
This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

1

This lecture notes is prepared according to the syllabus of the following
subjects –

 C# Programming and .NET (10IS761), a 7th semester BE Information
Science and Engineering syllabus according to 2010 scheme

 C# Programming and .NET (10CS761), a 7th semester BE Computer
Science and Engineering syllabus according to 2010 scheme

 Topics in Enterprise Architecture – II (10MCA53 and 07MCA53), a 5th
semester MCA syllabus according to 2010 and 2007 schemes

All these syllabi have same contents. This document contains up to 5 units of
the syllabus. It was initially prepared in the year 2009 and then updated
frequently.

Few of the books referred for preparing this notes include:

 Pro C# with .NET 3.0, 4th Edition, by Andrew Troelsen
 C# The Complete Reference, by Herbert Shildt

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

2

UNIT 1. The Philosophy of .NET

However good a programming language is, it will be overshadowed by something better in the
course of time. The languages like C, C++, Visual Basic, Java, the frameworks like MFC
(Microsoft Foundation Classes), ATL(Active Template Library), STL(Standard Template Library)
and the architectures like COM (Component Object Model), CORBA (Common Object Request
Broker Architecture), EJB (Enterprise JavaBeans) etc. were possessing technologies which is
needed by the programmer. But still, the hunt for better one will be going on even in future too.

1.1 Understanding the Previous State of Affairs
Before examining the specifics of the .NET universe, it’s helpful to consider some of the issues
that motivated the genesis of Microsoft’s current platform. To get in the proper idea, let us discuss
some of the limitations of previous technologies.

Life as a C/Win32 API Programmer

 Building windows applications using the raw API (Application Programming Interface) and
C is a complex task.

 C is a very abrupt language.
 C developers have to perform manual memory management.
 C involves ugly pointer arithmetic, and ugly syntactical constructs.
 C is a structured language and so lacks the benefits provided by the object-oriented

approach.
 When you combine the thousands of global functions and data types defined by the Win32

API to a difficult language like C, bugs will increase rapidly.

Life as a C++/MFC Programmer

 The improvement over raw C/API development is the use of the C++ programming
language.

 Though C++ provides OOPs concepts like encapsulation, inheritance and polymorphism, it
is not away from manual memory management and pointers.

 Even with difficulty, many C++ frameworks exist today. For example, the Microsoft
Foundation Classes (MFC) provides the developer with a set of C++ classes that facilitate
the construction of Win32 applications.

 The main role of MFC is to wrap a “sane subset” of the raw Win32 API behind a number of
classes, magic macros, and numerous code-generation tools.

 Regardless of the helpful assistance offered by the MFC framework, C++ programming
remains a difficult and error-prone experience, given its historical roots in C.

Life as a Visual Basic 6.0 Programmer

 VB6 is popular due to its ability to build complex user interfaces, code libraries, and simpler
data access logic.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

3

 Even more than MFC, VB6 hides the complexities of the raw Win32 API from view using a
number of integrated code wizards, intrinsic data types, classes, and VB-specific functions.

 The major downfall of VB6 is that it is not a fully object-oriented language. For example,
VB6 does not allow the programmer to establish “is-a” relationships between types.

 VB6 has no intrinsic support for parameterized class construction.
 VB6 doesn’t provide the ability to build multithreaded applications.

Life as a Java/J2EE Programmer

 Java has greater strength because of its platform independence nature.
 Java cleans up many unsavory syntactical aspects of C++.
 Java provides programmers with a large number of predefined “packages” that contain

various type definitions.
 Although Java is a very elegant language, one potential problem is that using Java typically

means that you must use Java front-to-back during the development cycle.
 So, language integration is difficult in Java, which is against its primary goal (a single

programming language for every need).
 Pure Java is simply not appropriate for many graphically or numerically intensive

applications.
 For graphics oriented product, Java works slowly and compared to this, C++ or C would

execute faster.
 Java provides a limited ability to access non-Java APIs and hence, there is little support for

true cross-language integration.

Life as a COM Programmer
 COM is a group of classes, which works as a block of reusable code.
 The binary COM server can be accessed in a language-independent manner. For example,

COM classes written using C++ can be used by VB6.
 But, COM’s language independence is somewhat limited as it will not support inheritance.

Rather, one must make use of “has-a” relationship to reuse COM class types.
 Although COM can be considered a very successful object model, it is extremely complex

under the internally.
 To help simplify the development of COM binaries, numerous COM-aware frameworks

have come into existence.
 Even if we choose a relatively simple COM-aware language such as VB6, we are still

forced to contend with fragile registration entries and numerous deployment-related issues.

Life as a Windows DNA Programmer
 The popularity of Web applications is ever expanding.
 Sadly, building a web application using COM-based Windows DNA (Distributed interNet

Applications) is quite complex.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

4

 Some of this complexity is because Windows DNA requires the use of numerous
technologies and languages like ASP, HTML, XML, JavaScript, VBScript, ADO etc.

 Many of these technologies are completely unrelated from a syntactic point of view.
 Also each language and/or technology has its own type system. For example, an “int” in

JavaScript is not quite the same as an “Integer” in VB6.

1.2 The .NET Solution
For various problems faced in previous technologies, the .NET provides the solution. The .NET
framework is a completely new model for building systems on the Windows family of operating
systems, as well as on numerous non-Microsoft operating systems such as Mac OS X and
various Unix/Linux distributions. Some core features provided by .NET are as follows:

 Full interoperability with existing code: Existing COM binaries can mingle/interop with
newer .NET binaries and vice versa. Also, Platform Invocation Services allows to call C-
based libraries (including the underlying API of the operating system) from .NET code.

 Complete and total language integration: Unlike COM, .NET supports cross-language
inheritance, cross-language exception handling, and cross-language debugging.

 A common runtime engine shared by all .NET-aware languages: One aspect of this
engine is a well-defined set of types that each .NET-aware language “understands.”

 A base class library: This library protects the programmer from the complexities of raw
API calls and offers a consistent object model used by all .NET-aware languages.

 No more COM plumbing: IClassFactory, IUnknown, IDispatch, IDL code, and VARIANT-
compliant data types (BSTR, SAFEARRAY, and so forth) have no place in a native .NET
binary.

 A truly simplified deployment model: Under .NET, there is no need to register a binary
unit into the system registry. Furthermore, .NET allows multiple versions of the same *.dll to
exist on a single machine.

NOTE: The .NET platform has nothing to do with COM. In fact, the only way .NET and COM types
can interact with each other is using the interoperability layer.

1.3 The Building Blocks of the .NET Platform (CLR, CTS, CLS)
The entities that make .NET to provide several benefits are CLR, CTS, and CLS. The .NET can
be understood as a new runtime environment and a comprehensive base class library.

CLR:

 The runtime layer is properly referred to as the Common Language Runtime (CLR).
 The primary role of the CLR is to locate, load, and manage .NET types.
 The CLR also takes care of a number of low-level details such as memory management

and performing security checks.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

5

CTS:
 The Common Type System (CTS) specification fully describes the entities like all possible

data types and programming constructs supported by the runtime.
 It specifies how these entities can interact with each other.
 It also specifies how they are represented in the .NET metadata format.

CLS:
 A given .NET –aware language might not support each and every feature defined by the

CTS.
 The Common Language Specification (CLS) is a related specification that defines a

subset of common types and programming constructs that all .NET programming
languages can agree on.

 Thus, the .NET types that expose CLS-compliant features can be used by all .NET-aware
languages.

 But, a data type or programming construct, which is outside the bounds of the CLS, may
not be used by every .NET programming language.

1.4 The Role of the Base Class Libraries

 In addition to the CLR and CTS/CLS specifications, the .NET platform provides a base
class library that is available to all .NET programming languages.

 This base class library encapsulates various primitives such as threads, file input/output
(I/O), graphical rendering, and interaction with various external hardware devices.

 It also provides support for a number of services required by most real-world applications.
 For example, the base class libraries define types that facilitate database access, XML

manipulation, programmatic security, and the construction of web-enabled, traditional
desktop and console-based front ends.

 From a high level, you can visualize the relationship between the CLR, CTS, CLS, and the
base class library, as shown in Figure 1.1.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

6

Figure 1.1 The CLR, CTS, CLS, and base class library relationship

1.5 What C# Brings to the Table

C# is a programming language that looks very similar to the syntax of Java. Many of the syntactic
constructs of C# are taken from various aspects of Visual Basic 6.0 and C++. For example, like
VB6, C# supports the notion of formal type properties, and the ability to declare methods taking
varying number of arguments. Like C++, C# allows you to overload operators, as well as to create
structures, enumerations, and callback functions (via delegates).

The features of C# language can be put together as –

 No pointers required! C# programs typically have no need for direct pointer manipulation
 Automatic memory management through garbage collection. Given this, C# does not

support a delete keyword.
 Formal syntactic constructs for enumerations, structures, and class properties.
 The C++-like ability to overload operators for a custom type, without the complexity.
 The syntax for building generic types and generic members is very similar to C++

templates.
 Full support for interface-based programming techniques.
 Full support for aspect-oriented programming (AOP) techniques via attributes. This brand

of development allows you to assign characteristics to types and their members to further
qualify their behavior.

The Base Class Libraries

Data Access GUI Security XML/SOAP

Threading FILE I/O Debugging (et al.)

The Common Language Runtime

Common Type System
Common Language Specification

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

7

C# produces the code that can execute within the .NET runtime. The code targeting the .NET
runtime is called as managed code. The binary unit that contains the managed code is termed as
assembly. Conversely, code that cannot be directly hosted by the .NET runtime is termed
unmanaged code.

1.6 An Overview of .NET Assemblies

 The .NET binaries are not described using COM type libraries and are not registered into
the system registry.

 The .NET binaries do not contain platform-specific instructions, but rather platform-agnostic
intermediate language (IL) and type metadata.

(Note The terms IL, MSIL (Microsoft Intermediate Language) and CIL (Common
Intermediate Language) are all describing the same exact entity.)

The relationship between .NET aware compilers and metadata are shown in Fig. 1.2.

Figure 1.2 All .NET-aware compilers produce IL instructions and metadata.

 When a *.dll or *.exe has been created using a .NET-aware compiler, the resulting module
is bundled into an assembly.

 An assembly contains CIL code, (which is conceptually similar to Java bytecode). This is
not compiled to platform-specific instructions until absolutely necessary.

 When a block of CIL instructions (such as a method implementation) is referenced for use
by the .NET runtime engine, CIL code will be compiled.

 Assemblies also contain metadata that describes the characteristics of every “type” living
within the binary, in detail. For example, if you have a class named SportsCar, the type

C# Source Code

Perl to Perl
.NET Source

Code

COBOL to
COBOL. NET
Source Code

C++ to MC++
Source Code

MSIL
and

Metadata
(DLL or EXE)

C# Compiler

Perl to Perl .NET Compiler

COBOL to COBOL. NET
Compiler

C++ to MC++ Compiler

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

8

metadata describes details such as SportsCar’s base class, which interfaces are
implemented by SportsCar (if any), as well as a full description of each member supported
by the SportsCar type.

 Unlike COM, the .NET metadata is always present and is automatically generated by a
given .NET-aware compiler.

 In addition to CIL and type metadata, assemblies themselves are also described using
metadata, which is officially termed as a manifest.

 The manifest contains information about the current version of the assembly, culture
information (used for localizing string and image resources), and a list of all externally
referenced assemblies that are required for proper execution.

Single-File and Multifile Assemblies
If an assembly is composed of a single *.dll or *.exe module, you have a single-file assembly. A
single-file assembly contains the assembly manifest, the type metadata, the CIL code, and the
resources. Figure 1.3 shows a single-file assembly and its contents.

Multifile assemblies are composed of numerous .NET binaries, each of which is termed a module.
When building a multifile assembly, one of these modules (termed the primary module) must
contain the assembly manifest (and possibly CIL instructions and metadata for various types). The
other related modules contain a module level manifest, CIL, and type metadata. The primary
module maintains the set of required secondary modules within the assembly manifest.

MyApp.dll

Figure 1.3 Single-File Assembly

In other words, multifile assemblies are used when different modules of the application are written
in different languages. Multifile assemblies make the downloading process more efficient. They
enable you to store the seldom used types in separate modules and download them only when
needed. The multifile assembly shown in Figure 1.4 consists of three files. The MyApp.dll file
contains the assembly manifest for the multifile assembly. The MyLib.netmodule file contains the
type metadata and the MSIL code but not the assembly manifest. The Employee.gif is the
resource file for this multifile assembly.

Assembly Metadata

Resources

CIL Code

Type Metadata

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

9

 MyApp.dll
 MyLib.netmodule Employee.gif

Figure 1.4 MultiFile Assembly

Thus, an assembly is really a logical grouping of one or more related modules that are intended to
be initially deployed and versioned as a single unit.

1.7 The Role of the Common Intermediate Language

 CIL is a language that sits above any particular platform-specific instruction set.
 Regardless of which .NET-aware language you choose (like C#, VB.NET, VC++.NET etc),

the associated compiler produces CIL instructions.
 Once the C# compiler (csc.exe) compiles the source code file, you end up with a single-file

*.exe assembly that contains a manifest, CIL instructions, and metadata describing each
aspect of the program.

Benefits of CIL
The benefits of compiling source code into CIL rather than directly to a specific instruction set are
as given below:

 Language integration: Each .NET-aware compiler produces nearly identical CIL
instructions. Therefore, all languages are able to interact within a well-defined binary arena.

 Given that CIL is platform-agnostic, the .NET Framework itself is platform-agnostic. So a
single code base can run on numerous operating systems, just like Java.

There is an international standard for the C# language, and a large subset of the .NET platform
and implementations already exist for many non-Windows operating systems. In contrast to Java,
the .NET allows you to build applications using your language of choice.

1.8 The Role of .NET Type Metadata

 In addition to CIL instructions, a .NET assembly contains full, complete, and accurate
metadata.

 The metadata describes each and every type (class, structure, enumeration etc.) defined in
the binary, as well as the members of each type (properties, methods, events etc.).

 It is always the job of the compiler (not the programmer) to produce the latest and greatest
type metadata.

CIL

Type Metadata

Assembly Manifest

CIL

Type Metadata

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

10

 As .NET metadata is so careful, assemblies are completely self-describing entities and so
.NET binaries have no need to be registered into the system registry.

 Metadata is used by numerous aspects of the .NET runtime environment, as well as by
various development tools.

 For example, the IntelliSense feature provided by Visual Studio 2005 is made possible by
reading an assembly’s metadata at design time.

 Metadata is also used by various object browsing utilities, debugging tools, and the C#
compiler itself.

 To be sure, metadata is the backbone of numerous .NET technologies including remoting,
reflection, late binding, XML web services, and object serialization.

1.9 The Role of the Assembly Manifest

 The .NET assembly also contains metadata that describes the assembly itself, technically
termed a manifest.

 Among other details, the manifest documents all external assemblies required by the
current assembly to function correctly, the assembly’s version number, copyright
information, and so on.

 Like type metadata, it is always the job of the compiler to generate the assembly’s
manifest.

 The manifest documents the list of external assemblies required by *.exe(via the .assembly
extern directive) as well as various characteristics of the assembly itself (version number,
module name, and so on).

1.10 Compiling CIL to Platform-Specific Instructions

 Since assemblies contain CIL instructions, rather than platform-specific instructions, CIL
code must be compiled before use.

 The entity that compiles CIL code into meaningful CPU instructions is termed a just-in-
time (JIT) compiler, which is also known as Jitter.

 The .NET runtime environment forces a JIT compiler for each CPU targeting the CLR, each
of which is optimized for the platform it is targeting.

For example, if you are building a .NET application that is to be deployed to a handheld device
(such as a Pocket PC), the corresponding Jitter is well equipped to run within a low-memory
environment. On the other hand, if you are deploying your assembly to a back-end server (where
memory is seldom an issue), the Jitter will be optimized to function in a high-memory environment.
In this way, developers can write a single body of code that can be efficiently JIT-compiled and
executed on machines with different architectures. Furthermore, as a given Jitter compiles CIL
instructions into corresponding machine code, it will cache the results in memory in a manner
suited to the target operating system. In this way, if a call is made to a method named
PrintDocument(), the CIL instructions are compiled into platform-specific instructions on the first

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

11

invocation and retained in memory for later use. Therefore, the next time PrintDocument() is
called, there is no need to recompile the CIL.

1.11 Understanding the Common Type System

 A given assembly may contain any number of distinct “types.”
 In the world of .NET, “type” is simply a generic term used to refer to a member from the set

{class, structure, interface, enumeration, delegate}.
 When you build solutions using a .NET-aware language, you will most likely interact with

each of these types.
 For example, your assembly may define a single class that implements some number of

interfaces. Perhaps one of the interface methods takes an enumeration type as an input
parameter and returns a structure to the caller.

 The Common Type System (CTS) is a formal specification that documents how types must
be defined in order to be hosted by the CLR.

 Usually, the people who will be building tools and/or compilers that target the .NET platform
are concerned with the inner workings of the CTS.

 However, for all .NET programmers it is important to learn about how to work with the five
types defined by the CTS in their language of choice.

Now, we will discuss the usage of five types defined by CTS.

CTS Class Types
Every .NET-aware language supports, the notion of a class type, which is the basis of object-
oriented programming (OOP). A class may be composed of any number of members (such as
properties, methods, and events) and data points. In C#, classes are declared using the class
keyword. For example,

// A C# class type
public class Calc
{

public int Add(int x, int y)
{

 return x + y;
}

}
CTS allow a given class to support virtual and abstract members that define a polymorphic
interface for derived classes. But CTS classes may only derive from a single base class (multiple
inheritance is not allowed fro class).

