
1

Multithreaded Programming

2

• Java provides built-in support for multithreaded
programming.

• A multithreaded program contains two or more parts that
can run concurrently.

• Each part of such a program is called a thread, and each
thread defines a separate path of execution.

• Thus, multithreading is a specialized form of multitasking.

• Multitasking is supported by virtually all modern operating
systems.

• There are two distinct types of multitasking:
– process-based
– thread-based

3

• A process is, a program that is executing.

• Thus, process-based multitasking is the feature that allows your
computer to run two or more programs concurrently.

• For example, we can run Java compiler while using text editor.

• In process-based multitasking, a program is the smallest unit of
code that can be dispatched by the scheduler.

• In a thread-based multitasking environment, the thread is the
smallest unit of dispatchable code.

• This means that a single program can perform two or more tasks
simultaneously.

• For instance, a text editor can format text at the same time that it is
printing, as long as these two actions are being performed by two
separate threads.

4

• Multitasking threads require less overhead than multitasking processes.

• Processes are heavyweight tasks that require their own separate address
spaces.

• Inter-process communication is expensive and limited.

• Context switching from one process to another is also costly.

• Threads, on the other hand, are lightweight.

• They share the same address space and cooperatively share the same
heavyweight process.

• Inter-thread communication is inexpensive, and context switching from one
thread to the next is low cost.

• While Java programs make use of process-based multitasking
environments, process-based multitasking is not under the control of Java.

• However, thread-based multitasking can be controlled by Java.

5

Advantages:
• Multithreading enables you to write very efficient programs that make

maximum use of the CPU, because idle time can be kept to a minimum.

• This is especially important for the interactive, networked environment in
which Java operates.

• For example, the transmission rate of data over a network is much slower
than the rate at which the computer can process it.

• Even local file system resources are read and written at a much slower
pace than they can be processed by the CPU.

• And, of course, user input is much slower than the computer.

• In a single-threaded environment, your program has to wait for each of
these tasks to finish before it can proceed to the next one—even though
the CPU is sitting idle most of the time.

• Multithreading lets you gain access to this idle time and put it to good use.

6

The Java Thread Model

• In Java, all the class libraries are designed with multithreading
in mind.

• In fact, Java uses threads to enable the entire environment to
be asynchronous.

• First let us understand the drawbacks of single-threaded
programming.

7

• Single-threaded systems use an approach called an event loop
with polling.

• In this model, a single thread of control runs in an infinite loop,
polling a single event queue to decide what to do next.

• Once this polling mechanism returns, then the event loop
dispatches control to the appropriate event handler.

• Until this event handler returns, nothing else can happen in the
system.

• This wastes CPU time.

• It can also result in one part of a program dominating the system
and preventing any other events from being processed.

• In general, in a singled-threaded environment, when a thread
blocks (that is, suspends execution) because it is waiting for
some resource, the entire program stops running.

8

• The benefit of Java’s multithreading is that the main loop/polling
mechanism is eliminated.

• One thread can pause without stopping other parts of your program.

• When a thread blocks in a Java program, only the single thread that is
blocked pauses.

• All other threads continue to run.

9

• Threads exist in several states.

• A thread can be running.

• It can be ready to run as soon as it gets CPU time.

• A running thread can be suspended, which temporarily
suspends its activity.

• A suspended thread can then be resumed, allowing it to
pick up where it left off.

• A thread can be blocked when waiting for a resource.

• At any time, a thread can be terminated, which halts its
execution immediately.

• Once terminated, a thread cannot be resumed.

10

Different states of a single thread are :

11

Different states implementing Multiple-Threads are:

12

Thread Priorities
• Java assigns to each thread a priority that determines how

that thread should be treated with respect to the others.

• Thread priorities are integers that specify the relative priority
of one thread to another.

• As an absolute value, a priority is meaningless; a higher-
priority thread doesn’t run any faster than a lower-priority
thread if it is the only thread running.

• Instead, a thread’s priority is used to decide when to switch
from one running thread to the next.

• This is called a context switch.

• The rules that determine when a context switch takes place
are simple:

13

• The rules that determine when a context
switch takes place are simple:

– A thread can voluntarily relinquish control. This is done by
explicitly yielding, sleeping, or blocking on pending I/O. In
this scenario, all other threads are examined, and the
highest-priority thread that is ready to run is given the
CPU.

– A thread can be preempted by a higher-priority thread. In
this case, a lower-priority thread that does not yield the
processor is simply preempted—no matter what it is
doing— by a higher-priority thread. Basically, as soon as
a higher-priority thread wants to run, it does. This is called
preemptive multitasking.

14

• In cases where two threads with the same priority
are competing for CPU cycles, the situation is a bit
complicated.

• For operating systems such as Windows, threads
of equal priority are time-sliced automatically in
round-robin fashion.

• For other types of operating systems, threads of
equal priority must voluntarily yield control to their
peers.

• If they don’t, the other threads will not run.

15

Synchronization

• Because multithreading introduces an asynchronous behavior to your
programs, there must be a way for you to enforce synchronicity when you
need it.

• For example, if we have two threads to communicate and share information,
we need some way to ensure that they don’t conflict with each other.

• That is, we must prevent one thread from writing data while another thread is
in the middle of reading it.

• For this purpose, Java implements an elegant twist on an age-old model of
interprocess synchronization: the monitor.

• The monitor is a control mechanism.

• We can think of a monitor as a very small box that can hold only one thread.

• Once a thread enters a monitor, all other threads must wait until that thread
exits the monitor.

• In this way, a monitor can be used to protect a shared asset from being
manipulated by more than one thread at a time.

16

• In Java, each object has its own implicit monitor that is
automatically entered when one of the object’s synchronized
methods is called.

• Once a thread is inside a synchronized method, no other
thread can call any other synchronized method on the same
object.

• This enables you to write very clear and concise
multithreaded code, because synchronization support is built
into the language.

17

Messaging

• After you divide your program into separate threads, you need
to define how they will communicate with each other.

• In many programming languages, you must depend on the
operating system to establish communication between
threads.

• But, Java provides a clean, low-cost way for two or more
threads to talk to each other, via calls to predefined methods
that all objects have.

• Java’s messaging system allows a thread to enter a
synchronized method on an object, and then wait there until
some other thread explicitly notifies it to come out.

18

The Thread Class and the Runnable Interface

• Java’s multithreading system is built upon the Thread class,
its methods, and its companion interface, Runnable.

• Thread class encapsulates a thread of execution.

• Since you can’t directly refer to the state of a running thread,
you will deal with it through its proxy, the Thread instance that
generates it.

• To create a new thread, your program will either extend
Thread class or implement the Runnable interface.

19

Start a thread by calling its run
method.

start

Suspend a thread for a period of time.sleep

Entry point for the thread.run

Wait for a thread to terminate.join

Determine if a thread is still running.isAlive
Obtain a thread’s priority.getPriority
Obtain a thread’s name.getName

MeaningMethod

20

The Main Thread
• When a Java program starts up, one thread begins

running immediately.

• This is usually called the main thread of your
program, because it is the one that is executed
when your program begins.

• The main thread is important for two reasons:
– It is the thread from which other “child” threads will be

produced.
– Often, it must be the last thread to finish execution

because it performs various shutdown actions.

