Enumeration, Autoboxing

Enumerations

» Enumerations are available in JDK 5 and higher versions.
* An enumeration is a list of named constants.

» Though, for a first look, they seem same as enumerations in C/C++, actually in
Java, they are class types.

+» Thatis, in Java, enumerations can have constructors, methods and variables.
+ An enumeration is created using the keyword enum.
+ Forexample,

enum Person

{Married, Unmarried, Divorced, Widowed}

* The identifiers like Married, Unmarried etc. are called as enumeration
Constants.

+ Each such constant is implicitly considered as a public static final member of
Person.

The type of enumeration constants is the type of the enumeration in which
they are declared, which is Person in this case.

Thus, in the language of Java, these constants are called self-typed, in
which “self” refers to the enclosing enumeration.

After defining enumeration, we can create a variable of that type.

Though enumeration is a class type, we need not use new keyword for
variable creation, rather we can declare it just like any primitive data type.

For example,
Person p= Person.Married:

+ We can use == operator for comparing two enumeration variables.
» They can be used in switch-case also.

» Printing an enumeration variable will print the constant name. That is,
System.out. printin(p);
will print Married.

enum Person
{ Married, Unmarried, Divorced, Widowed}

class EnumDemo
{ public static void main(String args][])
{ FPerson p1;
p1=Person.Unmarried;
System.out.printin{"Value of p1 " + p1);
Person p2= Person.Widowed;
if(p1==p2)
System.out.printin{"p1 and p2 are same"),

else
System.out.printin("p1 and p2 are different");
switch(p1)
{ case Married: System.out.printin{"p1 is Married");
break:
case Unmarried: System.out.printin{"p1 is Unmarried");
break:
case Divorced: System.out.printin("p1 is Divorced");
break;
case Widowed: System.out.printin{"p1 is Widowed");
break;
}

The values() and valueOf() Methods

All enumerations automatically contain two predefined
methods: values() and valueOf().

Their general forms are shown here:
public static enum-type[] values()
public static enum-type valueOf(String str)

« The values() method returns an array that contains a list of
the enumeration constants.

» ThevalueOf() method returns the enumeration constant
whose value corresponds to the string passed in str.

« In both cases, enum-type is the type of the enumeration. °

enum Person
{ Married, Unmarried, Divorced, Widowed }

class EnumDemo

public static void main({String args[])

{

Person p;

System.out.printin{"Following are Person constants:");
Person all[]=Person.values();
for(Person p1:all)

System.out.printin(p1);

p=Person.valueOf({"Married");
System.out.printin{"p contains "+p);

}

}
Output:

Following are Person constants:

Married

Unmarried

Divorced

Widowed 6
p contains Married

Java Enumerations Are Class Types

Java enumeration is a class type.

We can give them constructors, add instance variables and

methods, and even implement interfaces.

It is important to understand that each enumeration constant

is an object of its enumeration type.

Thus, when you define a constructor for an enum, the
constructor is called when each enumeration constant is

created.

Also, each enumeration constant has its own copy of any
instance variables defined by the enumeration.

enum Apple

{

Jonathan(10), GoldenDel(9), RedDel{12), Winesap(15), Cortlap

private int price;

Apple(int p)

{ price = p; }

int getPrice()

{ return price; }

class EnumDemo

{

public static void main(String args[])

{
Apple ap;

dily
S

Output:

Winesap costs 15 cents.
All apple prices:
Jonathan costs 10 cents.
GoldenDel costs 9 cents.
RedDel costs 12 cents.
Winesap costs 15 cents.
Cortland costs 8 cents.

System.out.printin{"Winesap costs " + Apple. Winesap.getPrice() + " cents.\n");

System.out.printin{"All apple prices:");
for(Apple a : Apple.values())

System.out.printin{a + " costs " + a.getPrice() + " cents.");

Here, we have member variable price, a constructor and a
member method.

When the variable ap is declared in main(), the constructor for
Apple is called once for each constant that is specified.

Although the preceding example contains only one constructor,
an enum can offer two or more overloaded forms, just as can
any other class.

Two restrictions that apply to enumerations:
— an enumeration can'’t inherit another class.
— an enum cannot be a superclass.

Enumerations Inherit Enum

All enumerations automatically inherit one: java.lang.Enum.

This class defines several methods that are available for use by all
enumerations.

We can obtain a value that indicates an enumeration constant’'s position in
the list of constants.

This is called its ordinal value, and it is retrieved by calling the ordinal()
method, shown here:

final int ordinal()
It returns the ordinal value of the invoking constant.
Ordinal values begin at zero.

We can compare the ordinal value of two constants of the same
enumeration by using the compareTo() method.

It has this general form:

final int compareTo(enum-type €) 1

The usage will be —
el.compareTo(e2);

Here, e1 and e2 should be the enumeration constants

belonging to same enum type.

If the ordinal value of e1 is less than that of e2, then
compareTo() will return a negative value.

If two ordinal values are equal, the method will return zero.

Otherwise, it will return a positive number.

We can compare for equality an enumeration constant with
any other object by using equals(), which overrides the
equals() method defined by Object.

enum Person

Married, Unmarried, Divorced, Widowed }

enum MStatus

Married, Divorced }

class EnumDemo

public static void main(String args[])
{

Person p1, p2, p3;

MStatus m=MStatus. Married;

System.out.printin("Ordinal values are: ");
for(Person p:Person.values())

System.out.printin{p + " has a value " +
p.ordinal());

p1=Person.Married,;
p2=Person.Divorced;

p3=Person.Married;

if(p1.compareTo(p2)<0)

System.out.printin{p1 + " comes before "+p2];

else if(p1.compareTo(p2)==0)
System.out.printin(p1 + " is same as "+p2);
else
System.out.printin{p1 + " comes after "+p2);

11

if(p1.equals(p3))

System.out.printin{"p1 & p3 are same");
if(p1==p3)

System.out.printIn("p1 & p3 are same");

if(p1.equals(m))

System.out.printIn{"p1 & m are same");
else

System.out.printin{"p1 & m are not
same");

ffif(p1==m)
HSystem.out.printin("p1 & m are same");

}
}

12

Type Wrappers

Java uses primitive types (also called simple types), such as int or double, to hold
the basic data types supported by the language.