Following table lists number of characteristics pertaining to class types.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

12

Class Characteristic Meaning
Is the class “sealed” or
not?

Sealed classes cannot function as a base class to other
classes.

Does the class implement
any interfaces?

An interface is a collection of abstract members that provide a
contract between the object and object user. The CTS allows a
class to implement any number of interfaces.

Is the class abstract or
concrete?

Abstract classes cannot be directly created, but are intended to
define common behaviors for derived types. Concrete classes
can be created directly.

What is the “visibility” of
this class?

Each class must be configured with a visibility attribute.
Basically, this feature defines if the class may be used by
external assemblies, or only from within the defining assembly
(e.g., a private helper class).

CTS Structure Types
The concept of a structure is also formalized under the CTS.

 Structure is a user-defined type (UDT), which can be thought of as a lightweight class type
having value-based semantics.

 CTS structures may define any number of parameterized constructors.
 CTS structures are derived from a common base class: System.ValueType
 This base class configures a type to behave as a stack-allocated entity rather than a heap-

allocated entity.
 The CTS permits structures to implement any number of interfaces; but, structures may not

become a base type to any other classes or structures. Therefore structures are explicitly
sealed.

 Typically, structures are best suited for modeling geometric and mathematical data, and
are created in C# using the struct keyword.

Consider an example:

// A C# structure type
struct Point
{

// Structures can contain fields.
public int xPos, yPos;
// Structures can contain parameterized constructors.
public Point(int x, int y)
{

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

13

xPos = x;
yPos = y;

}

// Structures may define methods.
public void Display()
{

Console.WriteLine("({0}, {1})", xPos, yPos);
}

}

CTS Interface Types

 Interfaces are nothing more than a named collection of abstract member definitions, which
may be supported (i.e., implemented) by a given class or structure.

 Interfaces are the only .NET type that does not derive from a common base type.
 This indicates that interfaces are pure protocol and do not provide any implementation.
 On their own, interfaces are of little use. However, when a class or structure implements a

given interface, you are able to request access to the supplied functionality using an
interface reference in a polymorphic manner.

 When you create custom interfaces using a .NET aware programming language, the CTS
permits a given interface to derive from multiple base interfaces.

 This allows to build some interesting behaviors.
 In C#, interface types are defined using the interface keyword, for example:

// A C# interface type.
public interface IDraw
{

void Draw();
}

CTS Enumeration Types

 Enumerations are a handy programming construct that allows you to group name/value
pairs under a specific name.

 By default, the storage used to hold each item within enumeration type is a 32-bit integer
(System.Int32).

 However, it is possible to alter this storage slot if needed (e.g., when programming for a
low-memory device such as a Pocket PC).

 The CTS demands that enumerated types derive from a common base class,
System.Enum. This base class defines a number of interesting members that allow you to
extract, manipulate, and transform the underlying name/value pairs programmatically.

 In C#, enumerations are defined using the keyword enum.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

14

Consider an example of creating a video-game application that allows the player to select one of
three character categories (Wizard, Fighter, or Thief). Rather than keeping track of raw numerical
values to represent each possibility, you could build a custom enumeration as:

// A C# enumeration type
public enum CharacterType
{

Wizard = 100,
Fighter = 200,
Thief = 300

}

CTS Delegate Types

 Delegates are the .NET equivalent of a type-safe C-style function pointer.
 The key difference is that a .NET delegate is a class that derives from

System.MulticastDelegate, rather than a simple pointer to a raw memory address.
 Delegates are useful when you wish to provide a way for one entity to forward a call to

another entity.
 Delegates provide intrinsic support for multicasting, i.e. forwarding a request to multiple

recipients.
 They also provide asynchronous method invocations.
 They provide the foundation for the .NET event architecture.
 . In C#, delegates are declared using the delegate keyword as shown in the following

example:
// This C# delegate type can 'point to' any method
// returning an integer and taking two integers as input.

public delegate int BinaryOp(int x, int y);

CTS Type Members
We have seen till now that most types in CTS can take any number of members. Formally
speaking, a type member is constrained by the set {constructor, finalizer, static constructor,
nested type, operator, method, property, indexer, field, read only field, constant, event}. The CTS
defines various “adornments” that may be associated with a given member. For example, each
member has a given visibility feature (e.g., public, private, protected). Some members may be
declared as abstract to enforce a polymorphic behavior on derived types as well as virtual to
define a canned (but overridable) implementation. Also, most members may be configured as
static (bound at the class level) or instance (bound at the object level). The construction of type
members is examined later in detail.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

15

1.12 Intrinsic CTS Data Types
CTS provide a well-defined set of intrinsic data types used by all .NET aware languages. Although
a given language typically has a unique keyword used to declare an intrinsic CTS data type, all
language keywords ultimately resolve to the same type defined in an assembly named
mscorlib.dll.

Following table lists how key CTS data types are expressed in various .NET languages.

.NET Base Type
(CTS Data Type)

VB.NET Keyword C# Keyword Managed
Extensions for
C++ Keyword

System.Byte

Byte byte unsigned char

System.SByte SByte sbyte signed char
System.Int16 Short short short
System.Int32 Integer int int or long
System.Int64 Long long __int64

System.UInt16 UShort ushort unsigned short
System.UInt32 UInteger uint unsigned int or

unsigned long
System.UInt64 ULong ulong unsigned __int64

System.Single Single float Float
System.Double Double double Double
System.Object Object object Object^
System.Char Char char wchar_t

System.String String string String^
System.Decimal Decimal decimal Decimal
System.Boolean Boolean bool Bool

1.13 Understanding the Common Language Specification
We know that, different languages express the same programming constructs in unique, language
specific terms. For example, in C# you denote string concatenation using the plus operator (+),
while in VB .NET we use the ampersand (&). Even when two distinct languages express the same
programmatic idiom (e.g., a function with no return value), the chances are very good that the
syntax will appear quite different on the surface:

' VB .NET method returning nothing.
Public Sub MyMethod()

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

16

' Some code...
End Sub

// C# method returning nothing.
public void MyMethod()
{

// Some code...
}

Since the respective compilers (like vbc.exe and csc.exe) produce similar CIL instructions, the
variation in syntax is minor for .NET runtime. However, languages can also differ with regard to
their overall level of functionality. For example, C# may allow to overload some type of operator
which VB.NET may not. Given these possible variations, it would be ideal to have a baseline to
which all .NET-aware languages are expected to conform.

The Common Language Specification (CLS) is a set of rules that describe the small and complete
set of features. These features are supported by a .NET-aware compiler to produce a code that
can be hosted by CLR. Also, this code can be accessed by all languages in the .NET platform.

In many ways, the CLS can be viewed as a subset of the full functionality defined by the CTS. The
CLS is ultimately a set of rules that compiler builders must follow, if they plan their products to
function properly within the .NET universe. Each rule describes how this rule affects those who
build the compilers as well as those who interact with them. For example, the CLS Rule 1 says:

Rule 1: CLS rules apply only to those parts of a type that are exposed outside the defining
assembly.

Given this rule, we can understand that the remaining rules of the CLS do not apply to the logic
used to build the inner workings of a .NET type. The only aspects of a type that must match to the
CLS are the member definitions themselves (i.e., naming conventions, parameters, and return
types). The implementation logic for a member may use any number of non-CLS techniques, as
the outside world won’t know the difference.

To illustrate, the following Add() method is not CLS-compliant, as the parameters and return
values make use of unsigned data (which is not a requirement of the CLS):

public class Calc
{

// Exposed unsigned data is not CLS compliant!
public ulong Add(ulong x, ulong y)
{

return x + y;
}

}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

17

We can make use of unsigned data internally as follows:

public class Calc
{

public int Add(int x, int y)
{

// As this ulong variable is only used internally,
// we are still CLS compliant.
ulong temp;
temp= x+y;
return temp;

}
}

Now, we have a match to the rules of the CLS, and can assured that all .NET languages are able
to invoke the Add() method.

In addition to Rule 1, the CLS defines numerous other rules. For example, the CLS describes how
a given language must represent text strings, how enumerations should be represented internally
(the base type used for storage), how to define static members, and so on. But the internal
understanding of the CTS and CLS specifications is for tool/compiler builders.

Ensuring CLS Compliance
C# does define a number of programming constructs that are not CLS-compliant. But, we can
instruct the C# compiler to check the code for CLS compliance using a single .NET attribute:

// Tell the C# compiler to check for CLS compliance.

[assembly: System.CLSCompliant(true)]

This statement must be placed outside the scope of any namespace.

The [CLSCompliant] attribute will instruct the C# compiler to check each and every line of code
against the rules of the CLS. If any CLS violations are discovered, we will receive a compiler error
and a description of the offending code.

1.14 Understanding the Common Language Runtime
Programmatically speaking, the term runtime can be understood as a collection of external
services that are required to execute a given compiled unit of code. For example, when
developers make use of the Microsoft Foundation Classes (MFC) to create a new application,
they are aware that their program requires the MFC runtime library (i.e., mfc42.dll). Other popular
languages also have a corresponding runtime. VB6 programmers are also tied to a runtime

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

18

module (e.g., msvbvm60.dll). Java developers are tied to the Java Virtual Machine (JVM) and so
on.

The .NET platform offers a runtime system, which can be described as follows:

 The key difference between the .NET runtime and the various other runtimes is that the .NET

runtime provides a single well-defined runtime layer that is shared by all languages and
platforms that are .NET-aware.

 The root of the CLR is physically represented by a library named mscoree.dll (Common Object
Runtime Execution Engine).

 When an assembly is referenced for use, mscoree.dll is loaded automatically, which in turn
loads the required assembly into memory.

 The runtime engine is responsible for a number of tasks.
 First and foremost, it is the entity in-charge of resolving the location of an assembly and finding

the requested type within the binary by reading the contained metadata.
 The CLR then lays out the type in memory, compiles the associated CIL into platform-specific

instructions, performs any necessary security checks, and then executes the code in question.
 In addition to loading your custom assemblies and creating your custom types, the CLR will

also interact with the types contained within the .NET base class libraries when required.

Although the entire base class library has been broken into a number of discrete assemblies, the
key assembly is mscorlib.dll. The mscorlib.dll contains a large number of core types that
encapsulate a wide variety of common programming tasks as well as the core data types used by
all .NET languages. When you build .NET solutions, you automatically have access to this
particular assembly.

Figure 1.5 illustrates the workflow that takes place between the source code (which is making use
of base class library types), a given .NET compiler, and the .NET execution engine.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

19

Figure 1.5 mscoree.dll in action

1.15 A tour of the .NET Namespaces

 Unlike C, C++ and Java, the C# language does not provide any language-specific code
library.

 Instead, C# provides the language-neutral .NET libraries.
 To keep all the types within the base class libraries, the .NET platform makes extensive

use of the namespace concept.
 A namespace is a grouping of related types contained in an assembly.
 In other words, namespace is a way to group semantically related types (classes,

enumerations, interfaces, delegates and structures) under a single umbrella.

.NET source
code written

in some
.NET-aware
Language

Base Class
Libraries

(mscorlib.dll
and so on)

Some .NET
compiler

DLL or EXE
Assembly

(CIL, Metadata and
Manifest)

.NET Execution Engine (mscoree.dll)

Class Loader

Jitter

Platform-
Specific

Instructions

Execute the
application

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

20

 For example, the System.IO namespace contains file I/O related types, the System.Data
namespace defines basic database types, and so on.

 It is very important to point out that a single assembly (such as mscorlib.dll) can contain
any number of namespaces, each of which can contain any number of types.

The advantage of having namespaces is that, any language targeting the .NET runtime makes
use of same namespaces and same types as a C# developer. For example, consider following
programs written in C#, VB.NET and MC++.

// C# code
using System;
public class Test
{
 public static void Main()
 {
 Console.WrtieLine(“Hello World”);
 }
}

// VB.NET code
Imports System
Public Module Test
 Sub Main()
 Console.WrtieLine(“Hello World”)
 End Sub
End Module

// MC++ code
#using <mscorlib.dll>
using namespace System;

void Main()
{
 Console::WrtieLine(“Hello World”);
}

Note that each language is making use of Console class defined in the System namespace. Apart
from minor syntactic variations, three programs look very similar, both physically and logically.

There are numerous base class namespaces within .NET. The most fundamental namespace is
System. The System namespace provides a core body of types that the programmer need to
control time. In fact, one cannot build any sort of functional C# application without at least making
a reference to the System namespace. Following table shows some of the namespaces:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

21

.NET Namespace Meaning
System System contains numerous useful types dealing with intrinsic data,

mathematical computations, random number generation, environment
variables, and garbage collection, as well as a number of commonly
used exceptions and attributes.

System.Collections These namespaces define a number of stock container objects
System.Collections.Generic (ArrayList, Queue etc), as well as base types and interfaces that allow

you to build customized collections. As of .NET 2.0, the collection types
have been extended with generic capabilities.

System.Data
System.Data.Odbc
System.Data.OracleClient
System.Data.OleDb
System.Data.SqlClient

These namespaces are used for interacting with databases using
ADO.NET.

System.Diagnostics Here, you find numerous types that can be used to programmatically
debug and trace your source code.

System.Drawing
System.Drawing.Drawing2D
System.Drawing.Printing

Here, you find numerous types wrapping graphical primitives such as
bitmaps, fonts, and icons, as well as printing capabilities.

System.IO
System.IO.Compression
System.IO.Ports

These namespaces include file I/O, buffering, and so forth. As of .NET
2.0, the IO namespaces now include support compression and port
manipulation.

System.Net This namespace (as well as other related namespaces) contains types
related to network programming (requests/responses, sockets, end
points, and so on).

System.Reflection
System.Reflection.Emit

These namespaces define types that support runtime type discovery as
well as dynamic creation of types.

System.Runtime.
InteropServices

This namespace provides facilities to allow .NET types to interact with
“unmanaged code” (e.g., C-based DLLs and COM servers) and vice
versa.

System.Runtime.
Remoting

This namespace (among others) defines types used to build solutions
that incorporate the .NET remoting layer.

System.Security Security is an integrated aspect of the .NET universe. In the security-
centric namespaces you find numerous types dealing with permissions,
cryptography, and so on.

System.Threading This namespace defines types used to build multithreaded applications.
System.Web A number of namespaces are specifically geared toward the

development of .NET web applications, including ASP.NET and XML
web services.

System.Windows.Forms This namespace contains types that facilitate the construction of
traditional desktop GUI applications.

System.Xml The XML-centric namespaces contain numerous types used to interact
with XML data.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

22

Accessing a Namespace Programmatically
A namespace is a convenient way to logically understand and organize related types. Consider
the System namespace. From programmer’s perspective, System.Console represents a class
named Console that is contained within a namespace called System. However, in the eyes of the
.NET runtime, it is a single entity named System.Console.

In C#, the using keyword simplifies the process of referencing types defined in a particular
namespace. In a traditional desktop application, we can include any number of namespaces like –

using System; // General base class library types.
using System.Drawing; // Graphical rendering types.

Once we specify a namespace, we can create instances of the types they contain. For example, if
we are interested in creating an instance of the Bitmap class, we can write:

using System;
using System.Drawing;
class MyApp
{

public void DisplayLogo()
{

// create a 20x20 pixel bitmap.
Bitmap bm = new Bitmap(20, 20);
...

}
}

As this application is referencing System.Drawing, the compiler is able to resolve the Bitmap class
as a member of this namespace. If we do not specify the System.Drawing namespace, we will get
a compiler error. However, we can declare variables using a fully qualified name as well:

using System;
class MyApp
{

public void DisplayLogo()
{

// Using fully qualified name.
System.Drawing.Bitmap bm =new System.Drawing.Bitmap(20, 20);
...

}
}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

23

Remember that both the approaches (a short-hand method with using and making use of fully
qualified name) results in the exact same underlying CIL and has no effect on performance or the
size of the assembly.

1.16 Increasing Your Namespace Nomenclature
There are thousands of namespaces in .NET framework. But what makes a namespace unique is
that the types it defines are all somehow semantically related. So, depending on our requirement,
we can make use of only required namespaces. For example, if we are building console
applications, then we need not worry about System.Windows.Forms and System.Drawing
namespaces. To know more about specific namespaces, we can use any one of the following:

 .NET SDK online documentation (MSDN – Microsoft Developer Network)
 The ildasm.exe utility
 The Class Viewer Web application
 The wincv.exe desktop application
 The Visual Studio.NET integrated Object Browser

1.17 Deploying the .NET Runtime
The .NET assemblies can be executed only on a machine that has the .NET Framework installed.
As an individual who builds .NET software, this should never be an issue, as your development
machine will be properly configured at the time you install the freely available .NET Framework
2.0 SDK or a commercial .NET development environments such as Visual Studio 2005.

But, we can not copy and run a .NET application in a computer in which .NET is not installed.
However, if you deploy an assembly to a computer that does not have .NET installed, it will fail to
run. For this reason, Microsoft provides a setup package named dotnetfx.exe that can be freely
shipped and installed along with your custom software. This installation program is included with
the .NET Framework 2.0 SDK, and it is also freely downloadable from www.microsoft.com.

Once dotnetfx.exe is installed, the target machine will now contain the .NET base class libraries,
.NET runtime (mscoree.dll), and additional .NET infrastructure (such as the GAC, Global
Assembly Cashe).