21

class CurrentThreadDemo
{

public static void main(String args[])
{

Thread t = Thread.currentThread();
System.out.println("Current thread: " + t);

t.setName("My Thread");
System.out.println("After name change: " + t);

try
{

for(int n = 5; n > 0; n--)
{

System.out.println(n);
Thread.sleep(1000);

}
} catch (InterruptedException e)
{

System.out.println("Main thread interrupted");
}

}
}

Current thread: Thread[main,5,main]
After name change:

Thread[My Thread,5,main]
5
4
3
2
1

22

Creating a Thread
• In the most general sense, you create a thread by instantiating an object

of type Thread.
• Java defines two ways in which this can be accomplished:

– You can implement the Runnable interface.
– You can extend the Thread class, itself.

Implementing Runnable
• The easiest way to create a thread is to create a class that implements

the Runnable interface.
• To implement Runnable, a class need only implement a single method

called run().
• In a class implementing Runnable, we need to create a Thread object.

23

class MyThread implements Runnable
{

Thread t;
MyThread()
{

t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start();

}

public void run()
{

try
{ for(int i = 5; i > 0; i--)

{
System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
} catch (InterruptedException e)
{

System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");

}
}

24

class ThreadDemo
{

public static void main(String args[])
{

new MyThread();
try
{

for(int i = 5; i > 0; i--)
{

System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e)
{

System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");

}
}

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5
Child Thread: 4
Main Thread: 4
Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

25

• In a multithreaded program, often the main thread
must be the last thread to finish running.

• In fact, for some older JVMs, if the main thread
finishes before a child thread has completed, then
the Java run-time system may “hang.”

• The preceding program ensures that the main
thread finishes last, because the main thread
sleeps for 1,000 milliseconds between iterations,
but the child thread sleeps for only 500
milliseconds.

• This causes the child thread to terminate earlier
than the main thread.

26

Extending Thread

• The second way to create a thread is to create a
new class that extends Thread, and then to create
an instance of that class.

• The extending class must override the run()
method, which is the entry point for the new thread.

• It must also call start() to begin execution of the
newthread.

• Here is the preceding program rewritten to extend
Thread:

27

class MyThread extends Thread
{

MyThread()
{

super("Demo Thread");
System.out.println("Child thread: " + this);
start();

}

public void run()
{

try
{ for(int i = 5; i > 0; i--)

{
System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
} catch (InterruptedException e)
{

System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");

}
}

28

class ThreadDemo
{

public static void main(String args[])
{

new MyThread();
try
{

for(int i = 5; i > 0; i--)
{

System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e)
{

System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");

}
}

Child thread: Thread[Demo Thread,5,main]
Main Thread: 5
Child Thread: 5
Child Thread: 4
Main Thread: 4
Child Thread: 3
Child Thread: 2
Main Thread: 3
Child Thread: 1
Exiting child thread.
Main Thread: 2
Main Thread: 1
Main thread exiting.

29

Choosing an Approach
• At this point, you might be wondering why Java has two ways to create

child threads, and which approach is better.

• The Thread class defines several methods that can be overridden by a
derived class.

• Of these methods, the only one that must be overridden is run().

• This is, of course, the same method required when you implement
Runnable.

• Many Java programmers feel that classes should be extended only
when they are being enhanced or modified in some way.

• So, if you will not be overriding any of Thread’s other methods, it is
probably best simply to implement Runnable.

30

Creating Multiple Threads
• In the previous example, we have seen one main thread

and one child thread.

• We can even create many threads in a single program.

31

class MyThread implements Runnable
{

String name;
Thread t;

MyThread(String threadname)
{

name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start();

}
public void run()
{

try
{ for(int i = 5; i > 0; i--)

{
System.out.println(name + ": " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e)
{ System.out.println(name + "Interrupted");}

System.out.println(name + " exiting.");
}

}

32

class MultiThreadDemo
{

public static void main(String args[])
{

new MyThread("One");
new MyThread("Two");
new MyThread("Three");

try
{

// wait for other threads to end
Thread.sleep(10000);

} catch (InterruptedException e)
{

System.out.println("Main thread Interrupted");
}
System.out.println("Main thread exiting.");

}
}

New thread: Thread[One,5,main]
New thread: Thread[Two,5,main]
New thread: Thread[Three,5,main]
One: 5
Two: 5
Three: 5
One: 4
Two: 4
Three: 4
One: 3
Two: 3
Three: 3
One: 2
Two: 2
Three: 2
One: 1
Two: 1
Three: 1
One exiting.
Two exiting.
Three exiting.
Main thread exiting.

33

Using isAlive() and join()
• Usually, we want main thread to finish last.

• To achieve this, we will give sleep() on main() with some
higher value.

• We can have an alternative by using isAlive and join().

• isAlive checks whether the thread is still running.

• join() method waits until the thread on which it is called
terminates.

34

class MyThread implements Runnable
{

String name;
Thread t;

MyThread(String threadname)
{

name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start();

}
public void run()
{

try
{ for(int i = 5; i > 0; i--)

{
System.out.println(name + ": " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e)
{

System.out.println(name + " interrupted.");
}
System.out.println(name + " exiting.");

}
}

35

class DemoJoin
{

public static void main(String args[])
{

MyThread ob1 = new MyThread("One");
MyThread ob2 = new MyThread("Two");
MyThread ob3 = new MyThread("Three");

System.out.println("Thread One is alive: " + ob1.t.isAlive());
System.out.println("Thread Two is alive: " + ob2.t.isAlive());
System.out.println("Thread Three is alive: " + ob3.t.isAlive());

try
{ System.out.println("Waiting for threads to finish.");

ob1.t.join();
ob2.t.join();
ob3.t.join();

} catch (InterruptedException e)
{ System.out.println("Main thread Interrupted");
}
System.out.println("Thread One is alive: " + ob1.t.isAlive());
System.out.println("Thread Two is alive: " + ob2.t.isAlive());
System.out.println("Thread Three is alive: " + ob3.t.isAlive());

System.out.println("Main thread exiting.");
}

}

36

Thread Priorities
• The thread scheduler uses thread priorities to decide when

each thread should be allowed to run.

• Theoretically, we say that higher-priority threads will get
more CPU time than lower-priority threads.

• But, practically, this is not the case always.

• The amount of CPU time allocated to a thread depends of
several factors even other than priority.

• For example, how an operating system handles multitasking
can affect the availability of CPU time.

• Similarly, the number of tasks (or processes) running
concurrently, while running a Java program containing
multiple threads, may affect the CPU time-sharing.

37

• Sometimes, higher priority thread may preempt lower priority
thread.

• For example, when a lower priority thread is running, if a
higher priority thread resumes from sleeping or waiting, it
may preempt the lower priority thread.

38

• Theoretically, threads of equal priority should get equal access to the CPU.

• But, Java is designed to work in a wide range of environments.

• And, the way one environment implements multitasking may differ from that
in the other environment.

• For proper multi-threaded programming, the threads having same priority
should yield the control voluntarily once in a while to ensure that all threads
have a chance to run under a non-preemptive operating system.

• Usually, this will happen as one or the other thread will be blocked for
some I/O operation and in the meanwhile other threads will get CPU.