Primitive types, rather than objects, are used for these quantities for the sake of
performance.

U_sin? objects for these values would add an unacceptable overhead to even the
simplest of calculations.

g;aqs, tthe primitive types are not part of the object hierarchy, and they do not inherit
ject.

Despite the performance benefit offered by the primitive types, there are times when
you will heed an object representation.

For example, you can't pass a primitive type by reference to a method.

Also, many of the standard data structures implemented by Java operate on objects,
which means that you can't use these data structures to store primitive types.

To handle these (and other) situations, Java provides type wrappers, which are
classes that encapsulate a primitive type within an object.

13

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character,
and Boolean.

These classes offer a wide array of methods that allow you to fully integrate the
primitive types into Java's object hierarchy.

The process of encapsulating a value within an object is called boxing.

The process of extracting a value from a type wrapper is called unboxing.

Primitive Wrapper
boolean java.lang.Boolean
byte java.lang.Byte
char java.lang.Character
double java.lang.Double
float java.lang.Float
int java.lang.Integer
long java.lang.Long
short java.lang.Short
void java.lang.Void 14

Character

« Character is a wrapper around a char.

» The constructor for Character is
Character(char ch)

* Here, ch specifies the character that will be wrapped by the
Character object being created.

« To obtain the char value contained in a Character object,
call charValue(), shown here:

char charValue()

» It returns the encapsulated character.
15

Boolean
 Boolean is a wrapper around boolean values.

» |t defines these constructors:
Boolean(boolean boolValue)
Boolean(String boolString)

* [n the first version, boofValue must be either true or false.

» In the second version, if boolString contains the string “true’
(in uppercase or lowercase), then the new Boolean object
will be true. Otherwise, it will be false.

» To obtain a boolean value from a Boolean object, use
boolean booleanValue()

« |t returns the boolean equivalent of the invoking object. 1°

The Numeric Type Wrappers

» The most commonly used type wrappers are those that represent numeric values.
» All of the numeric type wrappers inherit the abstract class Number.

» Number declares methods that return the value of an object in each of the
different number formats.

+ These methods are shown here:
byte byteValue()
double doubleValue()
float floatValue()
int intValue()
long longValue()
short shortValue()

» For example, doubleValue() returns the value of an object as a double,
floatValue() returns the value as a float, and so on.

» These methods are implemented by each of the numeric type wrappers.
17

» All of the numeric type wrappers define constructors that allow
an object to be constructed from a given value, or a string
representation of that value.

« For example, here are the constructors defined for Integer:
Integer(int num)
Integer(String str)

» |f str does not contain a valid numeric value, then a
NumberFormatException is thrown.

« All of the type wrappers override toString().

* |t returns the human-readable form of the value contained
within the wrapper.

« This allows you to output the value by passing a type wrapper
object to printin(), for example, without having to convert jf
into its primitive type.

class TypeWrap

public static void main(String args[])

{
Character ch=new Character('#'),
System.out.printin{"Character is " + ch.charValue());
Boolean b=new Boolean(true);
System.out.printin{"Boolean is " + b.booleanValue());
Boolean b1=new Boolean("false");
System.out.printin{"Boolean is " + b1.booleanValue());
Integer iOb=new Integer(12); fiboxing
int i=iOb.intValue(); flunboxing
System.out.printin(i + " is same as " +i0Ob);
Integer a=new Integer("21"); Output:
int x=a.intValue(); Character is #
System.out.printin{"x is " + x); Boolean is true
Boolean is false
String s=Integer.toString(25); 12 is same as 12
System.out.printin{"s is " +s); % is 21
} s is 25 19
!
Autoboxing

* In older versions of Java, the programmer was supposed to do
boxing and unboxing.

* Beginning with JDK 5, Java added the features: autoboxing and
auto-unboxing.

+ Autoboxing is the process by which a primitive type is
automatically encapsulated (boxed) into its equivalent type wrapper
whenever an object of that type is needed.

« There is no need to explicitly construct an object.

« Auto-unboxing is the process by which the value of a boxed object
is automatically extracted (unboxed) from a type wrapper when its
value is needed.

« There is no need to call a method such as intValue() or
doubleValue().

20

The addition of au_toboxintg and auto-unboxing greatly streamlines the coding of several
algorithms, removing the tedium of manually boxing and unboxing values.

It also helps prevent errors.
Moreover, it is very important to generics, which operates only on objects.
Finally, autoboxing makes working with the Collections Framework much easier.

With autoboxing it is no longer necessary to manually construct an object in order to
wrap a primitive type.

You need only assign that value to a type-wrapper reference.
Java automatically constructs the object for you.

l'I:SE) example, here is the modern way to construct an Integer object that has the value

Integer iOb = 100; /f autobox an int

To unbox an object, simply assign that object reference to a primitive-type variable.
inti =i0b; {f auto-unbox

21

Autoboxing and Methods

Autoboxing/unboxing might occur when an ar%ument Is passed to a
method, or when a value is returned by a method.

autoboxing automatically occurs whenever a primitive type must be
converted into an object; auto-unboxing takes place whenever an object
must be converted into a primitive type.

class AutoBox

{

static int m{Integer v)

{

returnv ;

}

public static void main(String args[])
{
Integer iOb = m(100);
System.out. printin(iOb);
}
}

22

Autoboxing/Unboxing Occurs in Expressions

* Within an expression, a numeric object is
automatically unboxed.

* The outcome of the expression is reboxed, if
necessary.

