaration:
class TreeSet<E>
» Here, E specifies the type of objects that the set will hold.

44



» TreeSet has the following constructors:

— TreeSet() . constructs an empty tree set that will be sorted in
ascending order according to the natural order of its elements.

— TreeSet(Collection<? extends E> ¢) : builds a tree set that contains
the elements of ¢.

— TreeSet(Comparator<? super E> comp) : constructs an empty tree
set that will be sorted according to the comparator specified by comp.

— TreeSet(SortedSet<E> s5) : builds a tree set that contains the
elements of ss.

45

import java.util.*;

class TreeSetDemo

{

public static void main(String args[])
{
TreeSet<String> ts = new TreeSet<String>();
ts.add("F"),
ts.add("C");
ts.add("D"),
ts.add("E");
ts.add("A");
ts.add("B");
System.out.printin{ts);

}
}

Output:
[A, B C, D EF]

Note:

» As TreeSet stores its elements in a tree, they are automatically arranged in

sorted order (You can think of in-order traversal of binary search tree) 46