• But, the programmer can not rely on this nature of OS.

• Because some threads are CPU-intensive and dominate the CPU.

• For such threads, we need to yield the control occasionally to allow other
threads to run.

39

• To set a thread’s priority, use the setPriority() method, which is a
member of Thread.

• This is its general form:
final void setPriority(int level)

• Here, level specifies the new priority setting for the calling thread.

• The value of level must be within the range MIN_PRIORITY and
MAX_PRIORITY.

• Currently, these values are 1 and 10, respectively.

• To return a thread to default priority, specify NORM_PRIORITY, which is
currently 5.

• These priorities are defined as static final variables within Thread.

• To obtain the current priority setting by calling the getPriority() method
of Thread, shown here:

final int getPriority()

40

class clicker implements Runnable
{ long click = 0;

Thread t;
private volatile boolean running = true;

public clicker(int p)
{ t = new Thread(this);

t.setPriority(p);
t.start();

}

public void run()
{

while (running)
click++;

}

public void end()
{

running = false;
}

}

41

class HiLoPri
{

public static void main(String args[])
{

Thread.currentThread().setPriority(Thread.MAX_PRIORITY);

clicker hi = new clicker(Thread.NORM_PRIORITY + 2);
clicker lo = new clicker(Thread.NORM_PRIORITY - 2);

try
{

Thread.sleep(10000);
} catch (InterruptedException e)
{

System.out.println("Main thread interrupted.");
}

lo.end();
hi.end();

42

try
{ hi.t.join();

lo.t.join();
} catch (InterruptedException e)
{

System.out.println("InterruptedException caught");
}

System.out.println("Low-priority thread: " + lo.click);
System.out.println("High-priority thread: " + hi.click);

}
}

Output:
Low-priority Thread: 4033358155
High-priority Thread: 4044925651

43

Synchronization
• When two or more threads need access to a shared resource, they need

some way to ensure that the resource will be used by only one thread at a
time.

• The process by which this is achieved is called synchronization.

• Java provides unique, language-level support for it.

• Synchronization is achieved using the concept of the monitor (also called
a semaphore).

• A monitor is an object that is used as a mutually exclusive lock, or
mutex.

• Only one thread can own a monitor at a given time.

44

• When a thread acquires a lock, it is said to have entered the
monitor.

• All other threads attempting to enter the locked monitor will
be suspended until the first thread exits the monitor.

• These other threads are said to be waiting for the monitor.

• A thread that owns a monitor can reenter the same monitor if
it so desires.

• In two ways we can achieve synchronization in Java –
– Using synchronized methods
– Using synchronized statements

45

Using Synchronized Methods
• Synchronization is easy in Java, because all objects have

their own implicit monitor associated with them.

• To enter an object’s monitor, just call a method that has
been modified with the synchronized keyword.

• While a thread is inside a synchronized method, all other
threads that try to call it (or any other synchronized method)
on the same instance have to wait.

• To exit the monitor and relinquish control of the object to the
next waiting thread, the owner of the monitor simply returns
from the synchronized method.

46

class Callme
{

void call(String msg)
{

System.out.print("[" + msg);
try
{

Thread.sleep(1000);
} catch(InterruptedException e)
{

System.out.println("Interrupted");
}
System.out.println("]");

}
}

class Caller implements Runnable
{

String msg;
Callme target;
Thread t;

public Caller(Callme targ, String s)
{

target = targ;
msg = s;
t = new Thread(this);
t.start();

}

public void run()
{

target.call(msg);
}

}

47

class Synch
{

public static void main(String args[])
{

Callme target = new Callme();
Caller ob1 = new Caller(target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");

try
{

ob1.t.join();
ob2.t.join();
ob3.t.join();

} catch(InterruptedException e)
{

System.out.println("Interrupted");
}

}
}

48

• As you can see, by calling sleep(), the call() method allows execution to
switch to another thread.

• This results in the mixed-up output of the three message strings.

• In this program, nothing exists to stop all three threads from calling the same
method, at the same time.

• This is known as a race condition, because the three threads are racing
each other to complete the method.

• In most situations, a race condition is more subtle and less predictable,
because you can’t be sure when the context switch will occur.

• This can cause a program to run right one time and wrong the next.

• To fix the preceding program, you must serialize access to call().

• That is, you must restrict its access to only one thread at a time.

• To do this, you simply need to precede call()’s definition with the keyword
synchronized.

49

• Thus, we need to use synchronized keyword to
handle the race conditions.

• Once a thread enters any synchronized method on
an instance, no other thread can enter any other
synchronized method on the same instance.

• However, non-synchronized methods on that
instance will continue to be callable.

50

The synchronized Statement
• synchronized methods may not work in all cases.

• To understand why, consider the following.

• Imagine that you want to synchronize access to objects of a
class that was not designed for multithreaded access.

• That is, the class does not use synchronized methods.

• Further, this class was not created by you, but by a third
party, and you do not have access to the source code.

• Thus, you can’t add synchronized to the appropriate
methods within the class.

• To synchronize the object of this class, we need to put the
calls to its methods inside a synchronized block.

51

• This is the general form of the synchronized statement:
synchronized(object)
{

// statements to be synchronized
}

• Here, object is a reference to the object being synchronized.

• A synchronized block ensures that a call to a method that is a member of
object occurs only after the current thread has successfully entered object’s
monitor.

• The previous program can be modified using synchronized block by altering
only run() method as –

public void run()
{

synchronized(target)
{

target.call(msg);
}

}

52

Interthread Communication
• In the previous examples, we have seen how one thread

blocks other threads unconditionally from asynchronous
access to few methods.

• Though, such a usage of implicit monitors is powerful, in Java,
we can achieve this also by using interthread communication.

• Multithreading replaces event loop programming (Sequential
programming) by dividing your tasks into discrete, logical
units.

• Threads also overcome the problems with polling.

• Polling is usually implemented by a loop that is used to check
some condition repeatedly.

• Once the condition is true, appropriate action is taken. This
wastes CPU time.

53

• For example, consider the queuing problem, where one thread
is producing some data and another is consuming it.

• Suppose that the producer has to wait until the consumer
is finished before it generates more data.

• In a polling system, the consumer would waste many CPU
cycles while it waited for the producer to produce.

• Once the producer was finished, it would start polling, wasting
more CPU cycles waiting for the consumer to finish, and so
on.

• Clearly, this situation is undesirable.

54

• To avoid polling, Java includes an elegant interprocess
communication mechanism via
the wait(), notify(), and notifyAll() methods.

• These methods are implemented as final methods in Object.

• All three methods can be called only from within a
synchronized context.

– wait() tells the calling thread to give up the monitor and go to sleep
until some other thread enters the same monitor and calls notify().

– notify() wakes up a thread that called wait() on the same object.

– notifyAll() wakes up all the threads that called wait() on the same
object. One of the threads will be granted access.

55

• Although wait() normally waits until notify() or
notifyAll() is called, there is a possibility that in very rare
cases the waiting thread could be awakened due to a
spurious wakeup.

• In this case, a waiting thread resumes without notify() or
notifyAll() having been called.

• In essence, the thread resumes for no apparent reason.

• Because of this remote possibility, Sun recommends that calls
to wait() should take place within a loop that checks the
condition on which the thread is waiting.