23

class AutoBox
{ public static void main{String args[])
{ Integer iOb=100, iObZ;
inti:
Double dOb=21.3;

System.out.printin{"Criginal value of iOb: " + iOb);
++Ob; ffauto-unboxing to int type then result is boxed back to Integer
System.out.printin{"After ++QOb: " + iOb);

iOb2 =i0b +(iOb / 3); ffauto-unboxing and then re-boxing
System.out.printin{"iOb2 after expression: " +i0b2);

i =i0b +(iOb/3); /ffauto-unboxing but not re-boxing as LHS is of int type
System.out.printin{"i after expression: " +1);

dOb=dOb+Ob;

System.out.printin{"double value is " + dOb);

switch(iOb)

{ case 100: System.out.printin{"Hundred"); break;
case 101: System.out.printin{"Hundred One"); break;
default: System.out.printin{"Error"); break;

Autoboxing/Unboxing Boolean and Character Values:

class AutoBox

{
public static void main(String argsl])
{
Boolean b = true;
if(b) /un-boxed
System.out printin("b is true");
Character ch = 'x'; /{ box a char
charch2 = ch; // unbox a char
System.out.printin("ch2 is " + ch2);
}
}

+ Though we say that if, while, do-while requires boolean data type, we can
achieve the same result with Boolean object also as Java does auto-

unboxing.
25

Autoboxing/Unboxing Helps Prevent Errors:

« Autoboxing always creates the proper object, and auto-unboxing always
produces the proper value.

+ S50, there is no way for the process to produce the wrong type of object or
value.

class AutoBox

{
public static void main(String args|])
{
Integer iOb=500;
int x=10b ;
int y=iOb.byteValue();
System.out.printin(x + “ “+vy); // prints 500 -12
¥
}

* Inthe rare instances where you want a type different than that produced bey
the automated process, you can still manually box and unbox values. %

A Word of Warning:

Since Java includes autoboxing and auto-unboxing, some might be tempted to use
objects such as Integer or Double exclusively, ignoring primitives altogether.

For example, with autoboxing/unboxing it is possible to write code like this:
Double a, b, c;
a=10.0;
b=4.0;
¢ = Math.sqrt(a*a + b*b);
System.out.printin("Hypotenuse is " + ¢);

Although this code is technically correct and work properly, it is a very bad use of
autoboxing/unboxing.

It is far less efficient than the equivalent code written using the primitive type
double.

The reason is that each autobox and auto-unbox adds overhead that is not present
if the primitive type is used.

In general, you should restrict your use of the type wrappers to only those caés in

ailalmle mis mlalm md i m m s s mrmd o llc s L o m mlma L im L iim s e e st sl

Generics

Introduction of generics to JDKS has changed Java in two important
ways:
— it added a new syntactical element to the language.

— Eg'lelused changes to many of the classes and methods in the core

Through the use of generics, it is possible to create classes, interfaces,
gn? methods that will work in a type-safe manner with various kinds of
ata.

Many algorithms are logically the same irrespective of the data type on
which they are applied.

For example, the underlying mechanism for stack is same whether it is
storing int, String etc.

With _enerics,fyou can define an algorithm once, independently of an
specific type of data, and then apply that algorithm to a wide variety o
data types without any additional effort.

28

What are Generics?
The term generics means parameterized types.
Parameterized types enable you to create classes, interfaces, and methods

in which the type of data upon which they operate is specified as a
parameter.

Using generics, it is possible to create a single class (or method or
interface) that automatically works with different types of data.

A class (or interface or method) that operates on a parameterized type is
called generic class (generic interface or generic method).

In older versions of Java, the Object class references were used to
operate upon any type of data to partially achieve the behavior of generics.

But when Objects are used, we were supposed to explicit casting each
time when a particular data type was needed.

With generics, all casts are automatic and implicit thus allowing safe

coding. 2

The general form of Generic class

The syntax of declaring a generic class is —
class class-name<type-param-list>

{
/fbody of class

Here type-param-list is a list of type parameters (or place-holders).
To declare a reference (or object) to a generic class, the syntax is —
class-name<type-arg-list> var-name =

new class-name<type-arg-list>(cons-arg-list);

Here type-arg-list are list of type arguments that are passed to the
corresponding type parameters in type-param-list.

cons-arg-fist is a list of arguments to be passed to the class constructors,

A simple Generics Example

class Gen<T>

{
T ob;
Gen(T 0)
{
ob = 0;
¥
T getob()
{
return ob;
f
void showType()
{
System.out.printin("Type of T is" + ob.getClass().getName());
1
ki

31

class GenDemo

{

public static void main(String args([])

{

Gen<Integer> iOb;
IOb = new Gen<Integer>(88);

IOb.showType();

int v = i0Ob.getob();
System.out. printin{"value: " + v);

Gen<String> strOb = new Gen<String>("Generics Test");
strOb.showType();

String str = strOb.getob();
System.out. printin("value: " + str);

32

The showType() method displays the type of T by calling getName() on the Class
object returned by the call to getClass() on ob.

The getClass() method is defined by Object and is thus a member of all class
types.

Class defines the getName() method, which returns a string representation of the
class name.

Java compiler does not actually create different versions of any other generic class.

Instead, the compiler removes all generic type information, substituting the
hecessary casts, to make your code behave as If a specific version of Gen were
created.

Thus, there is really only one version of Gen that actually exists in your
program (This is not the case with C++ templates).

The process of removing generic type information is called erasure.

33

The type-checking mechanism of Java ensures type safety.
That is, following is an error.
Gen<lInteger> iOb;

iIOb=new Gen<Double>(3.5);

The statement
Gen<Integer> iOb =new Gen<Integer>(88);

makes use of autoboxing to encapsulate the int value 88 to
Integer type.

34

Generics work with only Objects:

* When declaring an instance of a generic type, the type
argument passed to the type parameter must be a class type.

* You cannot use a primitive type, such as int or char.

« For example,
Gen<int> iOb=new Gen<int>(88); //error!!

35

Generic Types Differ Based on Their Type Arguments:

* Areference of one specific version of a generic type is not type
compatible with another version of the same generic type.

» For example,
Gen<Integer>iOb;
Gen<String>strOb;
iOb = strOb; // Error!!