Note that if you are building a .NET web application, the end user’s machine does not need to be
configured with the .NET Framework, as the browser will simply receive generic HTML and
possibly client-side JavaScript.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

24

Frequently Asked Questions:
1. Explain the basic building block of .NET framework. (10)
2. Bring out the important differences between single and multifile assemblies. (4)
3. What are namespaces? List and explain the purpose of at least five namespaces. (6)
4. Explain with a neat diagram, the workflow that takes place between your source code, a

given .NET complier and the .NET execution engine. (5)
5. What are the key features of C#? (5)
6. Briefly discuss the state of affairs that eventually led to the .NET platform. What is the .NET

solution and what C# brings to the table? (10)
7. Explain common type system in detail. (5)
8. Explain the concept of .NET binaries. (4)
9. Explain the role of JIT compiler. (3)
10. Explain the role of CIL and the benefits of CIL in .NET platform? (8)

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

25

UNIT 2. Building C# Applications

In this chapter, we will examine the C# compiler, features of Visual Studio IDE and such other
basic concepts.

2.1 The Role of the Command-Line Compiler (csc.exe)
There are a number of techniques to compile C# source code. One way is to use the C#
command-line compiler, csc.exe (where csc stands for C-Sharp Compiler). This tool is included
with the .NET Framework 2.0 SDK. Though we may not build a large-scale application using the
command-line compiler, it is important to understand the basics of how to compile *.cs files by
hand. Few reasons for having a grip on the process are:

 The most obvious reason is the simple fact that one may not have a copy of Visual Studio
2005. But only free .NET SDK.

 One may plan to make use of automated build tools such as MSBuild or NAnt.
 One may want to understand C# deeply. When you use graphical IDEs to build

applications, you are ultimately instructing csc.exe how to manipulate your C# input files. In
this light, it is better to see what takes place behind the scenes.

 Another benefit of working with csc.exe is that you become that much more comfortable in
manipulating other command-line tools included with the .NET Framework 2.0 SDK.
Moreover, a number of important utilities are accessible only from the command line.

Configuring the C# Command-Line Compiler
Before starting the C# command-line compiler, we need to ensure that our development machine
recognizes the existence of csc.exe. If the machine is not configured correctly, we have to specify
the full path to the directory containing csc.exe before compiling C# files.

We have to set the path by following the steps:

1. Right-click the My Computer icon and select Properties from the pop-up menu.
2. Select the Advanced tab and click the Environment Variables button.
3. Double-click the Path variable from the System Variables list box.
4. Add the following line to the end of the current Path value:

C:\Windows\Microsoft.NET\Framework\v2.0.50215

Note that, the above line may not be exactly the same in every computer. We must enter the
current version and location of .NET Framework SDK. To check whether the setting has been
done properly or not, open a command prompt and type

csc -? Or csc /?
If settings were correct, we will see a list of options supported by the C# compiler.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

26

Configuring Additional .NET Command-Line Tools
We have to set Path variable with one more line as

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin
This directory contains additional command-line tools that are commonly used during .NET
development. With these two paths established, we will be able to run any .NET utility from any
command window. To confirm this new setting, enter the following command in a command
prompt to view the options of the GAC (global assembly cashe) utility, gacutil.exe:

gacutil -?

Note that the above explained method is to compile the C# program in any command prompt. In
stead of that, we can directly use the SDK in the Visual Studio Tools menu.

2.2 Building C# Applications Using csc.exe
To build a simple C# application, open a notepad and type the following code:

// A simple C# application.
using System;
class Test
{

public static void Main()
{

Console.WriteLine("Hello World!!!");
}

}

Now, save this file in any convenient location as Test.cs. Now, we have to provide the option for
which type of output file we want. The options for output are given in the following table:

File Output Option Meaning
/out This option is used to specify the name of the assembly to

be created. By default, the assembly name is the same as
the name of the initial input *.cs -file (in the case of a *.dll) or
the name of the type containing the program’s Main()
method (in the case of an *.exe).

/target:exe This option builds an executable console application. This is
the default file output type, and thus may be omitted when
building this application type.

/target:library This option builds a single-file *.dll assembly.
/target:module This option builds a module.Modules are elements of

multifile assemblies.
/target:winexe Although you are free to build Windows-based applications

using the /target:exe flag, the /target:winexe flag prevents a
console window from appearing in the background.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

27

To compile TestApp.cs, use the command:
csc /target:exe Test.cs

Most of the C# compilers support an abbreviated version, such as /t rather than /target. Moreover,
/target is a default option. So, we can give simply,

csc Test.cs
Now an exe file will be created with the name Test.exe. Now the program can be run by typing –
 Test.exe
at the command prompt.

Referencing External Assemblies
Here we will see how to compile an application that makes use of types defined in a separate
.NET assembly. Note that mscorlib.dll is automatically referenced during the compilation process.
To illustrate the process of referencing external assemblies, consider an example –

 using System;

using System.Windows.Forms;

class Test
{

public static void Main()
{

MessageBox.Show("Hello...");
}

}

Since we have made use of the MessageBox class, we must specify the System.Windows.
Forms.dll assembly using the /reference flag which can be abbreviated to /r as –

csc /r:System.Windows.Forms.dll Test.cs
Now, running the application will give the output as –

Compiling Multiple Source Files with csc.exe
When we have more than one *.cs source file, then we can compile them together. For illustration,
consider the following example –

File Name: MyTest.cs

using System;
using System.Windows.Forms;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

28

class MyTest
{

public void display()
{

MessageBox.Show("Hello...");
}

}

File Name: Test.cs

using System;
class Test
{

public static void Main()
{

MyTest t = new MyTest ();
t.display();

}
}

We can compile C# files by listing each input file explicitly:

csc /r:System.Windows.Forms.dll Test.cs MyTest.cs

As an alternative, the C# compiler allows you to make use of the wildcard character (*) to inform
csc.exe to include all *.cs files contained in the project directory:

csc /r:System.Windows.Forms.dll *.cs

Referencing Multiple External Assemblies
If we want to reference numerous external assemblies, then we can use a semicolon-delimited
list. For example:

csc /r:System.Windows.Forms.dll; System.Drawing.dll *.cs

2.3 Working with csc.exe Response Files
When we are building complex C# applications, we may need to use several flags that specify
numerous referenced assemblies and *.cs input files. To reduce the burden of typing those flags
every time, the C# compiler provides response files. C# response files contain all the instructions
to be used during the compilation of a program. These files end in a *.rsp (response) extension.

Consider the following file, which is a response file for the example Test.cs discussed in the
previous section.

This is the response file for the Test.exe app
External assembly references.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

29

/r:System.Windows.Forms.dll
output and files to compile (using wildcard syntax).
/target:exe /out:Test.exe *.cs

Note that # symbol is used for comment line. If we have saved this file in the same directory as
the C# source code files to be compiled, we have to use following command to run the program.

csc @Test.rsp
If needed, we can specify multiple *.rsp files as input (e.g., csc @FirstFile.rsp @SecondFile.rsp
@ThirdFile.rsp). In case of multiple response files, the compiler processes the command options
as they are encountered. Therefore, command-line arguments in a latter *.rsp file can override
options in a previous response file.

Also note that flags listed explicitly on the command line before a response file will be overridden
by the specified *.rsp file. Thus, if we use the statement,

csc /out:MyCoolApp.exe @Test.rsp
the name of the assembly would still be Test.exe (rather than MyCoolApp.exe), given the
/out:Test.exe flag listed in the Test.rsp response file. However, if we list flags after a response file,
the flag will override settings in the response file.

Note The /reference flag is cumulative. Regardless of where you specify external assemblies
(before, after, or within a response file) the end result is a summation of each reference assembly.

The Default Response File (csc.rsp)
C# compiler has an associated default response file (csc.rsp), which is located in the same
directory as csc.exe itself (e.g., C:\Windows\Microsoft.NET\Framework\v2.0.50215). If we open
this file using Notepad, we can see that numerous .NET assemblies have already been specified
using the /r: flag. When we are building our C# programs using csc.exe, this file will be
automatically referenced, even if we provide a custom *.rsp file. Because of default response file,
the current Test.exe application could be successfully compiled using the following command set

csc /out:Test.exe *.cs

If we wish to disable the automatic reading of csc.rsp, we can specify the /noconfig option:
csc @Test.rsp /noconfig

2.4 Generating Bug Reports
The C# compiler provides a flag named /bugreport to specify a file that will be populated by
csc.exe with various statistics regarding current build; including any errors encountered during the
compilation. The syntax for using this flag is –
 csc /bugreport:bugs.txt *.cs
We can enter any corrective information for possible errors in the program, which will be saved to
the specified file. For example, consider the program –

using System;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

30

class Test
{

public static void Main()
{

Console.WriteLine(“Hello”) //note that ; is not given
}

}

When we compile this file using /bugreport flag, the error message will be displayed and
corrective action is expected as shown –

 Test.cs (23, 11): Error CS1002: ; expected

 Please describe the compiler problem: _

Now if we enter the statement like
 FORGOT TO TYPE SEMICOLON
then, the same will be stored in the bugs.txt file.

2.5 Remaining C# Compiler Options
C# compiler has many flags that can be used to control how the .NET assembly to be generated.
Following table lists some of the flags and their meaning.

Command Line
 flags of csc.exe

Meaning

@ Allows to specify a response file used during compilation
/? Or /help Prints the list of all command line flags of csc.exe
/addmodule Used to specify the modules to add to a multifile assembly
/baseaddress Used to specify the preferred base address at which to load a

*.dll
/bugreport Used to build text-based bug reports for the current compilation
/checked Used to specify whether integer arithmetic that overflows the

bounds of the data type will cause an exception at run time
/codepage Used to specify the code page to use for all source code files in

the compilation
/debug Forces csc.exe to emit debugging information
/define Used to define preprocessor symbols
/doc Used to construct an XML documentation file
/filealign Specifies the size of sections in the output file
/fullpaths Specifies the absolute path to the file in compiler output
/incremental Enables incremental compilation of source code files
/lib Specifies the location of assemblies referenced via /reference

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

31

/linkresource Used to create a link to a managed resource
/main Specifies which Main() method to use as the program’s entry

point if multiple Main() methods have been defined in the
current *.cs file set.

/nologo Suppresses compiler banner information when compiling the
file

/nostdlib Prevents the automatic importing of the core .NET library,
mscorlib.dll

/noconfig Prevents the use of *.rsp files during the current compilation
/nowarn Suppress the compiler’s ability to generate specified warnings
/optimize Enable or disable optimization
/out Specifies the name of the output file
/recurse Searches subdirectories for source files to compile
/reference Used to reference an external assembly
/resource Used to embed .NET resources into the resulting assembly
/target Specifies the format of the output file.
/unsafe Compiles code that uses the C# “unsafe” keyword
/utf8output Displays compiler output using UTF-8 encoding
/warn Used to sent warning level for the compilation cycle
/warnaserror Used to automatically promote warnings to errors
/win32icon Inserts an .ico file into the output file
/win32res Inserts a Win32.resource into the output file

2.6 The Command-Line Debugger (cordbg.exe)
The .NET Framework SDK provides a command-line debugger named cordbg.exe. This tool
provides dozens of options that allow you to debug your assembly. You may view them by
specifying the /? flag:

cordbg /?

Following table lists some of the flags recognized by cordbg.exe (with the alternative shorthand
notation) once you have entered a debugging session.

Command Line
 Flag of cordbg.exe

Meaning

b[reak] Set or display current breakpoints.
del[ete] Remove one or more breakpoints.
ex[it] Exit the debugger
g[o] Continue debugging the current process until hitting

next breakpoint.
o[ut] Step out of the current function.
p[rint] Print all loaded variables (local, arguments, etc.).
Si Step into the next line.
So Step over the next line.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

32

Usually, we will make use of the VS.NET integrated debugger. Hence, the cordbg.exe is rarely
used in reality.

Debugging at the Command Line
Before you can debug your application using cordbg.exe, the first step is to generate debugging
symbols for your current application by specifying the /debug flag of csc.exe. For example, to
generate debugging data for TestApp.exe, enter the following command set:

csc @testapp.rsp /debug

This generates a new file named testapp.pdb. If you do not have an associated *.pdb file, it is still
possible to make use of cordbg.exe; however, you will not be able to view your C# source code
during the process (which is typically no fun whatsoever, unless you wish to complicate matters by
reading CIL code). Once you have generated a *.pdb file, open a session with cordbg.exe by
specifying your .NET assembly as a command-line argument (the *.pdb file will be loaded
automatically):

cordbg.exe testapp.exe

At this point, you are in debugging mode and may apply any number of cordbg.exe flags at the
(cordbg) command prompt.

2.7 Using the Visual Studio .NET IDE
Till now, we have discussed how to compile C# programs in command prompt. Visual Studio
.NET provides an IDE (Integrated Development Environment) to build applications using any
number of .NET-aware languages like C#, VB.NET, J#, MFC etc.

Here, we will examine some of the core features of VS.NET IDE.

The VS .NET Start Page
When we launch VS .NET, we can see start page as –

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

33

This will provide an option to open existing projects or to create new projects.

Creating a VS .NET Project Solution
Once we opt for creating new project, then, we can see the following window:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

34

This window will allow us to choose the language (C#, VB.NET etc), then type of the application
(windows, console etc). Then we can provide the name of the application and the location where
the application to be stored. Following is a list of project types provided by C#.

Project Type Meaning
Windows Application Represents Windows Form application
Class Library Used to build a single file assembly (*.dll)
Windows Control Library Allows to build a single file assembly (*.dll) that

contains custom Windows Forms Controls. (ActiveX
controls)

ASP.NET Web Application Used to build a web application
ASP.NET Web Service Used to build a .NET Web Service. Web Service is a

block of code, reachable using HTTP requests.
Web Control Library Used to build customized Web controls. These GUI

widgets are responsible for emitting HTML to a
requesting browser.

Console Application Just like command window.
Windows Services Used to build NT/2000 services. Services are

background worker applications that are launched
during OS boot process.

2.8 C# Preprocessor Directives
Like C and C++, C# provides various symbols to interact with the compilation process. But, the
term preprocessor doesn’t exactly mean what it implies in C or C++. There is no separate
preprocessing step in C#. Rather, preprocessor directives are processed as a part of the lexical
analysis phase of the compiler. However, the syntax of C# preprocessor is similar to that of C and
C++. Following is a list of preprocessors supported by C#.

C# Preprocessor Symbol Meaning
#define, #undef Used to define and un-define conditional compilation

symbol.
#if, #elif, #else, #endif Used to conditionally skip sections of source code.
#line Used to control the line numbers emitted for errors and

warnings
#error, #warning Used to issue errors and warnings for the current build
#region, #endregion Used to explicitly mark sections of source code. Under

VS.NET, regions may be expanded and collapsed
within the code window. Other IDEs (including text
editors) will ignore these symbols.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

35

Specifying Code Regions
Using #region and #endregion tags, we can specify a block of code that may be hidden from view
and identified by a textual marker. The use of regions helps to keep lengthy *.cs files more
manageable. For example, we can create a region for defining a type’s constructor (may be class,
structure etc), type’s properties and so on.

Consider the following code:

class Test
{
 …….
 #region Unwanted
 public class sub1
 {
 …….
 }

 public interface sub2
 {
 …………
 }
 #endregion
}

Now, when we put mouse curser on that region, it will be shown as –

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

36

Conditional Code Compilation:
The preprocessor directives #if, #elif, #else and #endif allows to conditionally compile a block of
code based on predefined symbols. Consider the following example –

#define MAX
using System;

class Test
{
 public static void Main()
 {
 #if(MAX)
 Console.WriteLine("MAX is defined");
 #else
 Console.WriteLine("MAX is not defined");
 #endif

 }
}

The output will be: MAX is defined

Issuing Warnings and Errors:
#warning and #error directives allows to instruct the C# compiler to generate a warning or error.
For example, we wish to issue a warning when a symbol is defined in the current project. This is
helpful when a big project is handled by many people. Consider the following code:

#define MAX
using System;
class Test
{
 public static void Main()
 {
 #if(MAX)
 #warning MAX is defined by me!!!
 ………..
 #endif
 }
}

When we compile, the program will give warning message –
 Test.cs(7,21): warning CS1030: #warning: 'MAX is defined by me!!!'

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

37

Altering Line Numbers:
The directive #line is rarely used in any project. This directive allows to alter the compiler’s
recognition of #line numbers during its recording of compilation warnings and errors. To reset the
default line numbering, we can specify default tag. Consider the following code:

#define MAX
using System;
class Test
{
 public static void Main()
 {
 #line 300 //next line will take the number 300
 #warning MAX is defined by me!!!
 ………..
 #line default // default numbering will continue
 }
}

When we compile, the program will give warning message –

Test.cs(300,21): warning CS1030: #warning: 'MAX is defined by me!!!'

Note that the line number appeared as 300, though the actual line was 7.