• The following example shows this technique.

56

class Q
{ int n;

synchronized int get()
{ System.out.println("Got: " + n);

return n;
}
synchronized void put(int n)
{ this.n = n;

System.out.println("Put: " + n);
}

}
class Producer implements Runnable
{ Q q;

Producer(Q q)
{ this.q = q;

new Thread(this, "Producer").start();
}
public void run()
{ int i = 0;

for(int j=0;j<10;j++)
q.put(i++);

}
}

class Consumer implements Runnable
{ Q q;

Consumer(Q q)
{ this.q = q;

new Thread(this, "Consumer").start();
}
public void run()
{ for(int j=0;j<10;j++)

q.get();
}

}
class PC
{

public static void main(String args[])
{

Q q = new Q();
new Producer(q);
new Consumer(q);

}
}

57

• The output of previous program shows that
the producer thread is not waiting for
consumer thread to consume the data.

• So, there is a possibility that the consumer is
receiving same data repeatedly.

58

class Q
{

int n;
boolean valueSet = false;

synchronized int get()
{

while(!valueSet)
try
{

wait();
} catch(InterruptedException e)
{

System.out.println("Interrupted
Exception caught");

}
System.out.println("Got: " + n);
valueSet = false;
notify();
return n;

}

synchronized void put(int n)
{

while(valueSet)
try
{

wait();
} catch(InterruptedException e)
{

System.out.println("Interrupted
Exception caught");

}
this.n = n;
valueSet = true;
System.out.println("Put: " + n);
notify();

}
}

59

class Producer implements Runnable
{ Q q;

Producer(Q q)
{ this.q = q;

new Thread(this, "Producer").start();
}
public void run()
{ int i = 0;

for(int j=0;j<10;j++)
q.put(i++);

}
}
class Consumer implements Runnable
{ Q q;

Consumer(Q q)
{ this.q = q;

new Thread(this, "Consumer").start();
}
public void run()
{ for(int j=0;j<10;j++)

q.get();
}

}

class PCNew
{

public static void main(String args[])
{

Q q = new Q();
new Producer(q);
new Consumer(q);

}
}

60

Deadlock
• A special type of error that you need to avoid that relates specifically to

multitasking is deadlock, which occurs when two threads have a circular
dependency on a pair of synchronized objects.

• For example, suppose one thread enters the monitor on object X and
another thread enters the monitor on object Y.

• If the thread in X tries to call any synchronized method on Y, it will block
as expected.

• However, if the thread in Y, in turn, tries to call any synchronized method
on X, the thread waits forever, because to access X, it would have to
release its own lock on Y so that the first thread could complete.

• Deadlock is a difficult error to debug for two reasons:
– In general, it occurs only rarely, when the two threads time-slice in

just the right way.

– It may involve more than two threads and two synchronized objects.

61

class A
{

synchronized void foo(B b)
{

String name = Thread.currentThread().getName();
System.out.println(name + " entered A.foo");
try
{

Thread.sleep(1000);
} catch(Exception e)
{

System.out.println("A Interrupted");
}
System.out.println(name + " trying to call B.last()");
b.last();

}

synchronized void last()
{

System.out.println("Inside A.last");
}

}

62

class B
{

synchronized void bar(A a)
{

String name = Thread.currentThread().getName();
System.out.println(name + " entered B.bar");
try
{

Thread.sleep(1000);
} catch(Exception e)
{

System.out.println("B Interrupted");
}
System.out.println(name + " trying to call A.last()");
a.last();

}

synchronized void last()
{

System.out.println("Inside A.last");
}

}

63

class Deadlock implements Runnable
{

A a = new A();
B b = new B();

Deadlock()
{

Thread.currentThread().setName("MainThread");
Thread t = new Thread(this, "RacingThread");
t.start();
a.foo(b); // get lock on a in this thread.
System.out.println("Back in main thread");

}

public void run()
{

b.bar(a); // get lock on b in other thread.
System.out.println("Back in other thread");

}

public static void main(String args[])
{

new Deadlock();
}

}

64

Suspending, Resuming, and Stopping Threads
• Sometimes, suspending execution of a thread is useful.

• For example, a separate thread can be used to display the
time of day.

• If the user doesn’t want a clock, then its thread can be
suspended.

• Suspending a thread and restarting the suspended thread is
easy.

• The older versions of Java, two methods suspend() and
resume() belonging to Thread class were used for this
purpose.

• The general form of these methods are:
– final void suspend()
– final void resume()

65

class MyThread implements Runnable
{

String name;
Thread t;

MyThread(String threadname)
{

name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
t.start();

}
public void run()
{ try

{ for(int i = 5; i > 0; i--)
{

System.out.println(name + ": " + i);
Thread.sleep(500);

}
} catch (InterruptedException e)
{

System.out.println(name + " interrupted.");
}
System.out.println(name + " exiting.");

}
}

66

class SuspendResume
{

public static void main(String args[])
{

MyThread ob1 = new MyThread("One");
MyThread ob2 = new MyThread("Two");

try
{

Thread.sleep(1000);
System.out.println("Suspending thread One");
ob1.t.suspend();
Thread.sleep(1000);
System.out.println("Resuming thread One");
ob1.t.resume();
System.out.println("Suspending thread Two");
ob2.t.suspend();
Thread.sleep(1000);
System.out.println("Resuming thread Two");
ob2.t.resume();

} catch (InterruptedException e)
{

System.out.println("Main thread Interrupted");
}

try
{
System.out.println("Waiting for

threads to finish.");
ob1.t.join();
ob2.t.join();
} catch (InterruptedException e)
{

System.out.println("Main thread
Interrupted");

}
System.out.println("Main thread

exiting.");
}
}

67

• The Thread class also defines a method called stop() that
stops a thread.

• Its signature is shown here:
final void stop()

• Once a thread has been stopped, it cannot be restarted using
resume().

68

The Modern Way of Suspending, Resuming, and
Stopping Threads

• Though the usage of suspend(), resume() and stop() seems to
be perfect, they are deprecated in newer versions of Java.

• This was done because suspend() can sometimes cause serious
system failures.

• Assume that a thread has obtained locks on critical data
structures.

• If that thread is suspended at that point, those locks are not
relinquished (or given up).

• Other threads that may be waiting for those resources can be
deadlocked.

• As resume() is used only with suspend(), it also has been
deprecated.

69

• The stop() method of the Thread class was also
deprecated because this method can sometimes cause
serious system failures.

• Assume that a thread is writing to a critically important data
structure and has completed only part of its changes.

• If that thread is stopped at that point, that data structure
might be left in a corrupted state.

• Since, all these methods have been deprecated, the run()
method should be designed such a way that it periodically
checks to determine whether that thread should suspend,
resume, or stop its own execution.

• This is accomplished by establishing a flag variable that
indicates the execution state of the thread.