« Even though both iOb and strOb are of type Gen<T>, they are

references to different types because their type parameters
differ.

» This is part of the way that generics add type safety and
prevent errors.

36

How Generics Improve Type Safety:.

+ Since Object is a base class for all other classes, it can be used as a
container (place holder) for any other class.

+ Thus, generic nature can be obtained by using Object and without using
actual generic types.

» This can be achieved just by specifying Object as the data type and using
proper type-casts.

» But still, generic types are better way to use, since they automatically ensure

the type-safety for all operations involved in generic implementation.

37

class NonGen class NonGenDemo
{ Object ob; { public static void main{String args[])
{
NonGen{Object o) NonGen iOb;
{ iOb = new NonGen(88);
ob = o; iOb.showType();
}
int v = {Integer)iOb.getob(); //note casting
Object getob() System.out.printin(*value: " + v);
{
return ob; NonGen strOb = new NonGen("Test");
} strOb.showType();
void showType() String str = (String) strOb.getob(); //casting
{ System.out.printin{"value: " + str);
System.out.printin("Type of ob is " _
+ ob.getClass().getName()); iOb = strOb;
¥ v = (Integer) iOb.getob(); // run-time error!
dutput: o}
Type of ob is java.lang.Integer f
value: 88

Type of ob is java.lang.String

value: Non-Generics Test

Exception in thread "main" java.lang.ClassCastException: java.lang.String cannot

be cast to java.lang.Integer 38
at NonGenDemo_mainfNonGenDemao_iava:4

A Generic Class with Two Type Parameters

* You can declare more than one type parameter in a generic

type.

« To specify two or more type parameters, simply use a

comma-separated list.

class TwoGen<T, V>

{

T ob1;
V ob2;

TwoGen(T o1, V 02)
{

ob1=o01;
ob2 = 02;
!
T getob1()
{
return ob1;
!
V getob2()
{
return ob2;
!
void showTypes()

{

39

class SimpGen
{ public static void main(String args[])
{
TwoGen<Integer, String> t = new TwoGen<Intege
String>({88, "Generics");

t.showTypes(),
int v = 1.getob1();
System.out.printin{"value: " + v);

String str = t.getob2();
System.out.printin{("value: " + str);

TwoGen<5tring, Double> t1=new
TwoGen<String, Double>{"Hello", 21.3);

t1.showTypes();

}
!

System.out.printin("Type of Tis " + ob1.getClass().getName());
System.out.printin{"Type of Vis " + ob2.getClass().getName());

40

String Handling

A string is a sequence of character and Java implements strings as objects
of type String.

Implementing strings as built-in objects allows Java to provide a full
complement of features that make string handling convenient.

For example, Java has methods to compare two strings, search for a
skjbstring, concatenate two strings, and change the case of letters within a
string.

Also, String objects can be constructed a number of ways, making it easy to
obtain a string when needed.

Once a String object has been created, you cannot change the characters
of that string.

Whenever we need any modifications, a new string object containing
modifications has to be created.

However, a variable declared as String reference can point to some othgr
String object, and hence can be changed.

In case, we need a modifiable string, we should use
StringBuffer or StringBuilder classes.

String, StringBuffer and StringBuilder classes are in
java.lang and are final classes.

Thus, no class can inherit these classes.

All these classes implement CharSequence interface.

42

The String Constructors

There are several constructors for String class.

. To create an empty string, use default constructor:
String s= new String();

2. To create a string and initialize:
String s= new String("Hello™);

3. To ogeat;a a string object that contains same characters as another string
object:

String(String strObj);

For example,
String s= new String("Hello™);
String s1= new String(s);

43

4. To create a string having initial values:
String(char chars{])
For example,
charch[[={'h’, ‘e’ I, I', ‘'0};
String s= new String(ch); /Is contains hello

5. To specify a subrange of a character array as an initializer use the following
constructor:

String(char charg[|, int startindex, int numChars)
For example,

charch[[={a’, 'b’, ‘c, 'd’, ‘€, ", ‘g’};

String s= new String(ch, 2, 3); //s contains cde

44

+ Eventhough Java's char type uses 16 bits to represent the basic Unicode
character set, the typical format for strings on the Internet uses arrays of 8-
bit bytes constructed from the ASCI| character set.

» Because 8-bit ASCI| strings are common, the String class provides
constructors that initialize a string when given a byte array.

6. The general forms are:
String(byte asciiChars|])
String(byte asciChars| |, int startindex, int numChars)

For example,
byte ascii[] = {65, 66, 67, 68, 69, 70},

String s1 = new String(ascii); //s1 contains ABCDEF
String §2 = new String(ascii, 2, 3); /1 82 contains CDE

45

« JDK 5 and higher versions have two more constructors.
 The first one supports the extended Unicode character set.
7. The general form:

String(int codePoints|], int startindex, int numChars)

here, codePoints is array containing Unicode points.

8. Another constructor supports StringBuilder:
String(StringBuilder strBuildObj)

46

String Length:

« The length of a string is the number of characters that it
contains.

 To obtain this value, call the length() method, shown here:
int length()
« For example,
String s=new String(“Hello”);
System.out.printin(s.length()); /lprints 5

47

Special String Operations

» Java supports many string operations.

« Though there are several string handling methods are
available, for the use of programmer, Java does many
operations automatically without requiring a call for separate
method.

» This adds clarity to the program.

* We will now see few of such operations.

48

String Literals:

» Instead of using character arrays and new operator for
creating string instance, we can use string literal directly.

* For example,
Char Ch[]={(Hl’ lel’ iIl’ lI!’ (Ol};
String s1=new String(ch);
or
String s2= new String (“Hello”),

Can be re-written, for simplicity, as —
String s3="Hello”; //usage of string literal

« A String object will be created for every string literal and
hence, we can even use,

System.out.printin(“Hello”.length()); /lprints 5

49

String Concatenation:
» Java does not allow any other operator than + on strings.

» Concatenation of two or more String objects can be achieved using + operator.