2.9 An Interesting Aside: The System.Environment Class
The System.Environment class allows to obtain a number of details regarding the context of the
operating system hosting .NET application by using various static members. Consider the
following example –

using System;
class Test
{
 public static void Main(string[] args)
 {
 Console.WriteLine("OS: {0}", Environment.OSVersion);
 Console.WriteLine("Current Directory: {0}", Environment.CurrentDirectory);

 string[] s = Environment.GetLogicalDrives();
 for(int i=0;i<s.Length;i++)
 Console.WriteLine("Drive {0}: {1} ", i, s[i]);

 Console.WriteLine("Version of .NET: {0}", Environment.Version);
 }
}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

38

The Output will be (depending on OS and version of .NET, it may vary) –

OS: Microsoft Windows NT 5.1.2600 Service Pack 3
Current Directory: C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0
Drive 0: A:\
Drive 1: C:\
Drive 2: D:\
Drive 3: E:\
Drive 4: F:\
Version of .NET: 2.0.50727.3082

Frequently Asked Questions:

1. List and explain the various output options available with C# complier. Also illustrate with
an example, how do you compile multiple source files? (08)

2. What are response files? Explain with an example. (05)
3. How do you generate bug reports? Illustrate with an example. (05)
4. What are C# preprocessor directives? Explain. (10)
5. Explain the use of System.Environment class with a program. (05)

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

39

UNIT 3. C# Language Fundamentals

In this chapter, we will examine the data types in C#, decision and iteration constructs, boxing and
unboxing, role of System.Object and so on.

3.1 The Anatomy of a Basic C# Class
In C#, all program logic must be contained within a type definition (type may be a member of the
set {class, interface, structure, enumeration, delegate}). Unlike C or C++, in C# it is not possible to
create global functions or global points of data. In its simplest form, a C# program can be written
as follows:

Program 3.1 Test.cs

using System;
class Test
{

public static int Main(string[] args)
{

Console.WriteLine("Hello World!");
return 0;

}
}

Every executable C# application must contain a class defining a Main() method, which is used to
signify the entry point of the application. Main() is used with the public and static keywords. The
public members are accessible from other types, while static members are scoped at the class
level (rather than the object level) and can thus be invoked without the need to first create a new
class instance (or object). In addition to the public and static keywords, this Main() method has a
single parameter, which is an array of strings (string[] args). This parameter may contain any
number of incoming command-line arguments.

The program Test.cs makes use of the Console class, which is defined within the System
namespace. WriteLine() is a static member of Console class, which is used to pump a text string
to the standard output.

NOTE: We can use Console.ReadLine() to ensure the command prompt launched by Visual
Studio 2005 remains visible during a debugging session until we press the Enter key.

Variations on the Main() Method
The Main() function can be take any of the following forms based on our requirement:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

40

// No return type, array of strings as argument.
public static void Main(string[] args)
{
 //some code
}
// No return type, no arguments.
public static void Main()
{
 //some code
}

// Integer return type, no arguments.
public static int Main()
{
 //some code
 //return a value to OS
}

NOTE: The Main() method may also be defined as private. Doing so ensures other assemblies
cannot directly invoke an application’s entry point. Visual Studio 2005 automatically defines a
program’s Main() method as private. Obviously, your choice of how to construct Main() will be
based on two questions. First, do you need to process any user-supplied command-line
parameters? If so, they will be stored in the array of strings. Second, do you want to return a value
to the system when Main() has completed? If so, you need to return an integer data type rather
than void.

Processing Command-Line Arguments
Assume that we need some arguments to be passed as input to the Main() funtion before starting
the program execution. This is done through command-line parameters. Consider an example –

Program 3.2

using System;
class Test
{

public static int Main(string[] args)
{

Console.WriteLine("***** Command line args *****");
for(int i = 0; i < args.Length; i++)

Console.WriteLine("Arg: {0} ", args[i]);
}

}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

41

Here, we are checking to whether the array of strings contains some number of items using the
Length property of System.Array. We can provide command line arguments while running the
program as –
 Test.exe Good Bad Ugly

As an alternative to the standard for loop, we may iterate over incoming string arrays using the C#
foreach keyword. For example –

// Notice you have no need to check the size of the array when using 'foreach'.
public static int Main(string[] args)
{

...
foreach(string s in args)

Console.WriteLine("Arg: {0} ", s);
...

}

It is also possible to access command-line arguments using the static GetCommand-LineArgs()
method of the System.Environment type. The return value of this method is an array of strings.
The first index identifies the current directory containing the application itself, while the remaining
elements in the array contain the individual command-line arguments. If we are using this
technique, we need not define the Main() method with string array parameter. Consider an
example –

public static int Main() //no arguments
{

// Get arguments using System.Environment.
string[] Args = Environment.GetCommandLineArgs();
Console.WriteLine("Path to this app is: {0}", Args[0]);

 for(int i=1; i<Args.Length;i++)

 Console.WriteLine("Arguments are: {0}", Args[i]);
}

3.2 Creating Objects: Constructor Basics
All object-oriented (OO) languages make a clear distinction between classes and objects. A class
is a definition (or, if you will, a blueprint) for a user-defined type (UDT). An object is simply a term
describing a given instance of a particular class in memory. In C#, the new keyword is used to
create an object. Unlike other OO languages (such as C++), it is not possible to allocate a class

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

42

type on the stack; therefore, if you attempt to use a class variable that has not been “new-ed,” you
are issued a compile-time error. Thus the following C# code is illegal:

using System;
class Test
{

public static int Main(string[] args)
{

Test c1;
c1.SomeMethod(); //error!! Must use “new”
...

}
}

To illustrate the proper procedures for object creation, consider the following code:
using System;
class Test
{

public static int Main(string[] args)
{

// You can declare and create a new object in a single
line...
Test c1 = new Test();

// ...or break declaration and creation into two lines.
Test c2;
c2 = new Test();
...

}
}

The new keyword will calculate the correct number of bytes for the specified object and acquires
sufficient memory from the managed heap. Here, we have allocated two objects c1 and c2, each
of which points to a unique instance of Test type. Note that C# object variables are really a
reference to the object in memory, not the actual object itself. Thus, c1 and c2 each reference a
distinct Test object allocated on the managed heap.

In the previous program, the objects have been constructed using the default constructor, which
by definition never takes arguments. Every C# class is automatically provided with a free default
constructor, which you may redefine if needed. The default constructor ensures that all member
data is set to an appropriate default value. But in C++, un-initialized data gets garbage value.

Usually, classes provide additional constructors also. Using this, we can initialize the object
variables at the time of object creation. Like in Java and C++, in C# constructors are named

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

43

identically to the class they are constructing, and they never provide a return value (not even
void).

Consider the following example –

Program 3.3

using System;
class Test
{

public string userMessage;

// Default constructor.
public Test()
{

Console.WriteLine("Default constructor called!");
}

public Test (string msg)
{

Console.WriteLine("Custom ctor called!");
userMessage = msg;

}

public static int Main(string[] args)
{

// Call default constructor.
Test c1 = new Test ();
Console.WriteLine("Value of userMessage: {0}\n", c1.userMessage);

// Call parameterized constructor.
Test c2;
c2 = new Test ("Hello World");
Console.WriteLine("Value of userMessage: {0}", c2.userMessage);
Console.ReadLine();
return 0;

}
}

NOTE:
1. Technically speaking, when a type defines identically named members (including

constructors) that differ only in the number of—or type of—parameters, the member in
question is overloaded.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

44

2. As soon as we define a custom constructor for a class type, the free default constructor is
removed. If we want to create an object using the default constructor, we need to explicitly
redefine it as in the preceding example.

Is That a Memory Leak?
Note that, in previous program, we have not written any code to explicitly destroy the c1 and c2
references. In C++, if we do like this, it will lead to memory leak. But, the .NET garbage collector
frees the allocated memory automatically, and therefore C# does not support a delete keyword.

3.3 The Composition of a C# Application
We have seen in the previous example that the Main() function creates instances of the very own
class in which it is defined. However, a more natural way to write an application using distinct
classes is as shown in the following example. In OO terminology, this way of writing an application
is known as Separation of concerns.

Program 3.4 MyTest.cs

using System;
class Test
{

public Test()
{

Console.WriteLine("Default constructor called!");
}
public void disp()
{

Console.WriteLine("Hi");
 }
 }

 class MyTest

{
public static void Main(string[] args)
{

Test c1 = new Test ();
c1.disp();

}
}

The type (like class, structure etc) containing Main() function (that is, entry point for the
application) is called as the application object. Every C# application will be having one
application object and numerous other types. On the other hand, we can create an application
object that defines any number of members called from the Main() method.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

45

3.4 Default Assignments and Variable Scope
All intrinsic .NET data types have a default value. When we create custom types, all member
variables are automatically assigned to their respective default values. Consider an example –

Program 3.5

class Test
{
 public int a; //default value is 0
 public byte b; //default value is 0
 public char c; //default value is null
 public string s; //default value is null

 public static void Main()
 {
 Test t=new Test();
 Console.WriteLine(“{0}, {1}, {2}, {3}”, a, b, c, s);
 }
}

All the variables will be initialized to their default values when we start debugging. However, we
can not expect the same within method scope. For example, the following program will generate
an error.

class Test
{
 public static void Main()
 {
 int a; //need to assign some value to ‘a’
 Console.WriteLine(“{0}”, a); //Error: Unassigned local variable ‘a’
 }
}

NOTE: There is an exception for the mandatory assignment of a local variable. If the local variable
is used as an output parameter, then it need not be initialized before use. Output parameters are
discussed later in detail. However, note that, they are used to receive the value from a function.

3.5 The C# Member Variable Initialization Syntax
Consider a class (or any other type) having more than one constructor with different set (may be
different in type or number) of arguments. Now, if any member variable needs to be initialized with
same value in all the situations, we need to write the code repeatedly in all the constructors. For
example,

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

46

class Test
 {
 private int a;

 Test()
 {
 a=5;
 }

Test(int k)
 {
 a=5;
 …….
 }

Test(string s)
 {
 a=5;
 …….
 }
 }

Though the above code is valid, there is redundancy in code. We can write a function for such
initialization like –

class Test
 {
 private int a;

 public void init()
 {
 a=5;
 }

Test()
 {
 init();
 }

Test(int k)
 {
 init()

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

47

 …….
 }

Test(string s)
 {
 init()
 …….
 }
 }

Here we have function call instead of assignment. Thus, redundancy still exists. To avoid such
situation, C# provides the initialization of member variables directly within a class as shown –

class Test
 {
 private int a =5;
 private string s= “Hello”;
 …………..
 }

This facility was not available in C++. Note that, such an initialization will happen before the
constructor gets called. Hence, if we provide any other value to a variable through constructor, the
previous member assignment will be overwritten.

3.6 Basic Input and Output with the Console Class
In many of the programs what we have seen till now, made use of System.Console class. As the
name suggests, Console class is defined in System namespace and it encapsulates input, output
and error stream manipulations. This class is widely used for console applications but not for
Windows or Web applications.

There are four important static methods in Console class:

 Read() Used to capture a single character from the input stream.
 ReadLine() Used to receive information from the input stream until the enter key is

pressed.
 Write() This method pumps text to the output stream without carriage return (enter

key)
 WriteLine() This pumps a text string including carriage return to the output stream.

Following table gives some important member of Console class:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

48

Member Meaning
BackgroundColor
ForegroundColor

These properties set the background/foreground colors for
the current output. They may be assigned any member of the
ConsoleColor enumeration.

BufferHeight
BufferWidth

These properties control the height/width of the console’s
buffer area.

Clear() This method clears the buffer and console display area.
Title This property sets the title of the current console.
WindowHeight
WindowWidth
WindowTop
WindowLeft

These properties control the dimensions of the console in
relation to the established buffer.

To illustrate the working of Console class methods, consider the following example –

Program 3.6
 using System;
 class BasicIO
 {

public static void Main()
{

Console.Write("Enter your name: ");
string s = Console.ReadLine();
Console.WriteLine("Hello, {0} ", s);
Console.Write("Enter your age: ");
s = Console.ReadLine();
Console.WriteLine("You are {0} years old", s);

}
 }

The output would be –
 Enter your name: Ramu
 Hello, Ramu
 Enter your age: 25
 You are 25 years old
Formatting Textual Output
In the previous examples, we have seen numerous occurrences of the tokens {0}, {1} etc.
embedded within a string literal. .NET introduces a new style of string formatting. A simple
example follows –

static void Main(string[] args)
{

...

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

49

int i = 90;
double d = 9.99;
bool b = true;

Console.WriteLine("Int is: {0}\nDouble is: {1}\nBool is: {2}", i, d, b);

}

The first parameter to WriteLine() represents a string literal that contains optional placeholders
designated by {0}, {1}, {2}, and so forth (curly bracket numbering always begins with zero). The
remaining parameters to WriteLine() are simply the values to be inserted into the respective
placeholders

Note that WriteLine() has been overloaded to allow the programmer to specify placeholder values
as an array of objects. Thus, we can represent any number of items to be plugged into the format
string as follows:

// Fill placeholders using an array of objects.
object[] stuff = {"Hello", 20.9, 1, "There", "83", 99.99933} ;
Console.WriteLine("The Stuff: {0} , {1} , {2} , {3} , {4} , {5} ", stuff);

It is also permissible for a given placeholder to repeat within a given string. For example, if we
want to build the string "9, Number 9, Number 9" we can write

Console.WriteLine("{0}, Number {0}, Number {0}", 9);

Note If any mismatch occurs between the number of uniquely numbered curly-bracket
placeholders and fill arguments, an exception viz. FormatException is popped up at runtime.

.NET String Formatting Flags
If we require more detailed formatting, each placeholder can optionally contain various format
characters (in either uppercase or lowercase), as shown –

C# Format
 Character

Meaning

C or c Used to format currency. By default, the flag will prefix the local
cultural symbol (a dollar sign [$] for U.S. English). However, this
can be changed using a System.Globalization.NumberFormatInfo
object

D or d Used to format decimal numbers. This flag may also specify the
minimum number of digits used to pad the value.

E or e Used for exponential notation.
F or f Used for fixed-point formatting.
G or g Stands for general. This character can be used to format a

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

50

number to fixed or exponential format.
N or n Used for basic numerical formatting (with commas).
X or x Used for hexadecimal formatting. If you use an uppercase X, your

hex format will also contain uppercase characters.

These format characters are suffixed to a given placeholder value using the colon token (e.g.,
{0:C}, {1:d}, {2:X}, and so on). Consider an example:

Program 3.7

class Test
{

public static void Main(string[] args)
{

Console.WriteLine("C format: {0:C}", 99989.987);
Console.WriteLine("D9 format: {0:D9}", 99999);
Console.WriteLine("E format: {0:E}", 99999.76543);
Console.WriteLine("F3 format: {0:F3}", 99999.9999);

Console.WriteLine("N format: {0:N}", 99999);
Console.WriteLine("X format: {0:X}", 99999);
Console.WriteLine("x format: {0:x}", 99999);

}
}

The output would be –

C format: $99,989.99
D9 format: 000099999
E format: 9.999977E+004
F3 format: 100000.000
N format: 99,999.00
X format: 1869F
x format: 1869f

Note that the use of .NET formatting characters is not limited to console applications. These same
flags can be used within the context of the static String.Format() method. This can be helpful
when we need to create a string containing numerical values in memory for use in any application
type (Windows Forms, ASP.NET, XML web services, and so on):

Program 3.8

class Test
{

static void Main(string[] args)
{

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

51

string Str;

Str = String.Format("You have {0:C} in your account", 99989.987);
Console.WriteLine(Str);

}
}

The output would be –

You have $99,989.99 in your account

3.7 Understanding Value Types and Reference Types
Like any programming language, C# defines a number of keywords that represent basic data
types such as whole numbers, character data, floating-point numbers, and Boolean values. These
intrinsic types are fixed constants. That is, all .NET-aware languages understand the fixed nature
of these intrinsic types, and all agree on the range it is capable of handling.

A .NET data type may be value-based or reference-based. Value-based types, which include all
numerical data types (int, float, etc.) as well as enumerations and structures, are allocated on the
stack. So, value types can be quickly removed from memory once they are out of the defining
scope:

public void SomeMethod()
{

int i = 0;
Console.WriteLine(i);

} // 'i' is removed from the stack here

When we assign one value type to another, a member-by-member (or a bit-wise) copy is achieved
by default. In terms of numerical or Boolean data types, the only “member” to copy is the value of
the variable itself:

public void SomeMethod()
{

int i = 99;
int j = i;
j = 8732; // j will be 8732 and I remains to be 99

}

This example may not seem special. But, now we will have a look at other value types like
structures and enumerations. Structures provide a way to achieve the benefits of object
orientation (i.e., encapsulation) while having the efficiency of stack-allocated data. Like a class,
structures can take constructors (only parameterized constructors) and define any number of
members. All structures are implicitly derived from a class named System.ValueType. The

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

52

purpose of System.ValueType is to “override” the virtual methods defined by System.Object to
support value-based v/s reference-based semantics. In fact, the instance methods defined by
System.ValueType are identical to those of System.Object.

Consider an example to illustrate the working of value types –

Program 3.9 MyClass.cs

struct MyStruct
{

public int x;
}

class MyClass
{
 public static void Main()
 {
 // the keyword new is optional while creating structures.

MyStruct ms1 =new MyStruct();

ms1.x = 100;

MyStruct ms2 = ms1;

Console.WriteLine("ms1.x = {0}", ms1.x); //100
Console.WriteLine("ms2.x = {0}", ms2.x); //100

ms2.x = 900;
Console.WriteLine("ms1.x = {0}", ms1.x); //100
Console.WriteLine("ms2.x = {0}", ms2.x); //900

}
 }

The Output will be –

ms1.x = 100
ms2.x = 100
ms1.x = 100
ms2.x = 900

Note that, to allocate a structure type, we can use the ‘new’ keyword. This will create an
impression that memory is allocated in heap. But, this is not true. CLR makes the programmer to
feel everything is an object and new value types. However, when the runtime encounters a type
derived from System.ValueType, stack allocation is achieved.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

53

In the above program, we have created a variable ms1 and then it is assigned to ms2. Since
MyStruct is a value type, we will have two copies of the MyStruct type on the stack, each of which
can be independently manipulated. Therefore, when we change the value of ms2.x, the value of
ms1.x is unaffected.