70

class MyThread implements Runnable
{

String name;
Thread t;
boolean suspendFlag;

MyThread(String threadname)
{

name = threadname;
t = new Thread(this, name);
System.out.println("New thread: " + t);
suspendFlag = false;
t.start();

}
void mysuspend()
{

suspendFlag = true;
}
synchronized void myresume()
{

suspendFlag = false;
notify();

}

public void run()
{
try
{

for(int i = 5; i > 0; i--)
{

System.out.println(name + ": " + i);
Thread.sleep(500);

synchronized(this)
{

while(suspendFlag)
wait();

}
}

} catch (InterruptedException e)
{
System.out.println(name+ " interrupted.");
}

System.out.println(name + " exiting.");
}

71

class SuspendResume
{

public static void main(String args[])
{

MyThread ob1 = new MyThread("One");
MyThread ob2 = new MyThread("Two");

try
{

Thread.sleep(1000);
System.out.println("Suspending thread One");
ob1.mysuspend();
Thread.sleep(1000);
System.out.println("Resuming thread One");
ob1.myresume();
System.out.println("Suspending thread Two");
ob2.mysuspend();
Thread.sleep(1000);
System.out.println("Resuming thread Two");
ob2.myresume();

} catch (InterruptedException e)
{

System.out.println("Main thread Interrupted");
}

try
{
System.out.println("Waiting for

threads to finish.");
ob1.t.join();
ob2.t.join();
} catch (InterruptedException e)
{

System.out.println("Main thread
Interrupted");

}
System.out.println("Main thread

exiting.");
}
}

72

Using Multithreading
• The key to utilizing Java’s multithreading features effectively is to think

concurrently rather than serially.

• For example, when you have two subsystems within a program that can
execute concurrently, make them individual threads.

• With the careful use of multithreading, you can create very efficient
programs.

• A word of caution is in order, however: If you create too many threads,
you can actually degrade the performance of your program rather than
enhance it.

• Remember, some overhead is associated with context switching.

• If you create too many threads, more CPU time will be spent changing
contexts than executing your program!

73

Pre-requisites for java.io
• Java programs perform I/O through streams.

• A stream is a logical device that either produces or consumes information.

• A stream is linked to a physical device by the Java I/O system.

• All streams behave in the same manner, even if the actual physical devices
to which they are linked differ.

• Thus, the same I/O classes and methods can be applied to any type of
device.

• Java defines two types of streams: byte and character.

• Byte streams are used for reading or writing binary data.

• Character streams provide a convenient means for handling input and output
of characters.

74

Reading Console Input
• In Java, console input is accomplished by reading from System.in.

• To obtain a character based stream that is attached to the console, wrap
System.in in a BufferedReader object.

• BufferedReader supports a buffered input stream. Its most commonly
used constructor is shown here:

BufferedReader(Reader inputReader)

• Here, inputReader is the stream that is linked to the instance of
BufferedReader that is being created.

• To obtain an InputStreamReader object that is linked to System.in, use
the following constructor:

InputStreamReader(InputStream inputStream)

• Because System.in refers to an object of type InputStream, it can be used
for inputStream.

75

• Putting it all together, the following line of code creates a
BufferedReader that is connected to the keyboard:

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

• After this statement executes, br is a character-based stream that is
linked to the console through System.in.

• To read a character from a BufferedReader , we use read() method.

• Each time that read() is called, it reads a character from the input stream
and returns it as an integer value.

• It returns –1 when the end of the stream is encountered.

76

import java.io.*;

class BRRead
{

public static void main(String args[]) throws IOException
{

char c;
BufferedReader br = new

BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter characters, 'q' to quit.");

do
{

c = (char) br.read();
System.out.println(c);

} while(c != 'q');
}

}

Output:
Enter characters, 'q' to quit.
123abcq
1
2
3
a
b
c
q
This output

77

import java.io.*;

class BRRead
{

public static void main(String args[]) throws IOException
{

int x;
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

System.out.println("Enter a number:");
x=Integer.parseInt((br.readLine()).toString());

x=x+5;
System.out.println(x);

}
}

78

Input/Output: Exploring java.io
• Most of the programs require external data as input and they

produce some output.

• Data is retrieved from an input source.

• The results of a program are sent to an output destination.

• In Java, these sources or destinations may be network
connection, memory buffer, or disk file etc.

• Although physically different, these devices are all handled by
the same abstraction: the stream which is a logical device that
either produce or consume information.

• A stream is linked to a physical device by the Java I/O system.

79

The Java I/O Classes

PipedInputStreamFileReader
OutputStreamWriterFilePermission

WriterOutputStreamFileOutputStream
StringWriterObjectStreamFieldFileInputStream
StringReaderObjectStreamClassFileDescriptor
StreamTokenizerObjectOutputStream.PutFieldFile
SerializablePermissionObjectOutputStreamDataOutputStream
SequenceInputStreamObjectInputStream.GetFieldDataInputStream
ReaderObjectInputStreamConsole
RandomAccessFileLineNumberReaderCharArrayWriter
PushbackReaderInputStreamReaderCharArrayReader
PushbackInputStreamInputStreamByteArrayOutputStream
PrintWriterFilterWriterByteArrayInputStream
PrintStreamFilterReaderBufferedWriter
PipedWriterFilterOutputStreamBufferedReader
PipedReaderFilterInputStreamBufferedOutputStream
PipedOutputStreamFileWriterBufferedInputStream

80

Interfaces defined by java.io

SerializableObjectInputExternalizable
ObjectStreamConstantsFlushableDataOutput
ObjectOutputFilenameFilterDataInput
ObjectInputValidationFileFilterCloseable

81

File
• Although most of the classes defined by java.io operate on

streams, the File class does not.

• It deals directly with files and the file system.

• That is, the File class does not specify how information is
retrieved from or stored in files; it describes the properties of
a file itself.

• A File object is used to obtain or manipulate the information
associated with a disk file, such as the permissions, time,
date, and directory path, and to navigate subdirectory
hierarchies.

• A directory in Java is treated simply as a File with one
additional property—a list of filenames that can be examined
by the list() method.

82

• The following constructors can be used to create File objects:
– File(String directoryPath)
– File(String directoryPath, String filename)
– File(File dirObj, String filename)
– File(URI uriObj)

• Here, directoryPath is the path name of the file,
filename is the name of the file or subdirectory,
dirObj is a File object that specifies a directory, and
uriObj is a URI (Uniform Resource Identifier) object that

describes a file.
• Example:

File f1 = new File("/"); //file object created with only directory path
File f2 = new File("/","autoexec.bat"); //with directory path and file name
File f3 = new File(f1,"autoexec.bat"); //same as first declaration

83

NOTE
• Java does the right thing with path separators between UNIX

and Windows conventions.

• If you use a forward slash (/) on a Windows version of Java, the
path will still resolve correctly.

• Remember, if you are using the Windows convention of a
backslash character (\), you will need to use its escape
sequence (\\) within a string.

File Methods:
• File defines many methods that obtain the standard properties

of a File object.

• For example,
– getName() returns the name of the file,
– getParent() returns the name of the parent directory etc.

84

import java.io.File;

class FileDemo
{

static void disp(String s)
{

System.out.println(s);
}
public static void main(String args[])
{

File f1 = new File("/test.txt");

disp("File Name: " + f1.getName());
disp("Path: " + f1.getPath());
disp("Abs Path: " + f1.getAbsolutePath());
disp("Parent: " + f1.getParent());
disp(f1.exists() ? "exists" : "does not exist");
disp(f1.canWrite() ? "is writeable" : "is not writeable");
disp(f1.canRead() ? "is readable" : "is not readable");
disp("is " + (f1.isDirectory() ? "" : "not" + " a directory"));
disp(f1.isFile() ? "is normal file" : "might be a named pipe");
disp(f1.isAbsolute() ? "is absolute" : "is not absolute");
disp("File last modified: " + f1.lastModified());
disp("File size: " + f1.length() + " Bytes");

}
}

85

• isFile() returns true if called on a file and false if called on a directory.