» For example,

String age = “97;
Strings ="He is " + age +" years old.";
System.out.printin(s); /fprints He is 9 years old.

» One practical use of string concatenation is found when you are creating very long
strings.

» |Instead of letting long strings wrap around within your source code, you can break
them into smaller pieces, using the + to concatenate them.

String longStr = "This could have been " +
"a very long line that would have " +
"wrapped around. But string concatenation " +
"prevents this.";

System.out.printin(longStr);

50

String Concatenation with Other Data types:

We can concatenate String with other data types.

For example,
int age = 9;
String s ="He is " + age + " years old.";
System.out.printin{s); fiprints He is 9 years old.

Here, the int value in age is automatically converted into its string representation
within a $tring object.

The compiler will convert an operand to its string equivalent whenever the other
operand of the + is an instance of String.

But, we should be careful while mixing data types:
String s= “Four : "+ 2 + 2;
System.out.printin{s); fiprints Four : 22

This is because, “Four ;" is concatenated with 2 first, then the resulting string is again
concatenated with 2.

We can prevent this by using brackets:
String s = “Four : " + (2+2);
System.out.printin{s); fiprints Four : 4

51

String Conversion and toString:

Java uses valueOf() method for converting data into its
string representation during concatenation.

valueOf() is a string conversion method defined by String.

valueOf() is overloaded for all the primitive types and for
type Object.

For the primitive types, valueOf() returns a string that
contains the human-readable equivalent of the value with
which it is called.

For objects, valueOf() calls the toString() method on the
object.

52

+ Every class implements toString() because it is defined by Object.
+ However, the default implementation of toString() is seldom sufficient.

« For our own classes, we may need to override toString() to give our own
string representation for user-defined class objects.

* The toString() method has this general form:
String toString()

« To implement toString(), simply return a String object that contains the
human-readable string that appropriately describes an object of our class.

53
class Box
{ double width, height, depth;
Box(double w, double h, double d)
{ width = w; .
height = h: Output: _ _
depth = d; Box b: Dimensions are 10.0 by 14.0 by 12.0
} Dimensions are 10.0 by 14.0 by 12.0

public String toString()
{

return "Dimensions are " + width + " by " + depth + " by " + height + ".";

}
}

class StringDemo

{

public static void main(String args[])

{
Box b = new Box(10, 12, 14);
String s ="Box b: " + b; /{ concatenate Box object
System.out.printin{s); f{ convert Box to string
System.out.printin{b);

}

Note: Observe that, Box's toString() method is automatically invoked when a Box object
is used in a concatenation expression or in a call to printin(). 54

Character Extraction

The String class provides different ways for extracting characters from a string
object.

Though a String object is not a character array, many of the String methods use
an index into a string object for their operation.

charAt() :

This method is used to extract a single character from a String.
It has this general form:

char charAt(int where)
Here, where is the index of the character that you want to obtain.

The value of where must be nonnegative and specify a location within the string.

char ch;
ch= “Hello”.charAt(1); /fch now contains e

55

getChars() :

If you need to extract more than one character at a time, you can use the
getChars() method.

It has this general form:
void getChars(int sourceStart, int sourcefnd, char target| |, int targetStart)

sourceStart specifies the index of the beginning of the substring

sourceEnd specifies an index that is one past the end of the desired
substring. (i.e. the substring contains the characters from
sourceStart through sourceEnd-1)

target specifies the array which receives the substring
targetStart is the index within targef at which the substring will be copied

Care must be taken to assure that the farget array is large enough to hold
the number of characters in the specified substring. 56

class StringDemo1

{
public static void main(String args|[])
{
String s = "This is a demo of the getChars method."”;
Int start = 10;
Int end = 14;
char buf[] = new charfend - start];
s.getChars(start, end, buf, 0);
System.out. printin{buf);
i
i
Output:

demo

57

getBytes() :

+ getBytes() is an alternative to getChars() that stores the characters in an
array of bytes.

» |t uses the default character-to-byte conversions provided by the platform.

+ Here is its simplest form:
byte[] getBytes()

+ Other forms of getBytes() are also available.

+ getBytes() is most useful when you are exporting a String value into an
environment that does not support 16-bit Unicode characters.

+ Forexample, most Internet protocols and text file formats use 8-bit ASCI|
for all text interchange.

58

toCharArray() :

« If you want to convert all the characters in a $tring object into a character
array, the easiest way is to call toCharArray().

« It returns an array of characters for the entire string. It has this general
form:

char] toCharArray()

« This function is provided as a convenience, since it is possible to use
getChars() to achieve the same result.

59

String Comparison

+ The String class provides several methods to compare strings or
substrings within strings.

equals() and equalslgnoreCase()
+ To compare two strings for equality, we have tow methods:

boolean equals(Object str)
boolean equalslgnoreCase(String sfr)

+ Here, siris the String object being compared with the invoking String
object.

+ The first method is case sensitive and returns true, if two strings are equal.

+ The second method returns true if two strings are same, whatever may be
their case.

60

class equalsDemo

{

public static void main(String args[])

{
String s1 = "Hello",
String s2 = "Hello";
String 83 = "Good-bye";
String s4 = "HELLO";
System.out.printin(s1 +" equals " + s2 +" -> " + s1.equals(s2));
System.out.printin{s1 +" equals " + s3 +" -> " + s1.equals(s3));
System.out.printin(s1 +" equals " + s4 +" -> " + s1.equals(s4));
System.out.printin(s1 +" equalsignoreCase " +s4 +" -> " +

s1.equalsignoreCase(s4));

}

}

Qutput :

Hello equals Hello -> true

Hello equals Good-bye -> false

Hello equals HELLO -> false

Hello equalslgnoreCase HELLO -> true

61

regionMatches()

» The regionMatches() method compares a specific region inside a string with
another specific region in another string.

» There is an overloaded form that allows you to ighore case in such comparisons.