On the other hand, the reference types (classes) are allocated on the managed heap. These
objects stay in memory until the .NET garbage collector destroys them. By default, assignment of
reference types results in a new reference to the same object on the heap. To illustrate, let us
change the above example:

Program 3.10

class MyClass //struct has been changed to class
{

public int x;
}

class MyClass1
{
 public static void Main()
 {
 // the keyword new is compulsory now.

MyClass mc1 =new MyClass ();

mc1.x = 100;

MyClass mc2 = mc1;

Console.WriteLine("mc1.x = {0}", mc1.x); //100
Console.WriteLine("mc2.x = {0}", mc2.x); //100

ms2.x = 900;
Console.WriteLine("mc1.x = {0}", mc1.x); //900
Console.WriteLine("mc2.x = {0}", mc2.x); //900

}
 }

The Output will be –

mc1.x = 100
mc2.x = 100
mc1.x = 900
mc2.x = 900

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

54

In this example, we have two references pointing to the same object on the managed heap.
Therefore, when we change the value of x using the mc2 reference, mc1.x reports the same
value.

Value Types Containing Reference Types
Assume that we have a reference (class) type MyClass containing a constructor to assign value to
a member variable of type string. Assume also that we have included object of this class within a
structure MyStruct. We have included the Main() function in another class and the total application
is as given below –

Program 3.11

Name of file: Test.cs

using System;

class MyClass
{
 public string s;
 public MyClass(string str) //constructor for class
 {
 s=str;
 }
}

struct MyStruct
{
 public MyClass mc;
 public int a;

 public MyStruct(string str) //constructor for structure
 {
 mc=new MyClass(str); //calling constructor of class
 a=10;
 }
}

class Test
{
 public static void Main(string[] args)
 {
 MyStruct ms1=new MyStruct("Initial Value");

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

55

 ms1.a=15;

 MyStruct ms2=ms1;

 ms2.mc.s="New Value!!!";
 ms2.a=20;
 Console.WriteLine("ms1.mc.s is {0}", ms1.mc.s);
 Console.WriteLine("ms2.mc.s is {0}", ms2.mc.s);
 Console.WriteLine("ms1.a is {0}", ms1.a);
 Console.WriteLine("ms2.a is {0}", ms2.a);
 }
}

The Output would be –
 ms1.mc.s is New Value!!!

ms2.mc.s is New Value!!!
ms1.a is 15
ms2.a is 20

Now compare the programs 3.9, 3.10 and 3.11.

 In Program 3.9, we have used the structure, which is of value type. So, when we use the
statement

MyStruct ms2= ms1;
there will be separate memory allocation for two objects (Memory will be allocated from
stack). Thus, the assignment statement ms2=ms1 will copy the contents of ms1 to the
corresponding variables of ms2. Since memory allocation is different for these two objects,
the change in one object doesn’t affect the other object.

 In Program 3.10, we have used the class, which is of reference type. So, when we use the
statement

MyClass mc2 = mc1,

mc2 will be just reference to mc1 sharing the same memory location in the heap. Also, the
contents of mc1 will be copied to the corresponding variables of mc2. Since memory
location is same for both the objects, the change in one object will affect the other object.

 In Program 3.11, we have a value type MyStruct containing an object of reference type
MyClass. The object ms1 of MyStruct contains an object mc of MyClass and an integer
variable a. Here, a will be allocated memory from stack and mc will get memory from
heap. Now, when we use the statement

MyStruct ms2=ms1;
the object ms2 gets created. Note that, ms1.a and ms2.a will have different memory
allocation as a is member of structure. But, ms1.mc.s and ms2.mc.s will point to same

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

56

location in heap memory as s is basically a member of class. This can be diagrammatically
represented as –
 ms1 ms2

 a s a

Thus, when a value type contains other reference types, assignment results in a copy of the
references. In this way, we have two independent structures ms1 and ms2 each of which
contains a reference pointing to the same object in memory (i.e., a “shallow copy”). When we want
to perform a “deep copy,” where the state of internal references is fully copied into a new object,
we need to implement the ICloneable interface, which we will see later in detail.

Value and Reference Types: Final Details
Following table summarizes the core distinctions between value types and reference types.

Intriguing Question Value Type Reference Type

Where is this type allocated? Allocated on the stack Allocated on the managed heap.

How is a variable
represented?

Value type variables are local
copies.

Reference type variables are
pointing to the memory occupied by
the allocated instance.

What is the base type? Must derive from
System.ValueType.

Can derive from any other type
(except System.ValueType), as long
as that type is not “sealed”

Can this type function as a
base to other types?

No. Value types are always
sealed and cannot be extended.

Yes. If the type is not sealed, it may
function as a base to other types.

What is the default
parameter passing
behavior?

Variables are passed by value
(i.e., a copy of the variable is
passed into the called function).

Variables are passed by reference
(e.g., the address of the variable is
passed into the called function).

Can this type override
System.Object.Finalize()?

No. Value types are never placed
onto the heap and therefore do
not need to be finalized.

Yes, indirectly

Can we define constructors? Yes, but the default constructor is
reserved

Yes

When do variables of this
type die?

When they fall out of the defining
scope.

When the managed heap is garbage
collected.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

57

Despite their differences, value types and reference types both have the ability to implement
interfaces and may support any number of fields, methods, overloaded operators, constants,
properties, and events.

3.8 The Master Class: System.Object
In .NET, every data type is derived from a common base class: System.Object. The Object class
defines a common set of members supported by every type in the .NET framework. When we
create a class, it is implicitly derived from System.Object. For example, the following declaration is
common way to use.

class Test
{

...
}

But, internally, it means that,
class Test : System.Object
{

...
}

System.Object defines a set of instance-level (available only after creating objects) and class-level
(static) members. Note that some of the instance-level members are declared using the virtual
keyword and can therefore be overridden by a derived class:

// The structure of System.Object class
namespace System
{

public class Object
{

public Object();
public virtual Boolean Equals(Object obj);
public virtual Int32 GetHashCode();
public Type GetType();
public virtual String ToString();
protected virtual void Finalize();
protected Object MemberwiseClone();
public static bool Equals(object objA, object objB);
public static bool ReferenceEquals(object objA, object objB);

}
}

Following table shows some of the functionality provided by each instance-level method.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

58

Instance Method
of Object Class

Meaning

Equals() By default, this method returns true only if the items being compared
refer to the exact same item in memory. Thus, Equals() is used to
compare object references, not the state of the object. Typically, this
method is overridden to return true only if the objects being compared
have the same internal state values. Note that if you override Equals(),
you should also override GetHashCode().

GetHashCode() This method returns an integer that identifies a specific object in
memory. If you intend your custom types to be contained in a
System.Collections.Hashtable type, you are well-advised to override
the default implementation of this member.

GetType() This method returns a System.Type object that fully describes the
details of the current item. In short, this is a Runtime Type
Identification (RTTI) method available to all objects.

ToString() This method returns a string representation of a given object, using the
namespace.typename format (i.e., fully qualified name). If the type has
not been defined within a namespace, typename alone is returned.
This method can be overridden by a subclass to return a tokenized
string of name/value pairs that represent the object’s internal state,
rather than its fully qualified name.

Finalize() This protected method (when overridden) is invoked by the .NET
runtime when an object is to be removed from the heap (during
garbage collection).

MemberwiseClone() This protected method exists to return a new object that is a member-
by-member copy of the current object. Thus, if the object contains
references to other objects, the references to these types are copied
(i.e., it achieves a shallow copy). If the object contains value types, full
copies of the values are achieved. (Example, Program 3.11)

The Default Behavior of System.Object
To illustrate some of the default behavior provided by the System.Object base class, consider the
following example –

Program 3.12

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

59

 using System;
class Person
{

public string Name, SSN;
public byte age;

public Person(string n, string s, byte a)
{

Name = n;
SSN = s;
age = a;

}
public Person(){ }

static void Main(string[] args)
{

Console.WriteLine("***** Working with Object *****\n");
Person p1 = new Person("Ram", "111-11-1111", 20);
Console.WriteLine("p1.ToString: {0}", p1.ToString());
Console.WriteLine("p1.GetHashCode: {0}", p1.GetHashCode());
Console.WriteLine("p1’s base class: {0}", p1.GetType().BaseType);

Person p2 = p1;
object o = p2;

if(o.Equals(p1) && p2.Equals(o))

Console.WriteLine("p1, p2 and o are same objects!");
}

}

The Output would be –

***** Working with Object *****
p1.ToString: Person
p1.GetHashCode: 58225482
p1's base class: System.Object
p1, p2 and o are same objects!

We can notice from the above program that the default implementation of ToString() simply
returns the fully qualified name of the type. GetType() retrieves a System.Type object, which
defines a property named . Here, new Person object p1 is referencing memory in the heap. p2 is
also of type Person, however, we are not creating a new instance of the Person class, but

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

60

assigning p2 to p1. Therefore, p1 and p2 are both pointing to the same object in memory.
Similarly the variable o (of type object) also refers to the same memory. Thus, when we compare
p1, p2 and o, it says that all are same.

Overriding Some Default Behaviors of System.Object
In many of our applications, we may want to override some of the behaviors of System.Object.
Overriding is the process of redefining the behavior of an inherited virtual member in a derived
class. We have seen that System.Object class has some virtual methods like ToString(), Equals()
etc. These can be overridden by the programmer.

Overriding ToString()
Consider the following example to override System.Object.ToString().

Program 3.13

using System;
using System.Text;

class Person
{

public string Name, SSN;
public byte age;

public Person(string n, string s, byte a)
{

Name = n;
SSN = s;
age = a;

}
public Person(){ }

// Overriding System.Object.ToString()
public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.AppendFormat("[Name={0}", this. Name);
sb.AppendFormat(" SSN={0}", this.SSN);
sb.AppendFormat(" Age={0}]", this.age);
return sb.ToString();

}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

61

public static void Main()
{
 Person p1 = new Person(“Ram”, “11-12”, 25);
 Console.WriteLine(“p1 is {0}”, p1.ToString());
}

}

The Output would be –

p1 is [Name=Ram SSN=11-12 Age=25]

In the above example, we have overridden ToString() method to display the contents of the object
in the form of tuple. The System.Text.StringBuilder is class which allows access to the buffer of
character data and it is a more efficient alternative to C# string concatenation (Discussed later in
detail).

Overriding Equals()
By default, System.Object.Equals() returns true only if the two references being compared are
referencing same object in memory. But in many situations, we are more interested if the two
objects have the same content. Consider an example –

Program 3.14

using System;

class Person
{
 public string Name, SSN;
 public byte age;

 public Person(string n, string s, byte a)
 {
 Name = n;
 SSN = s;
 age = a;
 }
 public Person(){ }

 public override bool Equals(object ob)
 {
 if (ob != null && ob is Person)
 {
 Person p = (Person)ob;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

62

 if (p.Name == this.Name && p.SSN == this.SSN && p.age == this.age)
 return true;
 }
 return false;
 }

 public static void Main()
 {
 Person p1 = new Person("Ram", "11-12", 25);
 Person p2 = new Person("Shyam", "11-10", 20);
 Person p3 = new Person("Ram", "11-12", 25);
 Person p4 = p2;

 if(p1.Equals(p2))
 Console.WriteLine("p1 and p2 are same");
 else
 Console.WriteLine("p1 and p2 are not same");

 if(p1.Equals(p3))
 Console.WriteLine("p1 and p3 are same");
 else
 Console.WriteLine("p1 and p3 are not same");

 if(p2.Equals(p4)) //comparison based on content but not on reference
 Console.WriteLine("p4 and p2 are same");
 else
 Console.WriteLine("p4 and p2 are not same");
 }
}

The Output would be –

 p1 and p2 are not same
p1 and p3 are same
p4 and p2 are same

While overriding the Equals() method, first we are checking whether the passed object is of class
Person or not. Also, we need to check whether the object has been allocated memory or it is
having null. Note that Equals() method takes the parameter of type object. Thus, we need to type-
cast it to Person type before using it. When we override Equals(), we need to override
GetHashCode() too.

Overriding System.Object.GetHashCode()

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

63

 The GetHashCode() method is suitable for use in hashing algorithms and data structures
such as a hash table.

 The GetHashCode() method returns a numerical value used to identify an object in the
memory.

 The default implementation of the GetHashCode() method does not guarantee unique
return values for different objects.

 Furthermore, the .NET Framework does not guarantee the default implementation of the
GetHashCode() method, and the value it returns will be the same between different
versions of the .NET Framework.

 So, the default implementation of this method must not be used as a unique object
identifier for hashing purposes.

 If we place a custom (user-defined) object into a System.Collections.Hashtable type, its
Equals() and GetHashCode() members will determine the correct type to return from the
container.

 So, user-defined types should redefine the hashing algorithm used to identify itself within
such a type.

There are many algorithms that can be used to create a hash code. In the simplest case, an
object’s hash value will be generated by taking its data into consideration and building a unique
numerical identifier for the type. For example, SSN will be unique for each individual. So, we can
override GetHashCode() method as below –

Program 3.15

using System;

class Person
{
 public string Name, SSN;
 public byte age;

 public Person(string n, string s, byte a)
 {
 Name = n;
 SSN = s;
 age = a;
 }
 public Person(){ }

 public override int GetHashCode()
 {
 return SSN.GetHashCode();
 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

64

 public static void Main()
 {
 Person p1 = new Person("Ram", "11-12", 25);
 Person p2 = new Person("Shyam", "11-10", 20);
 Person p3 = new Person("Ram", "11-12", 25);
 Person p4 = p2;

 if(p1.Equals(p3)) //comparison based on reference
 Console.WriteLine("p1 and p3 are same");
 else
 Console.WriteLine("p1 and p3 are not same");

 if(p1.GetHashCode()==p3.GetHashCode()) //comparison based on SSN
 Console.WriteLine("p1 and p3 are same");
 else
 Console.WriteLine("p1 and p3 are not same");
 }
}

The output would be –
 p1 and p3 are not same
 p1 and p3 are same

3.9 The System Data Types (and C# Aliases)
Every intrinsic C# data type is an alias to an existing type defined in the System namespace.
Specifically, each C# data type aliases a well-defined structure type in the System namespace.
Following table lists each system data type, its range, the corresponding C# alias and the type’s
compliance with the CLS.

C#
Alias

CLS
Compliant?

System Type Range Meaning

sbyte No System.SByte -128 to 127 Signed 8-bit number
byte Yes System.Byte 0 to 255 Unsigned 8-bit number
short Yes System.Int16 -216 to 216-1 Signed 16-bit number
ushort No System.UInt16 0 to 232-1 Unsigned 16-bit number
int Yes System.Int32 -232 to 232-1 Signed 32-bit number
uint No System.UInt32 0 to 264-1 Unsigned 32-bit number
long Yes System.Int64 -264 to 264-1 Signed 64-bit number
ulong No System.UInt64 0 to 2128-1 Unsigned 64-bit number
char Yes System.Char U10000 to U1ffff A Single 16-bit Unicode character
float Yes System.Single 1.5 x 10-45 to

 3.4 x 1038
32-bit floating point number

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

65

double Yes System.Double 5.0 x 10-324 to
 1.7 x 10308

64-bit floating point number

bool Yes System.Boolean True or False Represents truth or falsity
decimal Yes System.Decimal 1 to 1028 96-bit signed number
string Yes System.String Limited by system

memory
Represents a set of Unicode
characters

object Yes System.Object Anything(all types
excluding
interfaces) derive
from object

The base class of all types in the
.NET universe.

The relationship between the core system types is shown in the figure 3.1. From this diagram, we
can see that all the types are ultimately derived from System.Object. Since the data types like int
are simply shorthand notations for the corresponding system type (like System.Int32), the
following statements are valid –
 Console.WriteLine(25.GetHashCode());
 Console.WriteLine(32.GetType().BaseType()); etc.

We can see that, though C# defines a number of data types, only a subset of the whole set of
data types are compliant with the rules of CLS. So, while building user-defined types (like class,
structures), we should use only CLS-compliant types. And also, we should avoid using unsigned
types as public member of user-defined type. By doing this, our user-defined type (class,
enumeration, structure etc) can be understood by any language in .NET framework.

Experimenting with the System Data Types
From the Figure 3.1, it is clear that C# data types are alias names for a related structure in the
System namespace, and hence derived from System.ValueType. The purpose of
System.ValueType is to override the virtual methods defined by System.Object to work with value-
based v/s reference-based semantics.