• Also, isFile() returns false for some special files, such as device drivers
and named pipes, so this method can be used to make sure the file will
behave as a file.

• The isAbsolute() method returns true if the file has an absolute path and
false if its path is relative.

• File also includes two useful utility methods.

• The first is renameTo(), shown here:
boolean renameTo(File newName)

• Here, the filename specified by newName becomes the new name of the
invoking File object.

• It will return true upon success and false if the file cannot be renamed.

86

• The second utility method is delete(), which deletes the disk
file represented by the path of the invoking File object.

• It is shown here:
boolean delete()

• You can also use delete() to delete a directory if the directory
is empty.

• delete() returns true if it deletes the file and false if the file
cannot be removed.

87
Sets the invoking file to read-only.boolean setReadOnly()

Sets the time stamp on the invoking file to
that specified by millisec, which is the
number of milliseconds from January 1,
1970, Coordinated Universal Time (UTC).

boolean
setLastModified(long

millisec)

Returns true if the invoking file is hidden.
Returns false otherwise.

boolean isHidden()

Returns the storage capacity of the
partition associated with the invoking
object.

long getTotalSpace()

Returns the number of free bytes of
storage available on the partition
associated with the invoking object.

long getFreeSpace()

Removes the file associated with the
invoking object when the Java Virtual
Machine terminates.

void deleteOnExit()
DescriptionMethod

Few more File Methods

88

Directories

• A directory is a File that contains a list of other files and
directories.

• When you create a File object and it is a directory, the
isDirectory() method will return true.

• In this case, you can call list() on that object to extract the
list of other files and directories inside.

• It has two forms. The first is shown here:
String[] list()

• The list of files is returned in an array of String objects.

89

import java.io.File;

class DirList
{ public static void main(String args[])

{
String dirname = "/java";
File f1 = new File(dirname);

if (f1.isDirectory())
{

System.out.println("Directory of " + dirname);
String s[] = f1.list();
for (int i=0; i < s.length; i++)
{

File f = new File(dirname + "/" + s[i]);

if (f.isDirectory())
System.out.println(s[i] + " is a directory");

else
System.out.println(s[i] + " is a file");

}
}
else

System.out.println(dirname + " is not a directory");
}

}

90

Using FilenameFilter

• Some times, we may want the list() methd to return only the files matching
the required extension or pattern.

• To do this, we must use a second form of list(), shown here:
String[] list(FilenameFilter FFObj)

• In this form, FFObj is an object of a class that implements the
FilenameFilter interface.

• FilenameFilter defines only a single method, accept(), which is called once
for each file in a list.

• Its general form is given here:
boolean accept(File directory, String filename)

• The accept() method returns true for files in the directory specified by
directory that should be included in the list (that is, those that match the
filename argument), and returns false for those files that should be
excluded.

91

import java.io.*;

class OnlyExt implements FilenameFilter
{

String ext;

public OnlyExt(String ext)
{

this.ext = "." + ext;
}

public boolean accept(File dir, String name)
{

return name.endsWith(ext);
}

}

class DirListOnly
{

public static void main(String args[])
{

String dirname = "/Chetana";

File f1 = new File(dirname);
FilenameFilter only = new

OnlyExt("doc");

String s[] = f1.list(only);

for (int i=0; i < s.length; i++)
System.out.println(s[i]);

}
}

92

The listFiles() Alternative

• There is a variation to the list() method, called listFiles(), which you might
find useful.

• The signatures for listFiles() are shown here:
– File[] listFiles() returns all files
– File[] listFiles(FilenameFilter FFObj) returns those files that satisfy the specified

FilenameFilter.
– File[] listFiles(FileFilter FObj) returns those files with path names that

satisfy the specified FileFilter

• FileFilter defines only a single method, accept(), which is called once for
each file in a list.

• Its general form is given here:
boolean accept(File path)

• The accept() method returns true for files that should be included in the list
(that is, those that match the path argument), and false for those that should
be excluded.

93

Creating Directories

• Another two useful File utility methods are mkdir() and
mkdirs().

• The mkdir() method creates a directory, returning true on
success and false on failure.

• Failure indicates that the path specified in the File object
already exists, or that the directory cannot be created because
the entire path does not exist yet.

• To create a directory for which no path exists, use the mkdirs()
method.

• It creates both a directory and all the parents of the directory.

94

The Closeable and Flushable Interfaces
• In JDK 5, two interfaces were added to java.io: Closeable

and Flushable.

• They offer a uniform way of specifying that a stream can be
closed or flushed.

• Objects of a class that implements Closeable can be closed.

• It defines the close() method, shown here:
void close() throws IOException

• This method closes the invoking stream, releasing any
resources that it may hold.

• This interface is implemented by all of the I/O classes that
open a stream that can be closed.

95

• Objects of a class that implements Flushable can force
buffered output to be written to the stream to which the
object is attached.

• It defines the flush() method, shown here:
void flush() throws IOException

• Flushing a stream typically causes buffered output to be
physically written to the underlying device.

• This interface is implemented by all of the I/O classes that
write to a stream.

96

The Stream Classes
• Java’s stream-based I/O is built upon four abstract classes: InputStream,

OutputStream, Reader, and Writer.

• They are used to create several concrete stream subclasses.

• Although your programs perform their I/O operations through concrete
subclasses, the top-level classes define the basic functionality common to
all stream classes.

• InputStream and OutputStream are designed for byte streams.

• Reader and Writer are designed for character streams.

• The byte stream classes and the character stream classes form separate
hierarchies.

• In general, you should use the character stream classes when working
with characters or strings, and use the byte stream classes when working
with bytes or other binary objects.

97

The Byte Streams
• A byte stream can be used with any type of object, including binary data.

• Hence, byte streams are important to many types of programs.

• The byte stream classes are topped by InputStream and OutputStream.

InputStream:
• InputStream is an abstract class that defines Java’s model of streaming byte

input.

• It implements the Closeable interface.

• Most of the methods in this class will throw an IOException on error conditions.

OutputStream
• This also is an abstract class that defines streaming byte output.

• It implements the Closeable and Flushable interfaces and throws an
IOException in the case of errors.