» Here are the general forms for these two methods:

boolean regionMatches(int startindex, String str2, int str2Start/ndex, int
numChars)

boolean regionMatches(boolean ignoreCase, int startindex, String str2,
int str2Startindex, int numChars)

startindex specifies the index at which the region begins within
the invoking String object.

sir2 the String being compared.

str2Startindex The index at which the comparison will start within sfr2.

numChars The length of the substring being compared.

ignoreCase used in second version. If it is true, the case of the

characters is ighored. Otherwise, case is significant.

62

class StringDemo

{

public static void main(String args[])

{

String s1= "Hello How are you?",
String s2= "how";

System.out.printin(s1.regionMatches(6,s2,0,3)),
System.out.printin(s1.regionMatches(true,6,s2,0,3));

Output:
false
true

63

startsWith() and endsWith():

These are the specialized versions of he regionMatches() method.

The startsWith() method determines whether a given String begins with a specified
string. The, endsWith() determines whether the String in question ends with a
specified string.

They have the following general forms:
boolean startsWith(String str)
boolean endsWith(String sir)

For example,
"Foobar".endsWith("bar") /ftrue
"Foobar". startsWith("Foo") /fture

A second form of startsWith(), lets you specify a starting point:
boolean startsWith(String str, int start/ndex)

Here, start/index specifies the index into the invoking string at which point the search
will begin.

For example, "Foobar" startsWith("bar", 3) returns true.
64

equals() Versus ==:
» The equals() method compares the characters inside a String object.

» The == operator compares two object references to see whether they refer to the
same instance.

class Demo

{
public static void main(String args[])

{
String s1 = "Hello";

String 82 = new String(s1);
System.out.printin{s1 + " equals " + s2 +" -> " + s1.equals(s2));
System.out.printin(s1 +" =="+s2 +" ->" + (s1 == s2));
}
}

Output:
true
false

65

compareTo():

» This method is used to check whether a string is /ess than, greater than or
equal to the other string.

« The meaning of /less than, greater than refers to the dictionary order (based
on Unicode).

+ It has this general form:
int compareTo(String str)

» If you want to ignore case differences when comparing two strings, use
compareTolgnoreCase(), as shown here:

int compareTolgnoreCase(String str)

66

class SortString

if(arrfi].compareTo(arr]j]) < 0)

String t = arr[j];

{
static String arr[] = {"hello", "How", "are", "You?"}
public static void main{String args[])
{
for(int j = 0; j < arr.length; j++)
{
for(inti =]+ 1;i <arr.length; i++)
{
arr[j] = arri];
arrfi] = t;
1
System.out.printIn(arr]j]);
}
}
}
Output:
How
You?
are
hello

67

Searching Strings

The String class provides two different overloaded methods that allow you to search a

string for a specified character or substring.

Method

Purpose

int indexOf(int ch)

To search for the first occurrence of a
character

int lastindexOf(int ch)

To search for the last occurrence of a
character,

int indexOf(String str)

int lastindexOf(String str)

To search for the first or last occurrence of
a substring

int indexOf(int ch, int startindex)

int lastindexOf(int ch, int startindex)

int indexOf(String str, int startindex)

int lastindexOf(String str, int startindex)

Used to specify a starting point for the
search.

Here, sfartindex specifies the index at
which point the search begins.

For indexOf(), the search runs from
startindex to the end of the string.

For lastindexOf(), the search runs frqjp

sfartindey to 7ern

class Demo
{ public static void main{String args[])
{ String s = "Now is the time for all good men to come to the aid of their country.”;

System.out.printin{s);
System.out.printin{"indexOf(t) = " + s.indexOf{'t"));
System.out.printin{"lastindexOf(t) = " + s.lastindexOf('t'));
System.out.printin{"indexOf(the) = " + s.indexOf("the"));
System.out.printin{"lastindexOf(the) = " + s lastindexOf{"the"));
System.out.printin{"indexOf(t, 10) = " + s.indexOf{'t', 10));
System.out.printin{"lastindexOf(t, 60) = " + s.lastindexOf{'t, 60));
System.out.printin{"indexOf(the, 10) =" + s.indexOf("the", 10));
System.out.printin{"lastindexOf(the, 60) =" + s lastindexOf("the", 60));
!
h
Output:
Now is the time for all good men to come to the aid of their country.
indexOf(t) =7
lastindexOf(t)
indexOf(the) =
lastindexOf(the
indexOf(t, 10)
lastindexOf(t, 0)
indexOf(the, 10) =
lastindexOf(the, 60) =55

65

-
)55

69

Modifying a String

+ Since String objects can not be changed, whenever we want to modify a
String, we must either copy it into a StringBuffer or StringBuilder, or use
one of the following String methods, which will construct a new copy of the
string with our modifications complete.

substring():
+ Used to extract a substring from a given string.
— String substring(int start/ndex)

Here, startindex specifies the index at which the substring will begin.
This form returns a copy of the substring that begins at starfindex and
runs to the end of the invoking string.

— String substring(int start/ndex, int endindex)

Here, startindex specifies the beginning index, and endindex specifies
the stopping point. The string returned contains all the characters from
the beginning index, up to, but not including, the ending index.

70

class StringReplace

{
public static void main(String args(])
{
String org = "This is a test. This is, too.";
String result ;
result=org.substring(d);
System.out. printin{result);
result=org.substring(5, 7);
System.out. printin{result);
¥
¥
Output:
Is a test. This is, too.
IS
71
concat():

« This method can be used to concatenate two strings:
3tring concat(String str)

« This method creates a new object that contains the invoking
string with the contents of sfr appended to the end.

« concat() performs the same function as +.
String s1 = "one";
String s2 = s1.concat("two");
Is same as
String s1 = "one";
String s2 = s1 + "two™;

72

replace():

The first form of this method replaces all occurrences of one character in
the invoking string with another character.

String replace(char original, char replacement)

» Here, original specifies the character to be replaced by the character
specified by replacement.

+ Forexample,
String s = "Hello" . replace('l', 'w");
puts the string “Hewwo” into s.

+ The second form of replace() replaces one character sequence with
another.