Since data types are value types, the comparison of two variables will be based on their internal
value, but not the reference:

 System.Int32 a=20;
 int b=20;
 if(a==b) //comparison based on value
 Console.WriteLine(“Same!!”);

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

66

Fig. 3.1 The hierarchy of System Types

Basic Numerical Members
To understand the numerical types in C#, consider the following example –

Object

Type

String

Array

Exception

Delegate

MulticastDelegate

Byte

Boolean

Char

Decimal

Double

Int16

Int64

Int32

UInt16

UInt32

UInt64

Void

DateTime

Guid

TimeSpan

SByte
Single

ValueType

Any type that
derives from

ValueType is a
structure not a

class

Enumerations and Structures

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

67

Program 3.16

using System;

class Test
{
 public static void Main()
 {
 System.UInt16 a=30000;

 Console.WriteLine("Max value for UInt16: {0}", UInt16.MaxValue); //65535
 Console.WriteLine("Min value for UInt16: {0}", UInt16.MinValue); //0
 Console.WriteLine("value of UInt16: {0}", a); //30000
 Console.WriteLine("The type is: {0}", a.GetType().ToString()); //System.UInt16

 ushort b=12000;
 Console.WriteLine("Max value for ushort: {0}", ushort.MaxValue); //65535
 Console.WriteLine("Min value for ushort: {0}", ushort.MinValue); //0
 Console.WriteLine("value of ushort: {0}", b); //12000
 Console.WriteLine("The type is: {0}", b.GetType().ToString()); //System.UInt16

 Console.WriteLine("double.Epsilon: {0}", double.Epsilon);
//4.94065645841247E-324

 Console.WriteLine("double.PositiveInfinity: {0}", double.PositiveInfinity);
//Infinity

 Console.WriteLine("double.NegativeInfinity: {0}", double.NegativeInfinity);
//-Infinity

 Console.WriteLine("double.MaxValue: {0}", double.MaxValue);
// 1.79769313486232E+308

 Console.WriteLine("double.MinValue: {0}", double.MinValue);
//-1.79769313486232E+308

 }
}

Members of System.Boolean
In C#, for Boolean data, we have to assign any one value true or false. We can not use the
numbers like -1, 0, 1 etc. as we do in C++. The usage of bool data is shown in Program 3. 17.

Members of System.Char
All the .NET-aware languages map textual data into the same underlying types viz System.String
and System.Char, both are Unicode. The System.Char type provides several methods as shown
in the following example –

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

68

Program 3.17

using System;
class Test
{
 public static void Main()
 {
 bool b1=true;
 bool b2=false;

 Console.WriteLine("{0}", bool.FalseString); //False
 Console.WriteLine("{0}", bool.TrueString); //True
 Console.WriteLine("{0}, {1}", b1, b2); //True, False

 Console.WriteLine("{0}", char.IsDigit('P')); //False
 Console.WriteLine("{0}", char.IsDigit('9')); //True
 Console.WriteLine("{0}", char.IsLetter("10", 1)); //False
 Console.WriteLine("{0}", char.IsLetter("1a", 1)); //True
 Console.WriteLine("{0}", char.IsLetter('p')); //True
 Console.WriteLine("{0}", char.IsWhiteSpace("Hello World", 5)); //True
 Console.WriteLine("{0}", char.IsWhiteSpace("Hello World", 6)); //False
 Console.WriteLine("{0}", char.IsLetterOrDigit('?')); //False
 Console.WriteLine("{0}", char.IsPunctuation('!')); //True
 Console.WriteLine("{0}", char.IsPunctuation('<')); //False
 Console.WriteLine("{0}", char.IsPunctuation(',')); //True
 }
}

Parsing Values from String Data
.NET data types provide the ability to generate a variable of their underlying type given a textual
equivalent. This technique is called as parsing. This is helpful when we need to convert user input
data into a numerical value. Consider the following program –

Program 3.18

using System;
class Test
{
 public static void Main()
 {
 bool b=bool.Parse("True");
 Console.WriteLine("Value of bool is:{0}", b); //True

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

69

 double d=double.Parse("99.457");
 Console.WriteLine("Value of double is:{0}", d); //99.457

 int i=int.Parse("8");
 Console.WriteLine("Value of int is:{0}", i); //8

 char c=char.Parse("w");
 Console.WriteLine("Value of char is:{0}", c); //w
 }
}

3.10 Converting Between Value Types and Reference Types: Boxing and
Unboxing

 We know that .NET defines two broad categories of types viz. value types and reference
types.

 Sometimes, we may need to convert variables of one category to the variables of other
category.

 For doing so, .NET provides a mechanism called boxing.
 Boxing can be defined as the process of explicitly converting a value type into a reference

type.
 When we box a variable, a new object is allocated in the heap and the value of variable is

copied into the object.

For example,
 int p=20;

 object ob=p; //box the value type p into an object reference

 The operation just opposite to boxing is called as unboxing.
 Unboxing is the process of converting the value held in the object reference back into a

corresponding value type.
 When we try to unbox an object, the compiler first checks whether is the receiving data

type is equivalent to the boxed type or not.
 If yes, the value stored in the object is copied into a variable in the stack.
 If we try to unbox an object to a data type other than the original type, an exception called

InvalidCastException is generated.

For example,
 int p=20;
 object ob=p;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

70

 int b=(int)ob; // unboxing successful
 string s=(string)ob; // InvalidCastException

Generally, there will few situations in which we need boxing and/or unboxing. In most of the
situations, C# compiler will automatically boxes the variables. For example, if we pass a value
type data to a function having reference type object as a parameter, then automatic boxing takes
place. Consider the following program –

Program 3.19

using System;

class Test
{
 public static void MyFunc(object ob)
 {
 Console.WriteLine(ob.GetType());
 Console.WriteLine(ob.ToString());
 Console.WriteLine(((int)ob).GetTypeCode());
 }

 public static void Main()
 {
 int x=20;
 MyFunc(x);
 }
}

The output would be –
 System.Int32
 20
 Int32

NOTE:

1. Boxing and unboxing takes some processing time. So, it must be used only when needed.
2. When we pass custom (user defined) structures/enumerations into a method taking generic

System.Obejct parameter, we need to unbox the parameter to interact with the specific
members of the structure/enumeration. We will study this later in-detail.

3.11 Defining Program Constants
C# provides a const keyword to defined variables with a fixed, unalterable value. The value of a
constant data is computed at compile time and hence, a constant variable can not be assigned to

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

71

an object reference (whose value is computed at runtime). That is, boxing is not possible for
constant variables. We can define either class-level constants or local-level (within a method)
constants. For example,

Program 3.20
 using System;

abstract class ConstClass
{
 public const int p=10;
 public const string s="I am a constant";
}

class Test
{
 public const int x=5;

 public static void Main()
 {
 const int y=20;
 Console.WriteLine("{0}, {1}, {2}, {3}", ConstClass.p, ConstClass.s, x, y);

 }

}

The output would be –
 10, I am a constant, 5, 20

3.12 C# Iteration Constructs
C# provides following iteration constructs:

 for Loop
 foreach/in Loop
 while Loop
 do/while Loop

The for Loop
The for loop in C# is just similar to that in C, C++ or Java. This loop will allow to repeat a set of
statements for fixed number of times. For example –

 for(int i=0; i<10;i++)
 Console.WriteLine(“{0}”, i); //0 to 9 will be printed.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

72

We can use any type of complex terminating conditions, incrementation/ decrementation,
continue, break, goto etc. while using for loop.

The foreach/in Loop
This loop is used to iterate over all items within an array. The following example shows how each
element of an integer array is considered within a loop.

Program 3.21

using System;
class Test
{
 public static void Main()
 {
 int[] arr=new int[]{5, 32, 10, 45, 63};

 foreach(int i in arr)
 Console.WriteLine("{0}",i);

}
}

Apart from iterating over simple arrays, foreach loop is used to iterate over system supplied or
user-defined collections. This will be discussed in later chapters.

The while and do/while Loop
When we don’t know the exact number of times a set of statements to be executed, we will go for
while loop. That is, a set of statements will be executed till a condition remains true. For example,

 string s;
 while((s=Console.ReadLine())!=null)
 Console.WriteLine(“{0}”, s);

Some times, we need a set of statements to be executed at least once, irrespective of the
condition. Then we can go for do/while loop. For example,

 string opt;
 do

{
 Console.Write(“Do you want to continue?(Yes/No):”);
 opt=Console.ReadLine();
}while(opt!=”Yes”);

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

73

3.13 C# Control Flow Constructs
There are two control flow constructs in C# viz. if/else and switch/case. The if/else works only on
boolean expressions. So we can not use the values 0, 1 etc. within if as we do in C/C++. Thus,
the if statement in C# typically involve the relational operators and/or conditional operators.

Relational Operator Meaning
== To check equality of two operands
!= Not equal to
< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to

Conditional Operator Meaning

&& AND
|| OR
! NOT

The general form of if can be given as –

 if(condition)
 {
 //true block
 }
 else
 {
 //false block
 }

The general from of switch can be given as –

 switch(variable/expression)
 {
 case val1: //statements;
 break;

 case val2: //statements;
 break;

case val2: //statements;
 break;
 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

74

3.14 Complete set of C# operators
Following is a set of operators provided by C#.

Operator Category Operators
Unary +, -, !, ~, ++, --
Multiplicative *, /, %
Additive +, -
Shift <<, >>
Relational <, >, <=. >=, is, as
Equality ==, !=
Logical & (AND), ^ (XOR), | (OR)
Conditional &&, ||, ?: (ternary operator)
Indirection/Address *, ->, &
Assignment =, *=, -=, +=, /=, %=, <<=, >>=, &=, ^=, |=

The relational operator is is used to verify at runtime whether an object is compatible with a given
type or not. The as operator is used to downcast between types. We will discuss these later in
detail. As C# supports inter-language interaction, it supports the C++ pointer manipulation
operators like *, -> and &. But if we use any of these operators, we are going bypass the runtime
memory management scheme and writing code in unsafe mode.

3.15 Defining Custom Class Methods
In C#, every data and a method must be a member of a class or structure. That is, we can not
have global data or method. The methods in C# may or may not take parameters and they may or
may not return a value. Also, custom methods (user defined methods) may be declared non-static
(instance level) or static (class level).

Method Access Modifiers
Every method in C# specifies its level of accessibility using following access modifiers:

Access Modifiers Meaning
public Method is accessible from an object or any

subclass.
private Method is accessible only by the class in which

it is defined. private is a default modifier in C#.
protected Method is accessible by the defining class and

all its sub-classes.
internal Method is publicly accessible by all types in an

assembly, but not outside the assembly.
protected internal Method’s access is limited to the current

assembly or types derived from the defining
class in the current assembly.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

75

3.16 Understanding Static Methods
A method can be declared as static. When a method is static, it can be invoked directly from the
class level, without creating an object. This is the reason for making Main() function to be static.
The another example is WriteLine() method. We will directly use the statement
Console.WriteLine() without creating an object of Console class. For example,

Program 3.22
 using System;
 class Test
 {
 public static void disp()
 {
 Console.WriteLine(“hello”);
 }

 public static void Main()
 {
 Test.disp(); //calling method using class name itself
 }
 }

Defining static Data
Normally, we will define a set of data members for a class. Then every object of that class will
have separate copy of each of those data members. For example,

 class Test
 {
 public int p;
 }

 Test t1=new Test();
 t1.p=10;
 Test t2= new Test();
 t2.p=15;

Here, the objects t1 and t2 will be having separate copy of the variable p.

On the other hand, static data is shared among all the objects of that class. That is, for all the
objects of a class, there will be only one copy of static data. For example,

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

76

Program 3.23

 using System;

class Test
{
 public static int p=0;

 public int incr()
 {
 return ++p;
 }

 public static void Main()
 {
 Test t1=new Test();
 Test t2=new Test();

 Console.WriteLine("p= {0}", t1.incr()); //1
 Console.WriteLine("p= {0}", t2.incr()); //2
 Console.WriteLine("p= {0}", t1.incr()); //3
 }
}

3.17 Method Parameter Modifiers
Normally methods will take parameter. While calling a method, parameters can be passed in
different ways. C# provides some parameter modifiers as shown –

Parameter Modifier Meaning
(none) If a parameter is not attached with any modifier,

then parameter’s value is passed to the
method. This is the default way of passing
parameter. (call-by-value)

out The output parameters are assigned by the
called method.

ref Reference to a parameter is passed to a
method. (call-by-reference)

params This modifier will allow to send many number of
parameters as a single parameter. Any method
can have only one params modifier and it
should be the last parameter for the method.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

77

The Default Parameter Passing Behavior
By default, the parameters are passed to a method by value. So, the changes made for
parameters within a method will not affect the actual parameters of the calling method. Consider
the following example –

Program 3.24

using System;

class Test
{
 public static void swap(int x, int y)
 {
 int temp=x;
 x=y;
 y=temp;
 }

 public static void Main()
 {
 int x=5,y=20;

 Console.WriteLine("Before: x={0}, y={1}", x, y);
 swap(x,y);
 Console.WriteLine("After: x={0}, y={1}", x, y);
 }
}

The output would be –

Before: x=5, y=20
After : x=5, y=20

The out Keyword
In some of the methods, we need to return a value to a calling method. Instead of using return
statement, C# provides a modifier for a parameter as out. The usage of out can be better
understood by the following example –

Program 3.25

using System;

class Test
{
 public static void add(int x, int y, out int z)

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

78

 {
 z=x+y;
 }

 public static void Main()
 {
 int x=5,y=20, z;

 add(x, y, out z);
 Console.WriteLine("z={0}", z); //z=25
 }
}

The out parameter is certainly useful when we need more values to be returned from a method.
Consider the following example –
Program 3.26

using System;

class Test
{
 public static void MyFun(out int x, out string s)
 {
 x=5;
 s="Hello, how are you?";
 }

 public static void Main()
 {
 int a;
 string str;

 MyFun(out a, out str);
 Console.WriteLine("a={0}, str={1}", a, str);
 }
}

The output would be –
a=5, str=”Hello, how are you?

The C# ref Keyword
Whenever we want the changes made in method to get affected in the calling method, then we
will go for call by ref. Following are the differences between output and reference parameters:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

79

 The output parameters do not need to be initialized before sending to called method.
Because it is assumed that the called method will fill the value for such parameter.

 The reference parameters must be initialized before sending to called method. Because,
we are passing a reference to an existing type and if we don’t assign an initial value, it
would be equivalent to working on NULL pointer.

Program 3.27

using System;

class Test
{
 public static void Main()
 {
 string s="hello";
 Console.WriteLine("Before:{0}",s);
 MyFun(ref s);
 Console.WriteLine("After:{0}",s);
 }

 public static void MyFun(ref string s)
 {
 s=s.ToUpper();
 }
}

The output would be –
 Before: hello
 After: HELLO

The C# params Keyword
The params keyword of C# allows us to send many numbers of arguments as a single parameter.
To illustrate the use of params, consider the following example –

Program 3.28

using System;

class Test
{
 public static void MyFun(params int[] arr)
 {
 for(int i=0; i<arr.Length; i++)

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

80

 Console.WriteLine(arr[i]);
 }

 public static void Main()
 {
 int[] a=new int[3]{5, 10, 15};
 int p=25, q=102;

 MyFun(a);

 MyFun(p, q);
 }
}

The output would be –
 5 10 15 25 102

From the above example, we can observe that for params parameter, we can pass an array or
individual elements.

We can use params even when the parameters to be passed are of different types, as shown in
the following program –

Program 3.29

using System;
class Test
{
 public static void MyFun(params object[] arr)
 {
 for(int i=0; i<arr.Length; i++)
 {
 if(arr[i] is Int32)
 Console.WriteLine("{0} is an integer", arr[i]);
 else if(arr[i] is string)
 Console.WriteLine("{0} is a string", arr[i]);
 else if(arr[i] is bool)
 Console.WriteLine("{0} is a boolean", arr[i]);
 }
 }

 public static void Main()
 {

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

81

 int x=5;
 string s="hello";
 bool b=true;

 MyFun(b, x, s);
 }
}

The output would be –
 True is a Boolean
 5 is an integer
 hello is a string

Passing Reference Types by Value and Reference
Till now, we have seen how to pass a parameter to methods by value and by using ref. In the
previous examples, we have passed value type variables as parameters to methods (Just
recollect that there are two types of variables value type like int, char, string, structure etc. and
reference type like class, delegates [Section 3.7]). Now we will see what happens when reference
type variables (i.e. objects of class) are passed as parameters. Consider the program –

Program 3.30

using System;

class Person
{
 string name;
 int age;

 public Person(string n, int a)
 {
 name=n;
 age=a;
 }

 public static void CallByVal(Person p)
 {
 p.age=66;
 p=new Person("Shyamu", 25);
 }

 public static void CallByRef(ref Person p)
 {

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

82

 p.age=55;
 p=new Person("Shyamu", 20);
 }

 public void disp()
 {
 Console.WriteLine("{0} {1}", name, age);
 }

 public static void Main()
 {
 Person p1=new Person("Ramu", 30);
 p1.disp();
 CallByVal(p1);
 p1.disp();
 CallByRef(ref p1);
 p1.disp();
 }
}

The output would be –

Ramu 30
Ramu 66
Shyamu 20

In the Main() function, we have created an object p1 of Person class. Memory will be allocated to
p1 from heap as p1 is of reference type (object of a class). Now, the display will be –

 Ramu 30

Now we are passing p1 to the function using call-by-value method. But, by nature, p1 is of
reference type. So, in the receiving end, the object p takes the reference of p1. That means, the
memory location for both p1 and p will be same. Thus, the statement
 p.age = 66;

will affect the original object p1. And hence the output will be –

 Ramu 66

But, when we try to allocate new memory for p, the compiler will treat p as different object and
new memory is allocated from heap. Now onwards, p and p1 are different.