98

The Methods Defined by InputStream

Ignores (that is, skips) numBytes bytes of input, returning the
number of bytes actually ignored.

long skip(long numBytes)

Resets the input pointer to the previously set mark.void reset()

Attempts to read up to numBytes bytes into buffer starting at
buffer[offset], returning the number of bytes successfully read. –1 is
returned when the end of the file is encountered.

int read(byte buffer[], int
offset, int numBytes)

Attempts to read up to buffer.length bytes into buffer and returns the
actual number of bytes that were successfully read. –1 is returned
when the end of the file is encountered.

int read(byte buffer[])

Returns an integer representation of the next available byte of input.
–1 is returned when the end of the file is encountered.

int read()

Returns true if mark()/reset() are supported by the invoking stream.boolean markSupported()

Places a mark at the current point in the input stream that will remain
valid until numBytes bytes are read.

void mark(int numBytes)

Closes the input source. Further read attempts will generate an
IOException.

void close()

Returns the number of bytes of input currently available for reading.int available()

DescriptionMethod

99

The Methods Defined by OutputStream

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

void write(byte buffer[], int
offset, int numBytes)

Writes a complete array of bytes to an output stream.void write(byte buffer[])

Writes a single byte to an output stream. Note that the
parameter is an int, which allows you to call write() with
expressions without having to cast them back to byte.

void write(int b)

Finalizes the output state so that any buffers are cleared.
That is, it flushes the output buffers.

void flush()

Closes the output stream. Further write attempts will
generate an IOException.

void close()

DescriptionMethod

100

FileInputStream :
• The FileInputStream class creates an InputStream that can be used to

read bytes from a file.

• Its two most common constructors are shown here:
– FileInputStream(String filepath)
– FileInputStream(File fileObj)

• The following example creates two FileInputStreams that use the same
file:
FileInputStream f1 = new FileInputStream("/test.txt")
File f= new File("/test.txt");
FileInputStream f2 = new FileInputStream(f);

• When a FileInputStream is created, it is also opened for reading.

• FileInputStream overrides six of the methods in the abstract class
InputStream.

• The mark() and reset() methods are not overridden, and any attempt
to use reset() on a FileInputStream will generate an IOException.

101

import java.io.*;

class FISDemo
{

public static void main(String args[]) throws IOException
{

int size;
InputStream f = new FileInputStream("FISDemo.java");

size= f.available();
System.out.println("Total Available Bytes: " + size);
int n = size/40;

System.out.println("First " + n + " bytes of the file");

for (int i=0; i < n; i++)
System.out.print((char) f.read());

System.out.println("\nStill Available: " + f.available());
System.out.println("Reading the next " + n + "bytes using array");

102

byte b[] = new byte[n];

if (f.read(b) != n)
System.out.println("couldn't read " + n + " bytes.");

System.out.println(new String(b, 0, n));
System.out.println("\nStill Available: " + (size = f.available()));
System.out.println("Skipping half of remaining bytes with skip()");

f.skip(size/2);
System.out.println("Still Available: " + f.available());
System.out.println("Reading " + n/2 + " into the end of array");
if (f.read(b, n/2, n/2) != n/2)

System.out.println("couldn't read " + n/2 + " bytes.");

System.out.println(new String(b, 0, b.length));
System.out.println("\nStill Available: " + f.available());
f.close();

}
}

103

OUTPUT:

Total Available Bytes: 1237
First 30 bytes of the file
import java.io.*;

class FIS
Still Available: 1207
Reading the next 30bytes using array
Demo
{

public static

Still Available: 1177
Skipping half of remaining bytes with skip()
Still Available: 589
Reading 15 into the end of array
Demo
{

" + n + " byte

Still Available: 574

104

FileOutputStream :
• FileOutputStream creates an OutputStream that you can use to write bytes to

a file.

• Its most commonly used constructors are shown here:
– FileOutputStream(String filePath)
– FileOutputStream(File fileObj)
– FileOutputStream(String filePath, boolean append)
– FileOutputStream(File fileObj, boolean append)

• They can throw a FileNotFoundException.

• Here, filePath is the full path name of a file, and fileObj is a File object that
describes the file.

• If append is true, the file is opened in append mode.

• If the specified file is not existing, then it will be created and opened for writing
when FileOutputStream object is created.

• If an attempt is made to open a read-only file, an IOException will be thrown.

105

import java.io.*;

class FOSDemo
{

public static void main(String args[]) throws IOException
{

String source = "Now is the time for all good men to come to the aid of \n”
+ “ their country and pay their due taxes.";

byte buf[] = source.getBytes();
OutputStream f1 = new FileOutputStream("file1.txt");

for (int i=0; i < buf.length; i++)
f1.write(buf[i]);

f1.close();

OutputStream f2 = new FileOutputStream("file2.txt");
f2.write(buf);
f2.close();

}
}

106

• In the above program, we are creating a reference to abstract class
OutputStream (f1 and f2) which are going to store objects of
FileOutputStream class.

• After executing the above program, two files viz. file1.txt and file2.txt will
be created in a current working directory.

• The contents of these files will be same as the string source given in the
program.

107

The Character Streams
• While the byte stream classes provide sufficient functionality to handle

any type of I/O operation, they cannot work directly with Unicode
characters.

• Since one of the main purposes of Java is to support the “write once, run
anywhere” philosophy, it was necessary to include direct I/O support for
characters.

• As explained earlier, at the top of the character stream hierarchies are
the Reader and Writer abstract classes.

Reader:
• Reader is an abstract class that defines Java’s model of streaming

character input. It implements the Closeable and Readable interfaces.
All of the methods in this class (except for markSupported()) will throw
an IOException on error conditions.

Writer:
• Writer is an abstract class that defines streaming character output. It

implements the Closeable, Flushable, and Appendable interfaces. All
of the methods in this class throw an IOException in the case of errors.

108

The Methods Defined by Reader

Skips over numChars characters of input, returning the number
of characters actually skipped.

long skip(long numChars)

Resets the input pointer to the previously set mark.void reset()

Returns true if the next input request will not wait. Otherwise,
it returns false.

boolean ready()

Attempts to read up to numChars characters into buffer starting
at buffer[offset], returning the number of characters
successfully read. –1 is returned when the end of the file is
encountered.

abstract int read(char buffer[
], int offset,
int numChars)

Attempts to read up to buffer.length characters into buffer and
returns the actual number of characters that were successfully
read. –1 is returned when the end of the file is encountered.

int read(char buffer[])

Returns an integer representation of the next available character
from the invoking input stream. –1 is returned when the end of
the file is encountered.

int read()

Returns true if mark()/reset() are supported on this stream.boolean markSupported()

Places a mark at the current point in the input stream that will
remain valid until numChars characters are read.

void mark(int numChars)

Closes the input source. Further read attempts will generate
an IOException.

abstract void close()

DescriptionMethod

109

The Methods Defined by Writer

Writes a subrange of numChars characters from the string str, beginning
at the specified offset.

void write(String str, int offset,
int numChars)

Writes str to the invoking output stream.void write(String str)

Writes a subrange of numChars characters from the array buffer,
beginning at buffer[offset] to the invoking output stream.

abstract void write(char buffer[],
int offset, int numChars)

Writes a complete array of characters to the invoking output stream.void write(char buffer[])

Writes a single character to the invoking output stream. Note that the
parameter is an int, which allows you to call write with expressions without
having to cast them back to char.

void write(int ch)

Finalizes the output state so that any buffers are cleared. That is, it
flushes the output buffers.

abstract void flush()

Closes the output stream. Further write attempts will generate an
IOException.

abstract void close()

Appends the subrange of chars specified by begin and end–1 to the end
of the invoking ouput stream. Returns a reference to the invoking stream.

Writer append(CharSequence
chars, int begin, int end)

Appends chars to the end of the invoking output stream. Returns a
reference to the invoking stream.