String replace(CharSequence original, CharSequence
replacement)

73

trim():

* The trim() method returns a copy of the invoking string from
which any leading and trailing white-space has been removed.

It has this general form:
String trim()

* Here is an example:
Strings =" Hello World ".trim();

This puts the string “Hello World” into s.

74

Data Conversion Using valueOf()

» The valueOf() method converts data from its internal format
into a human-readable form.

« It is a static method that is overloaded within String for all of
Java’s built-in types so that each type can be converted
properly into a string.

+ valueOf() is also overloaded for type Object, so an object of
any class type you create can also be used as an argument.

* Here are a few of its forms:
static String valueOf(double num)
static String valueOf(long num)
static String valueOf(Object ob)

static String valueOf(char chars[]) -

Changing the Case of Characters Within a String

* The method toLowerCase() converts all the characters in a
string from uppercase to lowercase.

« The toUpperCase() method converts all the characters in a
string from lowercase to uppercase.

* Non-alphabetical characters, such as digits, are unaffected.
* Here are the general forms of these methods:

String toLowerCase()
String toUpperCase()

76

Additional String Methods

Method

Description

int codePointAt(int i)

Returns the Unicode code point at the location
specified by i.

int codePointBefore(int i)

Returns the Unicode code point at the location that
precedes that specified by i.

int codePointCount(int start, int end)

Returns the number of code points in the portion of
the invoking String that are between start and end—
1.

boolean contains{CharSequence str)

Returns true if the invoking object contains the
string specified by str. Returns false, otherwise.

boolean contentEquals(CharSequence str)

Returns true if the invoking string contains the same
string as str. Otherwise, returns false.

boolean contentEquals(StringBuffer str)

Returns true if the invoking string contains the same
string as str. Otherwise, returns false.

static String format(String fmtstr,
Object ... args)

Returns a string formatted as specified by fmtstr.

static String format(Locale loc,
String fmtstr, Object ... args)

Returns a string formatted as specified by fmtstr.
Formatting is governed by the locale specified by
loc.

boolean matches(string regExp)

wieLnou

Returns true if the invoking string matches the
regular expression passed in regExp. Otherwide,

[PPSR PR P

escripuon

int offsetByCodePoints{int start,
int num)

Returns the index with the invoking string that is num code
pointsbeyond the starting index specified by start.

String replaceFirst(String regExp,
String newStr)

Returns a string in which the first substring that matches the
regular expression specified by regExp is replaced by newStr.

String replaceAll{String regExp,
String newStr)

Returns a string in which all substrings that match the regular
expression specified by regExp are replaced by newStr.

String[] split{String regExp)

Decomposes the invoking string into parts and returns an array
that contains the result. Each part is delimited by the regular
expression passed in regExp.

String[] split{String regExp,
int max)

Decomposes the invoking string into parts and returns an array
that contains the result. Each part is delimited by the regular
expression passed in regExp. The number of pieces is specified
by max. If max is negative, then the invoking string is fully
decomposed. Otherwise, if max contains a nonzero value, the
last entry in the returned array contains the remainder of the
invoking string. If max is zero, the invoking string is fully
decomposed.

CharSequence
subSequence(int startindex,
int stoplndex)

Returns a substring of the invoking string, beginning at
startindex and stopping at stopindex. This method is required
by the CharSequence interface, which is now implemented by
String.

78

StringBuffer

+ We know that, String represents fixed-length, immutable character
sequences.

» In contrast, StringBuffer represents growable and writeable character
sequences.

« We can insert characters in the middle or append at the end using this
class.

« StringBuffer will automatically grow to make room for such additions and
often has more characters pre-allocated than are actually needed, to allow
room for growth.

79

Constructors:

» StringBuffer class has 4 constructors:

— StringBuffer() . Reserves space for 16 characters without reallocation.

— StringBuffer(int size) . accepts an integer argument that explicitly sets the
size of the buffer

— StringBuffer(String sfr) : accepts a $tring argument that sets the initial
contents of the $tringBuffer object and
reserves room for 16 more characters without

reallocation.
— StringBuffer(CharSequence chars) : creates an object that contains
the character sequence contained in chars

80

length({) and capacity():

» These two methods can be used to find the length and total allocated
capacity of StringBuffer object.

class StringBufferDemo

{
public static void main(String args[])
{
StringBuffer sb = new StringBuffer("Hello");
System.out. printin("*Original string =" + sb);
System.out.printin{"length =" + sb.length()); /fprints 5
System.out. printin("capacity = " + sb.capacity()); //prints 21
¥
i

81

ensureCapacity():

+ If you want to preallocate room for a certain number of characters after a
StringBuffer has been constructed, you can use this method to set the size
of the buffer.

» This is useful if you know in advance that you will be appending a large
number of small strings to a StringBuffer.

+ ensureCapacity() has this general form:

void ensureCapacity(int capacity)
» Here, capacity specifies the size of the buffer.

82

charAt() and setCharAt():

The value of a single character can be obtained from a S$tringBuffer via the
charAt() method.

+ You can set the value of a character within a StringBuffer using
setCharAt().

» Their general forms are shown here:
char charAt(int where)
void setCharAt(int where, char ch)

» For charAt(), where specifies the index of the character being obtained.

» For setCharAt(), where specifies the index of the character being set, and
ch specifies the new value of that character.

83

class setCharAtDemo

{
public static void main(String args[])
{
StringBuffer sb = new StringBuffer("Hello");
System.out. printin("buffer before =" + sb);
System.out. printin("charAt(1) before =" + sb.charAt(1));
sb.setCharAt(1, '1");
sb.setlLength(2);
System.out. printin("buffer after =" + sb);
System.out. printin("charAt(1) after =" + sb.charAt(1)):
f
¥
Output:

buffer before = Hello
charAt(1) before = e
buffer after = Hi

charAt(1) after = i
84

getChars().

To copy a substring of a StringBuffer into an array, use the getChars() method.

