Introducing Classes

wIdSsS 1S d PASIS O VU 1dNnguagcs.

It is a logical construct which defines shape and nature of an
object.

Entire Java is built upon classes.
Class can be thought of as a user-defined data type.
We can create variables (objects) of that data type.

30, we can say that class is a template for an object and an
object is an instance of a class.

Most of the times, the terms object and instance are used
interchangeabily.

THS WDl aAl 1 WiNl Wi A e ilaoao

» A class contains data (member or instance variables) and the code (member
methods) that operate on the data.

» The general form can be given as —
class classname

{
type vari;

type varz;

type method1(para_list)
{
}
type method2(para_list)
{

;

/body of method1

f/body of method2

}
» Variables declared within a class are called as instance variables because every
instance (or object) of a class contains its own copy of these variables.

» The code is contained within methods. Methods and instance variables collectively
called as members of the class.

class Box

{
}

class BoxDemo

{

double w, h, d;

public static void main(String args[])
{

Box b1=new Box();

Box b2=new Box();

double vol;

b1.w=2;

b1.h=4;

b1.d=3;

b2 .w=5;
b2.h=6;
b2.d=2;

vol=b1.w*b1.h*b1.d;
System.out. printIn("Volume of Box1 is " + vol);
vol=b2.w*h2.h*b2.d;
System.out. printin{"Volume of Box2 is " + vol);

CLIAl Y WiTLLD

*

Creating a class means having a user-defined data type.

To have a variable of this new data type, we should create an object.
Consider the following declaration:

Box b1;

This statement will not actually create any physical object, but the object
name b7 can just refer to the actual object on the heap after memory
allocation as follows —

b1 = new Box ();

We can even declare an object and allocate memory using a single
statement —

Box b1=new Box();
Without the usage of new, the object contains null.

Once memory is allocated dynamically, the object b7 contains the address of
real object created on the heap.

WiIWVOTI IWVWNR AL FTITYY

*

The general form for object creation is —
obj name = new class_name();

Here, class name{) is actually a constructor call.

If we do nct provide any constructor, then Java supplies a default
constructor.

Java treats primitive types like byte, short, int long, char, float, double and
boolean as ordinary variables but not as an object of any class.

This is to avoid extra overhead on the heap memory and also to increase the
efficiency of the program.

Java also provides the cfass-version of these primitive types that can be
used only If necessary.

If there is no enough memory in the heap when we use new for memory
allocation, it will throw a run-time exception.

HDDIHIIIIIH UHJGUI. NcicivilvYe valiawico

 When an object is assighed to another object, no separate memory will be allocated.

Instead, the second object refers to the same |ocation as that of first object. Consider
the following declaration —

Box b1= new Box{);
Box b2= b1;

* Now both b1 and b2 refer to same object on the heap.

» Thus, any change made for the instance variables of ohe object affects the other
object also.

» Although b1 and b2 both refer to the same object, they are not linked in any other
way.

» For example, a subsequent assignment to b1 will simply unhook b1 from the original
object without affecting the object or affecting b2. For example:

Box b1 = new Box();
Box b2 = b1;

iH...

b1 = null;

» Here, b1 has been set to null, but b2 still points to the original object.

IHIUWVU UL IVISUIWVUD

+ A class can consist of instance variables and methods.

+ The general form of a method is —
ret _type method name(para list)

{
//body of the method

return value;

}

Here, ret type specifies the data type of the variable returned by the method.
method _name is any valid name given to the method

para list Is the list of parameters (along with their respective types)
taken the method. It may be even empty also.

body of method is a code segment written to carryout some process for which
the method is meant for.

return Is a keyword used to send value to the calling method. This
line will be absent if the ret_type is void.

class Box

{
double w, h, d;
void volume()
{ System.out.printin("The volume is " + w*h*d);
}
}

class BoxDemo
{ public static void main(String args[])

{
Box b1=new Box();
Box b2=new Box();
b1.w=2;
b1.h=4;
b1.d=3;
b2 w=5;
b2.h=6;
b2.d=2;
b1 .volume();
b2.volume();
}
}
class Box
{
double w, h, d;
double volume()
{
return wrh*™d;
}
}
class BoxDemo
{

public static void main{String args[])
{

Box b1=new Box();

Box b2=new Box();

double vol;

b1.w=2;

b1.h=4,

b1.d=3;

b2 w=5;
b2.h=6;
b2.d=2;

vol = b1 .volume();
System.out.printin(*The volume is " + vol);
System.out.printin("The volume is " + b2.volume());

class Box

{

double w, h, d;

double volume()

{

return w*h*d;

}
void set(double wd, double ht, double dp

{
w=wd;
h=ht;
d=dp;

class BoxDemo

{
public static void main(String args[])

{
Box b1=new Box{);
Box b2=new Box{();
b1.set(2,4,3);
b2.set(5,6,2);

System.out.printin("The volume of b1 is "
+ b1.volume());

System.out.printin("The volume of b2 is "
+ b2.volume()),
}
}

Constructors

Constructor is a special type of member method which is invoked
automatically when the object gets created.