Writer append(CharSequence
chars)

Appends ch to the end of the invoking output stream. Returns a reference
to the invoking stream.

Writer append(char ch)

DescriptionMethod

110

FileReader

• The FileReader class creates a Reader that you
can use to read the contents of a file.

• Its two most commonly used constructors are
shown here:
– FileReader(String filePath)
– FileReader(File fileObj)

• Either can throw a FileNotFoundException.

• Here, filePath is the full path name of a file, and
fileObj is a File object that describes the file.

111

import java.io.*;

class FRDemo
{

public static void main(String args[]) throws IOException
{

FileReader fr = new FileReader("FRDemo.java");
BufferedReader br = new BufferedReader(fr);
String s;

while((s = br.readLine()) != null)
System.out.println(s);

fr.close();
}

}

• The above program reads each line in the file FRDemo.java (the same
program file) and prints on to the monitor.

• Observe that BufferedReader class which is used for reading data from
console (keyboard) itself is used for reading data from the file also.

112

FileWriter

• FileWriter creates a Writer that you can use to write to a file.

• Its most commonly used constructors are shown here:
– FileWriter(String filePath)
– FileWriter(String filePath, boolean append)
– FileWriter(File fileObj)
– FileWriter(File fileObj, boolean append)

• They can throw an IOException.

• Here, filePath is the full path name of a file, and fileObj is a File object that
describes the file.

• If append is true, then output is appended to the end of the file.

• If the specified file is not existing, then a new file will be opened for writing when
a FileWriter object is created.

• In the case where you attempt to open a read-only file, an IOException will be
thrown.

113

import java.io.*;
class FWDemo
{ public static void main(String args[]) throws IOException

{
String source = "Now is the time for all good men to come to the aid of their \n”

+ “ country and pay their due taxes.";

char buffer[] = new char[source.length()];
source.getChars(0, source.length(), buffer, 0); //copy content of source to buffer

FileWriter f1 = new FileWriter("file1.txt");

for (int i=0; i < buffer.length; i++)
f1.write(buffer[i]);

f1.close();

FileWriter f2 = new FileWriter("file2.txt");
f2.write(buffer);
f2.close();

}
}
• After executing the above program, two files viz. file1.txt and file2.txt will be created in a

current working directory. The contents of these files will be same as the string source
given in the program.

114

The Console Class
• Java SE 6 adds the Console class.

• It is used to read from and write to the console, if one exists.

• It implements the Flushable interface.

• Though Console class provides most of the functionalities as that of System.in
and System.out, it is much useful in reading strings from the console.

• Console supplies no constructors.

• Instead, a Console object is obtained by calling System.console(), which is
shown here:

static Console console()

• If a console is available, then a reference to it is returned. Otherwise, null is
returned.

• A console will not be available in all cases. Thus, if null is returned, no console
I/O is possible.

115

• Whether a virtual machine has a console is dependent upon the underlying
platform and also upon the manner in which the virtual machine is invoked.

• If the virtual machine is started from an interactive command line without
redirecting the standard input and output streams then its console will exist
and will typically be connected to the keyboard and display from which the
virtual machine was launched.

• If the virtual machine is started automatically, for example by a background
job scheduler, then it will typically not have a console.

• Console defines the methods shown in following Table.

• Notice that the input methods, such as readLine(), throw IOError if an input
error occurs.

• IOError is a new exception added by Java SE 6, and it is a subclass of
Error.

• It indicates an I/O failure that is beyond the control of your program.

• Thus, you will not normally catch an IOError.

116

The Methods Defined by Console

Reads a string entered at the keyboard. Input stops when
the user presses ENTER. The string is not displayed. If the
end of the console input stream has been reached, null is
returned. An IOError is thrown on failure.

char[] readPassword()

Displays a prompting string formatted as specified by
fmtString and args, and then reads and returns a string
entered at the keyboard. Input stops when the user
presses ENTER. If the end of the console input stream
has been reached, null is returned. An IOError is
thrown on failure.

String readLine(String fmtString,
Object...args)

Reads and returns a string entered at the keyboard. Input
stops when the user presses ENTER. If the end of the
console input stream has been reached, null is returned.
An IOError is thrown on failure.

String readLine()

Returns a reference to a Reader connected to the console.Reader reader()

Writes args to the console using the format specified by
fmtString.

Console printf(String fmtString, Object...args)

Writes args to the console using the format specified by
fmtString.

Console format(String fmtString, Object...args)

Causes buffered output to be written physically to the
console.

void flush()

DescriptionMethod

117

The Methods Defined by Console (Contd)

Returns a reference to a Writer connected to the
console.

PrintWriter writer()

Displays a prompting string formatted as specified
by fmtString and args, and then reads a string
entered at the keyboard. Input stops when the user
presses ENTER. The string is not displayed. If the
end of the console input stream has been reached,
null is returned. An IOError is thrown on failure.

char[] readPassword(String fmtString,
Object... args)

DescriptionMethod

118

import java.io.*;

class ConsoleDemo
{

public static void main(String args[])
{

String str;
Console con;

con = System.console();

if(con == null)
return;

str = con.readLine("Enter a string: ");
con.printf("Here is your string: %s\n", str);

}
}

Output:
Enter a string: Hello
Here is your string: Hello

119

Serialization
• Serialization is the process of writing the state of an object to a byte

stream.

• This is useful when you want to save the state of your program to a
persistent storage area, such as a file.

• At a later time, you may restore these objects by using the process of
deserialization.

• Serialization is also needed to implement Remote Method Invocation
(RMI).

• RMI allows a Java object on one machine to invoke a method of a Java
object on a different machine.

• An object may be supplied as an argument to that remote method.

• The sending machine serializes the object and transmits it.

• The receiving machine deserializes it.

120

Note:
• Primary purpose of java serialization is to write an

object into a stream, so that it can be transported
through a network and that object can be rebuilt
again.

• When there are two different parties involved, you
need a protocol to rebuild the exact same object
again.

• Java serialization API just provides you that.

• Other ways you can leverage the feature of
serialization is, you can use it to perform a deep
copy.

121

• Assume that an object to be serialized has references to other objects,
which, in turn, have references to still more objects.

• This set of objects and the relationships among them form a directed
graph.

• There may also be circular references within this object graph.

• That is, object X may contain a reference to object Y, and object Y may
contain a reference back to object X.

• Objects may also contain references to themselves.

• The object serialization and deserialization facilities have been
designed to work correctly in these scenarios.

• If you attempt to serialize an object at the top of an object graph, all of
the other referenced objects are recursively located and serialized.

• Similarly, during the process of deserialization, all of these objects and
their references are correctly restored.

122

Stream Benefits
• The streaming interface to I/O in Java provides a clean abstraction for a

complex and often cumbersome task.

• The composition of the filtered stream classes allows you to dynamically
build the custom streaming interface to suit your data transfer
requirements.

• Java programs written to ensure that the abstract, high-level InputStream,
OutputStream, Reader, and Writer classes will function properly in the
future even when new and improved concrete stream classes are
invented.

• This model works very well when we switch from a file system–based set
of streams to the network and socket streams.

• Finally, serialization of objects plays an important role in many types of
Java programs.

• Java’s serialization I/O classes provide a portable solution to this
sometimes tricky task.