Next, we are passing p1 using the modifier ref. This is nothing but call-by-reference. Here also,
the receiving object p will be a reference to p1. Since the parameter passing technique used is

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

83

call-by-reference, as per the definition, any changes in method should affect the calling method.
Thus, the statement
 p= new Person(“Shyamu”, 20);

will affect the original object p1 and hence the output is –

Shyamu 20

NOTE: The important rule to be remembered is: “If a class type (reference type) is passed by
reference, the called method will change the values of the object’s data and also the object
it is referencing”.

3.18 Array Manipulation in C#
C# arrays look like that of C/C++. But, basically, they are derived from the base class viz.
System.Array. Array is a collection of data elements of same type, which are accessed using
numerical index. Normally, in C#, the array index starts with 0. But it is possible to have an array
with arbitrary lower bound using the static method CreateInstance() of System.Array. Arrays can
be single or multi-dimensional. The declaration of array would look like –

 int[] a= new int[10];
 a[0]= 5;
 a[1]= 14;
 ……….
 string[] s= new string[2]{“Ramu”, “Shymu”};
 int[] b={15, 25, 31, 78}; //new is missing. Still valid

In .NET, the members of array are automatically set to their respective default value. For example,
in the statement,
 int[] a= new int[10];
all the elements of a are set to 0. Similarly, string array elements are set to null and so on.

Array as Parameters and Return Values
Array can be passed as parameter to a method and also can be returned from a method.
Consider the following example –

Program 3.31

using System;
class Test
{
 public static void disp(int[] arr) //taking array as parameter
 {
 for(int i=0;i<arr.Length;i++)
 Console.WriteLine("{0} ", arr[i]);

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

84

 }

 public static string[] MyFun() //returning an array
 {
 string[] str={"Hello", "World"};
 return str;
 }

 public static void Main()
 {
 int[] p=new int[]{20, 54, 12, -56};

 disp(p);

 string[] strs=MyFun();
 foreach(string s in strs)
 Console.WriteLine(s);
 }
}

The output would be –
 20 54 12 -56 Hello World

Working with Multidimensional Arrays
There are two types of multi-dimensional arrays in C# viz. rectangular array and jagged array.
The rectangular array is an array of multiple dimensions and each row is of same length. For
example –

Program 3.32

using System;
class Test
{
 public static void Main()
 {
 int[,] arr=new int[2,3]{{5, 7, 0}, {3, 1, 8}};
 int sum=0;

 for(int i=0;i<2; i++)
 for(int j=0;j<3;j++)
 sum=sum+arr[i,j];

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

85

 Console.WriteLine("Sum is {0}", sum);

 }
}

The output would be –
 Sum is 24

Jagged array contain some number of inner arrays, each of which may have unique size. For
example –
Program 3.33

using System;
class JaggedArray
{
 public static int[][] JArr=new int[3][];

 public static void Main()
 {
 int m, n, p, sum=0;

 Console.WriteLine("Enter the sizes for 3 inner arrays:");
 m=int.Parse((Console.ReadLine()).ToString());
 n=int.Parse((Console.ReadLine()).ToString());
 p=int.Parse((Console.ReadLine()).ToString());

 JArr[0]=new int[m];
 JArr[1]=new int[n];
 JArr[2]=new int[p];

 Console.WriteLine("Enter the elements for array:");
 for(int i=0;i<3;i++)
 for(int j=0;j<JArr[i].Length;j++)
 {
 JArr[i][j]=int.Parse((Console.ReadLine()).ToString());
 sum=sum+JArr[i][j];
 }

 Console.WriteLine("\nThe Sum is: {0}",sum);
 }
}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

86

The output would be –
Enter the sizes for 3 inner arrays:
2 3 2
Enter the elements for array:
1 2 3 4 5 6 7
The Sum is: 28

The System.Array Base Class
Every array in C# is derived from the class System.Array. This class defines number of methods
to work with arrays. Few of the methods are given below –

Member Meaning
BinarySearch() This static method searches a (previously sorted) array for a given item.

If the array is composed of user-defined data types, the type in question
must implement the IComparer interface to engage in a binary search.

Clear() This static method sets a range of elements in the array to empty values
(0 for value types; null for reference types).

CopyTo() This method is used to copy elements from the source array into the
destination array.

Length This read-only property is used to determine the number of elements in an
array.

Rank This property returns the number of dimensions of the current array.

Reverse() This static method reverses the contents of a one-dimensional array.

Sort() This method sorts a one-dimensional array of intrinsic types. If the
elements in the array implement the IComparer interface, we can also sort
an array of user-defined data type .

Consider the following example to illustrate some methods and/or properties of System.Array
class –
Program 3.34

using System;

class Test
{
 public static void Main()

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

87

 {
 int[] arr=new int[5]{12, 0, 45, 32, 67};

 Console.WriteLine("Array elements are :");

 for(int i=0;i<arr.Length;i++)
 Console.WriteLine("{0}\t", arr[i]);

 Array.Reverse(arr);

 Console.WriteLine("Reversed Array elements are :");
 for(int i=0;i<arr.Length;i++)
 Console.WriteLine("{0}\t", arr[i]);

 Array.Clear(arr, 1, 3);

 Console.WriteLine("Cleared some elements :");
 for(int i=0;i<arr.Length;i++)
 Console.WriteLine("{0}\t", arr[i]);
 }
}

The Output would be –

Array elements are:
12 0 45 32 67
Reversed Array elements are:
67 32 45 0 12
Cleared some elements:
67 0 0 0 12

3.19 String Manipulation in C#
Till now, we have used string key word as a data type. But truly speaking, string is an alias type
for System.String class. This class provides a set of methods to work on strings. Following is a list
of few such methods –

Member Meaning
Length This property returns the length of the current string.

Contains() This method is used to determine if the current string object contains a specified string.

Concat() This static method of the String class returns a new string that is composed of two

discrete strings.
CompareTo() Compares two strings.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

88

Copy() Returns a fresh new copy of an existing string.

Format() This static method is used to format a string literal using other primitives (i.e., numerical
data and other strings) and the {0} notation examined earlier in this chapter.

Insert() This method is used to receive a copy of the current string that contains newly inserted
string data.

PadLeft()
PadRight()

These methods return copies of the current string that has been padded with specific
data.

Remove()
Replace()

Use these methods to receive a copy of a string, with modifications (characters
removed or replaced).

Substring() This method returns a string that represents a substring of the current string.

ToCharArray() This method returns a character array representing the current string.

ToUpper()
ToLower()

These methods create a copy of a given string in uppercase or lowercase.

Consider the following example –

Program 3.35

using System;

class Test
{
 public static void Main()
 {
 System.String s1="This is a string";
 string s2="This is another string";

 if(s1==s2)
 Console.WriteLine("Same strings");
 else
 Console.WriteLine("Different strings");

 string s3=s1+s2;

 Console.WriteLine("s3={0}",s3);

 for(int i=0;i<s1.Length;i++)

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

89

 Console.WriteLine("Char {0} is {1}\n",i, s1[i]);

 Console.WriteLine("Cotains 'is'?: {0}", s1.Contains("is"));

 Console.WriteLine(s1.Replace('a',' '));
 }
}

The output would be –

Different strings
s3=This is a stringThis is another string
Char 0 is T Char 1 is h Char 2 is i Char 3 is s Char 4 is Char 5 is i
Char 6 is s Char 7 is Char 8 is a Char 9 is Char 10 is s Char 11 is t
Char 12 is r Char 13 is I Char 14 is n Char 15 is g

Cotains 'is'?: True
This is string

Escape Characters and “Verbatim Strings”
Just like C, C++ and Java, C# also provides some set of escape characters as shown –

Character Meaning
\’ Inserts a single quote into a string literal.
\" Inserts a double quote into a string literal.
\\ Inserts a backslash into a string literal. This can be quite helpful when

defining file paths.
\a Triggers a system alert (beep). For console applications, this can be an

audio clue to the user.
\b Triggers a backspace.
\f Triggers a form feed.
\n Inserts a new line (on Win32 platforms).
\r Inserts a carriage return.
\t Inserts a horizontal tab into the string literal
\u Inserts a Unicode character into the string literal.
\v Inserts a vertical tab into the string literal
\0 Represents NULL character.

In addition to escape characters, C# provides the @-quoted string literal notation named as
verbatim string. Using this, we can bypass the use of escape characters and define our literals.
Consider the following example –

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

90

Program 3.36
using System;
class Test
{
 public static void Main()
 {
 string s1="I said, \"Hi\"";

 Console.WriteLine("{0}",s1);

 s1="C:\\Notes\\DotNet\\Chapter3.doc";
 Console.WriteLine("{0}",s1);

string s2=@"C:\Notes\DotNet\Chapter3.doc";
 Console.WriteLine("{0}",s2);
 }
}

The output would be –

I said, "Hi"
C:\Notes\DotNet\Chapter3.doc
C:\Notes\DotNet\Chapter3.doc

Using System.Text.StringBuilder
In the previous examples, we tried to change the content of strings using various methods like
Replace(), ToUpper() etc. But, the value of a string cannot be modified once it is established. The
methods like Replace() may seems to change the content of the string, but actually, those
methods just output a copy of the string and the original string remains the same. For example –

 string s1=”Hello”;
 Console.WriteLine(“s1={0}”, s1); //Hello
 string s2=s1.ToUpper();
 Console.WriteLine(“s2={0}”, s2); //HELLO

Console.WriteLine(“s1={0}”, s1); //Hello

Thus, whenever we want to modify a string, we should have a new string to store the modified
version. That is, every time we have to work on a copy of the string, but not the original. To avoid
this in-efficiency, C# provides a class called StringBuilder contained in the namespace
System.Text. Any modification on an instance of StringBuilder will affect the underlying buffer
itself. Consider the following example –

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

91

Program 3.37
using System;
using System.Text;

class Test
{
 public static void Main()
 {
 StringBuilder s1= new StringBuilder("Hello");
 s1.Append(" World");

 Console.WriteLine("{0}",s1);

 string s2=s1.ToString().ToUpper();

 Console.WriteLine("{0}",s2);

 }
}

The output would be –
Hello World
HELLO WORLD

3.20 C# Enumerations
When number of values taken by a type is limited, it is better to go for symbolic names rather than
numeric values. For example, the marital status of a person can be any one of Married, Widowed,
Unmarried, Divorced. To have such symbolic names, C# provides enumerations –

 enum M_Status
 {
 Married, //0

Widowed, //1
Unmarried, //2
Divorced //3

 }
In enumeration, the value for first symbolic name is automatically initialized to 0 and second to 1
etc. If we want to give any specific value, we can use –

enum M_Status
 {
 Married =125,

Widowed, //126

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

92

Unmarried, //127
Divorced //128

 }

Or

enum M_Status
 {
 Married =125,

Widowed=0,
Unmarried=23,
Divorced=12

 }

By default, the storage type used for each item of enumeration is System.Int32. We can change it,
if we wish –

enum M_Status: byte
 {
 Married =125,

Widowed=0,
Unmarried=23,
Divorced=12

 }

Enumerations can be used as shown below –

Program 3.38

using System;

class Test
{
 enum M_Status: byte
 {
 Married =125,
 Widowed=0,
 Unmarried=23,
 Divorced=12
 }
 public static void Main()
 {
 M_Status p1, p2;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

93

 p1=M_Status.Married;
 p2=M_Status.Divorced;

 if(p1==M_Status.Married)
 Console.WriteLine("p1 is married"); // p1 is married

 if(p2==M_Status.Divorced)
 Console.WriteLine("p2 is {0}", M_Status.Divorced); //p2 is Divorced

}
}

The System.Enum Base Class
The C# enumerations are derived from System.Enum class. This base class defines some
methods for working with enumerations.

Member Meaning
Format() Converts a value of a specified enumerated type to its equivalent

string representation according to the specified format
GetName()
GetNames()

Retrieves a name (or an array containing all names) for the constant
in the specified enumeration that has the specified value

GetUnderlyingType() Returns the underlying data type used to hold the values for a given
enumeration

GetValues() Retrieves an array of the values of the constants in a specified
enumeration

IsDefined() Returns an indication of whether a constant with a specified value
exists in a specified enumeration

Parse() Converts the string representation of the name or numeric value of
one or more enumerated constants to an equivalent enumerated
object

Consider the following example to illustrate some of the methods of Enum class.
Program 3.39

using System;

class Test
{
 enum M_Status
 {
 Married ,
 Widowed,
 Unmarried,

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

94

 Divorced
 }

 public static void Main()
 {
 Console.WriteLine(Enum.GetUnderlyingType(typeof(M_Status)));

 Array obj =Enum.GetValues(typeof(M_Status));
 Console.WriteLine("This enum has {0} members", obj.Length);

 foreach(M_Status p in obj)
 {
 Console.WriteLine("String name: {0}", p.ToString());
 Console.WriteLine("int: ({0}),", Enum.Format(typeof(M_Status), p, "D"));
 Console.WriteLine("hex: ({0}),", Enum.Format(typeof(M_Status), p, "X"));
 }

 if(Enum.IsDefined(typeof(M_Status), "Widowed"))
 Console.WriteLine("Widowed is defined");

 M_Status p1 = (M_Status)Enum.Parse(typeof(M_Status), "Divorced");
 Console.WriteLine("p1 is {0}", p2.ToString());

 M_Status p2=M_Status.Married;

 if(p1<p2)
 Console.WriteLine(“p1 has less value than p2”);
 else

Console.WriteLine(“p1 has more value than p2”);
 }
}

The output would be –

System.Int32
This enum has 4 members

String name: Married int: (0) hex: (00000000)
String name: Widowed int: (1) hex: (00000001)
String name: Unmarried int: (2) hex: (00000002)
String name: Divorced int: (3) hex: (00000003)

Widowed is defined

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

95

p1 is Divorced
 p1 has more value than p2

3.21 Defining Structures in C#
In C#, structures behave similar to class, except that memory structures will be allocated in stack
area, whereas for class memory will be allocated from heap area. Structures can have member
data, member methods, constructors (only parameterized) and they can implement interfaces.
Structure in C# is directly derived from System.ValueType. We can implement boxing and
unboxing on structures just like as we do for any intrinsic data types.

Consider the following example –

Program 3.40

using System;

struct EMP
{
 public int age;
 public string name;

 public EMP(int a, string n)
 {
 age=a;
 name=n;
 }

 public void disp()
 {
 Console.WriteLine("Name ={0}, Age ={1}", name, age);
 }
}

class Test
{
 public static void Main()
 {
 EMP e=new EMP(25, "Ramu");
 e.disp();

 object ob=e; //boxing
 MyFun(ob);
 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

96

 public static void MyFun(object obj)
 {
 EMP t=(EMP)obj; //unboxing

 Console.WriteLine("After boxing and un-boxing:");
 t.disp();
 }
}

The output would be –
 Name =Ramu, Age =25

After boxing and un-boxing:
Name =Ramu, Age =25

3.21 Defining Custom Namespaces
In the programs we discussed till now, we have used namespaces like System, System.Text etc.
These are existing namespaces in the .NET framework. We can define our own namespace i.e.
user-defined namespace (or custom namespace). Whenever we want to group similar classes
into a single entity, we can define a namespace.

Assume we need to develop a program to show the features of several vehicles like car, bus and
bike. Then, the classes for all these vehicles can be put under a namespace like –

 namespace Vehicle
 {
 public class Car
 {
 //members of Car class
 }

public class Bus
 {
 //members of Bus class
 }

 public class Bike
 {
 //members of Bike class
 }
 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

97

Now, the namespace Vehicle acts as a container for all these classes. If we want to create an
object of any of these classes in any other application, we can simply write –

 using System;
 using Vehicle; //note this

 class Test
 {
 public static void Main()
 {
 Car c=new Car();

 }
 }

Resolving Name Clashes Across Namespaces
There may be situation where more than one namespace contains the class with same name. For
example, we may have one more namespace like –

 namespace MyVehicle
 {
 public class Car
 {
 //members of Car class
 }

 }

When we include the namespaces MyVehicle and Vehicle, and try to create an object of Car
class, we will get an error. To avoid this, we will use dot operator for combining namespace name
and class name. For example –

 using System;

using Vehicle;
 using MyVehicle;

 class Test
 {
 public static void Main()
 {
 // Car c=new Car(); Error!!! name conflict

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

98

 Vehicle.Car c1=new Vehicle.Car();
 MyVehicle.Car c2=new MyVehicle.Car();

 }
 }

Defining Namespace Aliases
The ambiguity in the namespaces can also be resolved using alias names as shown –

using System;
using Vehicle;

 using MyVehicle;

 using MyCar=MyVehicle.Car;

class Test
 {
 public static void Main()
 {
 Car c1=new Car();
 MyCar c2=new MyCar();

 }
 }

Nested Namespaces
We can nest one namespace within the other also. For example –

 namespace Vehicle
 {
 namespace MyVehicle
 {

 }
 }

Or
 namespace Vehicle.MyVehicle
 {

 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

99

Frequently Asked Questions:
1. What do you understand by ‘params’ method of parameter passing? Give an example. (6)
2. What is boxing and unboxing? Explain with an example for each. (6)
3. Explain the C# static methods and static data with suitable examples. (10)
4. Write a program to illustrate the difference between passing reference types by reference and

by value. (8)
5. Using the methods in System.String class, design a C# method which replaces all occurrences

of the word “computer” with “COMPUTER”. (6)
Program:

using System;
class Test
{
 public static void Main()
 {
 string s1="my computer is good computer";
 string s2;
 s2=s1.Replace("computer", "COMPUTER");
 Console.WriteLine("{0}",s2); //my COMPUTER is good COMPUTER
 }
}

6. What is the difference between System.String and System.Text.StringBuilder? Explain with

relevant code some of the features of StringBuilder class. (5)
7. Write a C# program to design a structure Student<USN, Name, Marks, Branch>. Here, Branch

is of type Enum with members MCA, MBA, MTech. Add appropriate constructor and also a
method to hike the marks by 10% to only MCA students. Show creation of some Student
objects and the way to call these methods. (12)

using System;

public enum Branch
{
 MCA,
 MBA,
 MTech
}

struct Student
{
 string USN;
 string Name;
 double marks;
 Branch b;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

100

 public Student(string usn, string name, double m, Branch br)
 {
 USN=usn;
 Name=name;
 marks=m;
 b=br;
 }
 public void Hike_Marks()
 {
 if(b==Branch.MCA)
 {
 marks=marks + 0.1 * marks;
 }
 }
 public void disp()
 {

 Console.WriteLine("{0} \t {1} \t\t {2} \t\t {3}", USN, Name, marks, b);
 }

 public static void Main()
 {
 Student[] s=new Student[4];
 s[0]=new Student("1RN07MCA01","Abhishek",75.0,Branch.MCA);
 s[1]=new Student("1RN07MCA55","Ramu",78.0,Branch.MCA);

 s[2]=new Student("1RN06MBA01","Shamu",72.0,Branch.MBA);
 s[3]=new Student("1RN08MTec01","Rani",75.0,Branch.MTech);

 for(int i=0;i<4;i++)
 s[i].Hike_Marks();

 Console.WriteLine("***********Student Details *************");
 Console.WriteLine("USN \t \tName \t\t Marks \t\t Branch");

 for(int i=0;i<4;i++)
 s[i].disp();
 }
}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

101

The output would be –

***********Student Details *************
USN Name Marks Branch
1RN07MCA01 Abhishek 82.5 MCA
1RN07MCA55 Ramu 85.8 MCA
1RN06MBA01 Shamu 72 MBA
1RN08MTec01 Rani 75 MTech

8. Explain various method parameter modifiers used in C#. (5)
9. Design a C# class called Matrix containing an integer matrix as a member and methods to

(i) read the elements of the matrix from the keyboard
(ii) find the product of two matrices
(iii) to print the elements in the matrix form.