Constructors are used for object initialization

They have same name as that of the class.

Since they are called automatically, there is no return type for them.

Constructors may or may not take parameters.

class Box

{

double w, h, d;

double volume()

{
}

Box{()
{

}

Box(double wd, double ht, double dp)
{

return w*h*d;

w=h=d=0;

w=wd;
h=ht;
d=dp;

class BoxDemo

{

public static void main(String args|])
{

Box b1=new Box();

Box b2=new Box(2,4,3);

System.out.printin("The volumeof b1 is "
+ b1.volume());
System.out.printin("The volumeof b2 is "
+ b2.volume());

}
}

this Keyword

« Sometimes a method will need to refer to the

object that invoked it.

» To allow this, Java defines the this keyword.

« this can be used inside any method to refer to

the current object.

« That s, this is always a reference to the object
on which the method was invoked.

Instance variable Hiding

As you know, it is illegal in Java to declare two local variables with the same name
inside the same or enclosing scopes.

Interestingly, you can have local variables, including formal parameters to
methods, which overlap with the names of the class’ instance variables.

However, when a local variable has the same name as an instance variable, the
local variable hides the instance variable.

That is, if use following code snippet, we will not get an expected output —
Box(double w, double h, double d)

{
}

To avoid the problem, we can use —

w=w; h=h; d=d;

Box{double w, double h, double d)
{

this.w=w;
this.h=h;
this.d=d;

Garbage Collection

In C and C++, dynamically allocated variables/objects must
be manually released using delete operator.

But, in Java, this task is done automatically and is called as
garbage collection.

When no references to an object exist, that object is
assumed to be no longer needed, and the memory occupied
by the object can be reclaimed.

Garbage collection only occurs once in a while during the
execution of your program.

It will not occur simply because one or more objects exist
that are no longer used.

Furthermore, different Java run-time implementations will
take varying approaches to garbage collection.

The finalize() Method

Sometimes an object will need to perform some action when it is
destroyed.

For example, if an object is holding some non-Java resource such as a
file handle or character font, then you might want to make sure these
resources are freed before an object is destroyed.

To handle such situations, Java provides a mechanism called
finalization.

By using finalization, you can define specific actions that will occur when
an object is just about to be reclaimed by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method.

The Java run time calls that method whenever it is about to recycle an
object of that class.

The finalize{) method has this general form:
protected void finalize()

{

/f finalization code here

}

Here, the keyword protected is a specifier that prevents access to
finalize() by code defined outside its class.

Note that finalize() is only called just prior to garbage collection.
It is not called when an object goes out-of-scope.

This means that you cannot know when—or even i—finalize() will be
executed.

Therefore, your program should provide other means of releasing
system resources, etc., used by the object.

It must not rely on finalize() for normal program operation.

Method Overloading

« Having more than one method with a same name is
called as method overloading.

* Toimplement this concept, the number of
arguments and/or type of arguments for these
methods should be different.

* Only the return type of the method is not sufficient
for overloading.

Overloading Constructors

« One can have more than one constructor for a
single class if the number and/or type of arguments
are different.

Passing object as parameter

+ Just similar to primitive types, even object of
a class can also be passed as a parameter
to any method.

class Equality

{

int x.y;

Equality(int a, int b)
{ X=a;

y=D;
}

public boolean test{Equality &)
{
if (e x==X && e.y==y)
return true;
else return false;

}

public static void main(String args[])
{
Equality e1=new Equality(2,3);
Equality e2=new Equality(2,3);
Equality e3=new Equality(4,8);

System.out.printin{"e1==e2: " + e1.test{e2));
System.out.printin{"e1==e3: " + e1.test(e3));

Using one object to initialize the other

« Sometimes, we may need to have a replica of one
object.

« The usage of following statements will not serve
the purpose.

Box b1=new Box(2,3,4);
Box b2=b1;

* In the above case, both b1 and b2 will be referring
to same object, but not two different objects.

« S0, we can write a constructor having a parameter
of same class type to clone an object.

A lldaTd T LIS

double h, w, d;

Box{double ht, double wd, double dp)
{

}
Box (Box bx)

{
}

void vol()

{
}

public static void main(String args[])

{

h=ht, w=wd; d=dp;

h=bx.h; w=bx.w; d=bx.d;

System.out.printin{"Volume is " + h*w*d);

Box b1=new Box{2,3,4);

Box bZ2=new Box(b1);

b1.vol();
b2.vol();

Argument Passing

« In Java, there are two ways of passing arguments to a method.
— Call by value :

» This approach copies the value of an argument into the formal
parameter of the method.

» Therefore, changes made to the parameter of the method have no
effect on the argument.

— Call by reference:

* |In this approach, a reference to an argument is passed to the
parameter.

+ |nside the subroutine, this reference is used to access the actual
argument specified in the call.

» This means that changes made to the parameter will affect the
argument used to call the subroutine.

* In Java, when you pass a primitive type to a method, it is
passed by value.