It has this general form:
void getChars(int sourceStart, int sourceEnd, char targel| |, int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and
sourceEnd specifies an index that is one past the end of the desired substring.

This means that the substring contains the characters from sourceStart through
sourceEnd-1.

The array that will receive the characters is specified by farget.
The index within farget at which the substring will be copied is passed in fargetStari.

Care must be taken to assure that the farget array is large enough to hold the
number of characters in the specified substring.

85

append()

The append() method concatenates the string representation of any other
type of data to the end of the invoking StringBuffer object.

It has several overloaded versions.

Here are a few of its forms:
StringBuffer append(String str)
StringBuffer append(int num)
StringBuffer append(Object obj)

String.valueOf() is called for each parameter to obtain its string
representation.

The result is appended to the current StringBuffer object.

The buffer itself is returned by each version of append() to allow

subsequent calls. 86

class appendDemo

{
public static void main(String args(])
{
String s;
inta=42;
StringBuffer sb = new StringBuffer(40);
s = sb.append("a = ").append(a).append("1").toString();
System.out.printin(s);
¥
i
Output:
42|
87
insery J.

The insert() method inserts one string into another.

It is overloaded to accept values of all the simple types, plus Strings, Objects, and
CharSequences.

Like append(), it calls String.valueOf() to obtain the string representation of the
value it is called with.

This string is then inserted into the invoking StringBuffer object.
Few forms are:

— StringBuffer insert(int /ndex, String str)

— StringBuffer insert(int /ndex, char ch)

— StringBuffer insert(int /ndex, Object 0b)

Here, index specifies the index at which point the string will be inserted into the
invoking StringBuffer object.

88

class insertDemo

{

public static void main(String args[])

{
StringBuffer sb = new StringBuffer("l Java!");

sb.insert(2, "like ");
System.out. printin(sb);

Output:
| like Java!

reverse().
» Used to reverse the characters within a string.

class ReverseDemo

{

public static void main(String args])
{
StringBuffer s = new StringBuffer("abcdef");
System.out.printin(s);
s.reverse();
System.out.printin(s);

Output:
abcdef
fedcba

89

90

delete() and deleteCharAt():

* You can delete characters within a StringBuffer by using the methods delete() and
deleteCharAt().

» These methods are shown here:
— StringBuffer delete(int startindex, int endindex)

It deletes a sequence of characters from the invoking object. Here,

startindex specifies the index of the first character to remove, and

endindex specifies an index one past the last character to remove. Thus,
the substring deleted runs from sfartindex to endindex—1.The resulting
StringBuffer object is returned.

— StringBuffer deleteCharAt(int /oc)

It deletes the character at the index specified by /oc. It returns the
resulting StringBuffer object.

91

class deleteDemo

{
public static void main(String argsl])
{
StringBuffer sb = new StringBuffer("This is a test.");
sb.delete(4, 7);
System.out.printin("After delete: " + sb);
sb.deleteCharAt(0);
System.out.printin("After deleteCharAt: " + sb);
h
}
Output:

After delete: This a test.
After deleteCharAt: his a test.

92

replace():

You can replace one set of characters with another set inside a
StringBuffer object by calling replace().

lts signature is shown here:
StringBuffer replace(int start/ndex, int endindex, String str)

The substring being replaced is specified by the indexes startindex and
endindex.

Thus, the substring at startindex through endindex—1 is replaced.
The replacement string is passed in str.

The resulting StringBuffer object is returned.

93

class replaceDemo

{
public static void main(String args[])
{
StringBuffer sb = new StringBuffer("This is a test.");
sb.replace(b, 7, "was");
System.out.printin("After replace: " + sb);
}
}
Output:

After replace: This was a test.

94

substring() :

* You can obtain a portion of a StringBuffer by calling substring().

+ It has the following two forms:
String substring(int startindex)
String substring(int startindex, int endindex)

+ The first form returns the substring that starts at sfarfindex and runs to the
end of the invoking StringBuffer object.

» The second form returns the substring that starts at start/ndex and runs
through endindex-1.

» These methods work just like those defined for String that were described

earlier.
a5

Additional StringBuffer Methods

Method Description

StringBuffer appendCodePoint{int ch) | Appends a Unicode code point to the end of the invoking
object. A reference to the object is returned.

int codePointAt(int i) Returns the Unicode code point at the location specified
by i.
int codePointBefore(int i) Returns the Unicode code point at the location that

precedes that specified by i.

int codePointCount(int start, int end) Returns the number of code points in the portion of the
invoking String that are between start and end-1.

int indexOf(String str) Searches the invoking StringBuffer for the first
occurrence of str. Returns the index of the match, or —1 if
no match is found.

int indexOf(String str, int startindex) Searches the invoking StringBuffer for the first
occurrence of str, beginning at startindex. Returns the
index of the match, or —1 if no match is found.

int lastindexOf(String str) Searches the invoking StringBuffer for the last
occurrence of str. Returns the index of the match, or —1 if
no match is found.

int lastIndexOf(String str, int Searches the invoking StringBuffer for the last
startindex) occurrence of str, beginning at startindex. Returns the
index of the match, or —1 if no match is found. 94

AQaQIuond Suimnmgouirrer vieinoas

Method Description
int offsetByCodePoints(int start, int Returns the index with the invoking string that is num
numy) code points beyond the starting index specified by start.
CharSequence subSequence (int Returns a substring of the invoking string, beginning at

startindex, int stoplndex) startindex and stopping at stoplndex. This method is
required by the CharSequence interface, which is now
implemented by StringBuffer.

void trimToSize() Reduces the size of the character buffer for the invoking
ohject to exactly fit the current contents.

97

StringBuilder

+ J2SE 5 adds a new string class to Java's already powerful string handling
capabilities.

+ This new class is called StringBuilder.

+ |tis identical to StringBuffer except for one important difference: it is not
synchronized, which means that it is not thread-safe.

+ The advantage of StringBuilder is faster performance.

+ However, in cases in which you are using multithreading, you must use
StringBuffer rather than StringBuilder.

98