+ \When you pass an object to a method, they are passed
by call-by-reference.

« Keep in mind that when you create a variable of a class
type, you are only creating a reference to an object.

* Thus, when you pass this reference to a method, the
parameter that receives it will refer to the same object as
that referred to by the argument.

+ This effectively means that objects are passed to methods
by use of call-by-reference.

« Changes to the object inside the method do affect the object
used as an argument.

iAo 1 oL

{

int a, b;
Test(int i, int)
{
a=i
b=j;
}
void meth(Test o)
{
0.a*= 2
0.b/i=2;
}

}

class CallByRef
{

public static void main(String args|])

{
Test ob = new Test(15, 20);

Output:
ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

System.out.printin("ob.a and ob.b before call: " + ob.a +" " + ob.b);

ob.meth({ob);

System.out.printin("ob.a and ob.b after call: " + ob.a +" " + ob.b);

Returning Objects

+ InJava, a method can return an object of user defined class.

class Test

{
int a;
Test(int i)
{

a=i

Test incrByTen()
{

Test temp = new Test(a+10);
return temp;

class RetOb

{
public static void main(String args(])

{
Test ob1 = new Test(2),
Test ob2;

ob2 = ob1.incrByTen();
System.out printin("ob1.a: " + ob1.a);
System.out printin("ob2.a: " + ob2.a);

ob2 = obZ.incrByTen();
System.out.printin("ob2.a after second
increase: " + ob2.a),

}
;

Output:

ob1l.a: 2

ob2.a: 12

ob2.a after second increase: 22

Recursion

* A method which invokes itself either directly
or indirectly is called as recursive method.

* Every recursive method should have a non-
recursive terminating condition.

Access Control

Encapsulation feature of Java provides a safety measure viz. access confrol.

Using access specifiers, we can restrict the member variables of a class from
outside manipulation.

Java provides following access specifiers:
— public
— private
— protected
Along with above access specifiers, Java defines a defaulf access level

Some aspects of access control are related to inheritance and package (a
collection of related classes).

The protected specifier is applied only when inheritance is involved.

S0, we will now discuss about only private and public.

* VVTIEN d ITeMMIPel Ol d CldSs 1S [Modlied Py e puplc speclier, wer uidL merperl
can be accessed by any other code.

 When a member of a class is specified as private, then that member can only be
accessed by other members of its class.

» When no access specifier is used, then by default the member of a class is public
within its own package, but cannot be accessed outside of its package.

» Usually, you will want to restrict access to the data members of a class—allowing
access only through methods.

+ Also, there will be times when you will want to define methods that are private to a
class.

* An access specifier precedes the rest of a member's type specification.
» For example,

public int x;
private char ch;

etc.
Cldss 1 es5l
{ inta;
public int b;
private int c;
void setc(int i)
{c=i1}
int getc()
{ retumn c; }
h
class AccessTest
{
public static void main(String args|])
{
Test ob = new Test();
ob.a = 10;
ob.b = 20;

/f ob.c = 100; // Error!
ob.setc(100);
System.out.printin(*a, b, andc: " +ob.a+"" + ob.b +"" + ob.getc());

Static Members

+ When a member is declared static, it can be accessed before any
objects of its class are created, and without reference to any object.

» Instance variables declared as static are global variables.

+ When cbjects of its class are declared, no copy of a static variable is
made.

+ |nstead, all instances of the class share the same static variable.

» Methods declared as static have several restrictions:
— They can only call other static methods.
— They must only access static data.
— They cannot refer to this or super in any way.

+ If you need to do computation in order to initialize your static variables,
you can declare a static block that gets executed exactly once, when the
class is first loaded.

class UseStatic

{
static inta = 3;
static int b;

static void meth(int x) //static method
{
System.out.printin("x =" + x);
System.out.printin("a =" + a);
System.out.printin("b =" + b);

}

static {fstatic block
{
System.out.printin(" Static block initialized.");
b=a*4,
} Output:
bellc static void main(&tring args[]) Static block initialized.
X =42

meth(42); .

} =
| b=12

+ Qutside of the class in which they are defined, static methods and variables
can be used independently of any object.

+ To do so, you need only specify the name of their class followed by the dot
operator.

+ The general form is —
classname. method();

class StaticDemo

{
staticinta = 42;
static int b = 99;
static void callme()

{

System.out.printin("fa =" + a);

}

class StaticByName

{
public static void main(String args[])
{
StaticDemo.callme();
System.out.printin("b =" + StaticDemo.b);
;

final Keyword:
+ A variable can be declared as final.

+ Doing so prevents its contents from being modified.
» This means that you must initialize a final variable when it is declared.

» Forexample:
final int FILE_NEW = 1;
final int FILE_OPEN = 2;
final int FILE_SAVE = 3;
final int FILE_SAVEAS = 4;
final int FILE_QUIT = 5;

« Itis a common coding convention to choose all uppercase identifiers for
final variables.

+ Variables declared as final do not occupy memory on a per-instance basis.

+ Thus, a final variable is essentially a constant.