Write a Main() method to call all these methods and to print all the three matrices. (10)
(Lab Program)

10. Write a program to count the number of objects created for a class. (08)
using System;
class Test
{
 public static int count =0;

 public Test()
 {
 count++;
 }
 public static void Main()
 {
 Test t1=new Test();
 Test t2=new Test();
 Console.WriteLine("Number of objects={0}", count); //2
 Test t3=new Test();
 Console.WriteLine("Number of objects={0}", count); //3
 }
}

11. Write a C# application which defines a class Shape, with four data members length, breadth,

height and radius, appropriate constructors and methods to calculate volume of cube, cone
and sphere. Also write ShapeApp, which creates these 3 objects i.e. cube, cone and sphere
using appropriate constructors and calculates their volume with the help of above class
methods. (10)

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

102

using System;

class Shape
{
 double length, breadth, height, radius;
 const double pi=3.1416;
 double volume;

 public Shape(double l, double b, double h) //for cube
 {
 length=l;
 breadth=b;
 height=h;
 }

 public Shape(double r) //for sphere
 {
 radius = r;
 }

 public Shape(double r, double h) //for cone
 {
 radius=r;
 height=h;
 }

 public double Cube_Vol()
 {
 volume = length* breadth * height;
 return volume;
 }
 public double Sphere_Vol()
 {
 volume=(4/3)*pi*Math.Pow(radius,3);
 return volume;
 }

 public double Cone_Vol()
 {
 volume=(1.0/3)*pi*Math.Pow(radius,2) * height;
 return volume;
 }
}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

103

class ShapeApp
{
 public static void Main()
 {
 Shape s1=new Shape(5.0); //Sphere
 Shape s2=new Shape(3, 4,5); //Cube
 Shape s3=new Shape(2, 4); //Cone

 Console.WriteLine("Volume of Sphere= {0}", s1.Sphere_Vol());
 Console.WriteLine("Volume of Cube= {0}", s2.Cube_Vol());
 Console.WriteLine("Volume of Cone= {0}", s3.Cone_Vol());
 }
}

The output would be –
Volume of Sphere= 392.7
Volume of Cube= 60
Volume of Cone= 16.7552

12. What is the output printed by the following code segment and why? (6)

struct Point
{
 public int x, y;
 public Point(int x, int y)
 {
 this.x=x ;
 this.y=y ;
 }
}
Point p=new Point(10,10) ;
object obj=p ;
p.x=20;
Console.WriteLine(“p.x={0}”, p.x); //20
Console.WriteLine("obj.x={0}", ((Point)obj).x) ; //10

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

104

UNIT 4. Object-Oriented Programming with C#

In this chapter we will discuss basics of OOPs and OOPs concepts like encapsulation, inheritance
and polymorphism.

4.1 Formal Definition of the C# Class
Class is a basis of OOPs. A class can be defined as a user-defined data type (UDT) that is
composed of data (or attributes) and functions (or methods) that act on this data. In OOPs, we
can group data and functionality into a single UDT to model a real-world entity.

A C# class can define any number of constructors. Constructor is a special type of method called
automatically when object gets created. They are used to provide initial values for some attributes.
The programmer can define default constructor to initialize all the objects with some common
state. Custom or parameterized constructors can be used to provide different states to the objects
when they get created. The general form of a C# class may look like –

 class class_name
 {
 //data members
 //constructors
 //methods
 }

Understanding Method Overloading
A class can have more than one method with a same name only if number and/or type of
parameters are different. Such methods are known as overloaded methods. For example –

 // Example for overloaded constructors

class Employee
 {
 public Employee() //default constructor
 { }

 public Employee(string name, int EmpID, float BasicSal)
 {
 //some code
 }
 }

// overloaded member-methods: number of arguments are different
class Triangle

 {

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

105

 public float Draw(float height, float base) //two arguments
 {
 //some code

}
 public float Draw(float sideA, float sideB, float sideC) //3 arguments
 {
 //some code
 }
 }

// overloaded member-methods: type of arguments are different
class Shape

 {
 public float Area(float height, float base)
 {
 //some code

}

 public int Area(int a, int b)
 {
 //some code
 }
 }

// overloading can not be done only based on return-type
class Shape

 {
 //error!!!

public float Area(float height) //one parameter of type float
 {
 //some code

}

public int Area(float a) //one parameter of type float
 {
 //some code
 }
 }

Self-Reference in C#
The key-word this is used to make reference to the current object i.e. the object which invokes
the function-call. For example –

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

106

class Employee

 {
 string name;
 int eId;

 public Employee(string name, int EmpID)
 {
 this.name=name;
 this.eId=EmpID;
 }
 }

Note that the static member functions of a class can not use this keyword as static methods are
invoked using class name but not the object.

Forwarding Constructor Calls using “this”
Using this keyword, we can force one constructor to call another constructor during constructor
call. This will help us to avoid redundancy in member initialization logic.

Consider that there is a class called IDGenerator containing a static method to generate employee
id based on some pre-defined criteria like department and designation of employee. The
application may be having two situations: (a) provide an employee id at the time of object creation,
and (b) the employee id must be generated from IDGenerator class. But the parameter like name
of the employee is provided during object creation itself. In such a situation, to avoid code-
redundancy, we may use this keyword to forward one constructor call to other as shown below –

 class IDGenerator
 {
 static int id;

 public static int GetEmpID()
 {
 //code for generating an employee id viz id
 return id;
 }
 }

 class Employee
 {
 string name;
 int eID;
 float BasicSal;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

107

 public Employee(string n, int EmpID, float b)
 {
 this.name=n; //either use this
 this.eID=EmpID;
 BasicSal=b; //or not use this
 }

/ * GetEmpID() method is called first to generate employee-id and
then the construct call is forwarded to the above constructor */

public Employee(string n): this(n, IDGenerator.GetEmpID(), 0.00)

 { }
public static void Main()

 {
 //direct call for constructor with three arguments

Employee e1=new Employee(“Ramu”, 111, 12000.00);

/* call for constructor with single arguments which in-turn
calls constructor with three arguments later
*/

 Employee e2=new Employee(“Shyamu”);

 }
 }

In the above example, if we would have not forwarded the constructor call, then we would need to
write redundant code in the second constructor like –

 public Employee(string n)
 {
 this.name=n;
 this.eID=IDGenerator.GetEmpID();
 this.BasicSal=0.00;
 }

Thus, using this keyword to forward constructor call, we are avoiding code redundancy.

4.2 Defining the “Default Public Interface” of a Type
The term default public interface refers to the set of public members (data or method) that are
directly accessible from an object. That means, the default public interface is any item declared in
the class with the keyword public. In C#, the default public interface of a class may be any of the
following:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

108

 Methods : Named units that model some behavior of a class
 Properties : Accessor and mutator functions
 Public data : A data member which is public (though it is not good to use, C#
 provides if programmer needs)

Apart from above items, default public interface may include user defined event, delegates and
nested types.

Specifying Type Visibility: Public and Internal Types
We know that any member of a class can be declared for its level of visibility (access specifier)
using the keyword public, private, protected, internal and protected internal. Just like members,
the type (class, structure, interface, delegate, enumeration) itself can be specified for its level of
visibility.

The method/member visibility is used to know which members can be accessed from an object
of the type, where as, the type visibility is used to know which parts of the system can create the
object of that type.
A non-nested C# type can be marked by either public or internal and nested types can be
specified with any of public, private and internal. The public types can be created by any other
objects within the same assembly or by other external assemblies. But, the internal types can be
created by the types within the same assembly and are not accessible outside the assembly. By
default, the visibility level of a class is internal. For example,

 //this class can be used outside this assembly also
 public class Test
 {
 //body of the class
 }

//this class can be accessed only within its assembly
 internal class Test
 {
 //body of the class
 }

 Or

class Test //by default, it is internal
 {
 //body of the class
 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

109

4.3 Recapping the Pillars of OOP
All the object oriented languages possess three principals (considered to be pillars of OOP) viz.

 Encapsulation : How the languages hide an object’s internal implementation?
 Inheritance : How the languages promote code reuse?
 Polymorphism : How the languages let the programmer to treat related objects in a

 similar way?

Here, we will discuss the basic role of each of these pillars and then move forward for detailed
study.

Encapsulation Services
Encapsulation is the ability to hide unnecessary implementation details from the object user. For
example, assume we have created a class named DBReader having methods open() and close():

DBReader d=new DBReader();
d.open(“C:\MyDatabase.mdf”);
……..
d.close();

The class DBReader has encapsulated the inner details of locating, loading, manipulating and
closing data file. But, the object user need not worry about all these.

Closely related to the notion of encapsulation is data hiding. We do this by making data members
as private. The private data can be modified only through the public member functions of that
class.

Inheritance: The is-a and has-a Relationships
Inheritance is the ability to create new class definitions based on existing class definitions. In other
words, inheritance allows us to extend the behavior of base class by inheriting core functionality
into a derived class.

For example, we know that System.Object is the topmost class in .NET. We can create a class
called Shape which defines some properties, fields, methods and events that are common to all
the shapes. The Hexagon class extends Shape and inherits properties of Shape and Object. It
contains properties of its own. Now, we can say Hexagon is a Shape, which is an object. Such
kind of relationship is called as is-a relationship and such inheritance is termed as Classical
inheritance.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

110

There is another type of code reuse in OOP viz. the containment/delegation model or has-a
relationship. This type of reuse is not used for base class/child class relationships. Rather, a given
class can define a member variable of other class and make use of that either fully or partly.

For example, a Car can contain Radio. The containing type (Car) is responsible for creating the
inner object (Radio). If the Car wishes to make the Radio’s behavior accessible from a Car
instance, it must provide some set of public functions that operate on the inner type.

Polymorphism: Classical and Ad Hoc
Polymorphism can be of two types viz. classical and Ad Hoc. A Classical polymorphism takes
place in the languages that support classical inheritance. The base class can define a set of
members that can be overridden by a subclass. When subclass overrides the behavior defined by
a base class, they are essentially redefining how they respond to the same message. For
example, assume Shape class has defined a function named Draw() without any parameter and
returning nothing. As every shape has to be drawn in its own manner, each subclass like
Hexagon, Circle etc. can redefine the method Shape() as shown –

Object

Shape

Hexagon

Car

Radio

//Method of Car
void TurnOnRadio(bool on)
{
 //Delegate to inner Radio
 radioObj.Power(on);
}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

111

Classical polymorphism allows a base class to enforce a given behavior on all subclasses.

Ad hoc polymorphism allows objects that are not related by classical inheritance to be treated in
a similar manner, provided that every object has a method of the exact signature. Languages that
support ad hoc polymorphism possess a technique called late binding to find the underlying type
of given object at runtime.

Consider the following situation:

Note that the three classes Circle, Hexagon and Rectangle are not from same base. Still each
class supports an identical Draw() method. This is possible by implementing Draw() method on
generic types. When a particular type is used for calling Draw(), it will act accordingly.

4.4 The First Pillar: C#’s Encapsulation Services
The concept of encapsulation says that the object’s data should not be directly accessible from a
method. If the data is to be manipulated, it has to be done indirectly using accessor (get) and
mutator(set) method. C# provides following two techniques to manipulate private data members –

• Define a pair of traditional accessor and mutator methods
• Defined a named property.

Object

Shape

Hexagon

void Draw()

Circle

Draw()

Draw()

Circle Hexagon Rectangle

Draw() Draw() Draw()

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

112

It is good programming practice to make all the data members or fields of a class as private. This
kind of programming is known as black box programming.

Enforcing Encapsulation Using Traditional Accessors and Mutators
If we want to access any private data, we can write a traditional accessor (get method) and when
we want to provide value to data, we can write a mutator (set method). For example,

 class Emp
 {

string Name;
 public string GetName() //accessor
 {
 return Name;
 }
 public void SetName(string n) //mutator
 {
 Name=n;
 }
 }
 class Test
 {

public static void Main()
 {
 Emp p=new Emp();
 p.SetName(“Ramu”);
 Console.WriteLine(“{0}”,p.GetName());
 }
 }

In this example, using the public methods, we could able access private data.

Another Form of Encapsulation: Class Properties
Apart from traditional accessors and mutators, we can make use of properties provided by .NET
class (and structures, interfaces). Properties resolve to a pair of hidden internal methods. The
user need not call two separate methods to get and set the data. Instead, user is able to call what
appears to be a single named field. For illustration, consider the following example –

using System;
class Emp
{
 string Name;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

113

public string EmpName // EmpName is name of the property
 {
 get
 {
 return Name; // Name is field-name
 }
 set
 {
 Name=value; // value is a keyword
 }
 }
}

class Test
{
 public static void Main()
 {
 Emp p=new Emp();
 p.EmpName="Ramu"; //use name of the property

 Console.WriteLine("{0}",p.EmpName);
 }
}

A C# property is composed using a get block (accessor) and set block (mutator). The value
keyword represents the right-hand side of the assignment. Though, value is an object, the
underlying type of the object depends on which kind of data it represents. For example, in the
previous program, the property EmpName is operating on a private string, which maps to
System.String. Unlike traditional accessors and mutators, the properties make our types easier to
manipulate.

Properties are able to respond to the intrinsic operators in C#. For example,

using System;
class Emp
{
 int Sal;

 public int Salary
 {
 get
 {

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

114

 return Sal;
 }
 set
 {
 Sal=value;
 }
 }
}
class Test
{
 public static void Main()
 {
 Emp p=new Emp();
 p.Salary=12000;
 p.Salary++;
 Console.WriteLine("{0}",p.Salary); //12001
 p.Salary -=400;
 Console.WriteLine("{0}",p.Salary); //11601
 }
}

Read-only and Write-only Properties
In some of the situations, we just want to set a value to a data member and don’t want to return it.
In such a situation, we can omit get block. A property with only a set block is known as write-only
property. In the same manner, we can just have a get block and omit set block. A property with
only a get block is known as read-only property. For example,

 class Emp
 {
 string SSN, name;
 int EmpID;

 public Emp(string n, int id)
 {
 name=n;
 EmpID=id;
 }
 public string EmpSSN //read-only property
 {
 get{ return SSN;}
 }
 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

115

Understanding static properties
C# supports static properties. Note that, static members of a class are bound to class but not for
objects. That is, to access static members, we need not create an object of the class. The same
rule will apply to static properties too. For example,

 class Emp
 {
 static string CompanyName;

 public static string Company
 {
 get{ return CompanyName; }
 set{ CompanyName=value; }
 }

public static void Main()
 {
 Emp.Company=“RNSIT”; //use class name
 Console.WriteLine(“We are at {0}”, Emp.Company);
 }
 }

Understanding static Constructors
As we have seen, static properties can be used to set and get values for static members. Assume
a situation, where we need to just set a value commonly for all the objects. Writing a static write-
only property with a set-block and then assigning value is quite time-consuming. For this purpose,
C# provides another method for doing so, through static constructors. For example,

 class Emp
 {
 static string CompanyName;
 static Emp()
 {
 CompanyName=“RNSIT”;
 }
 public static void Main()
 {
 Console.WriteLine(“We are at {0}”, Emp.Company);
 }
 }

Now, all the objects of Emp class will be set the value ”RNSIT” for the member CompanyName
automatically as soon as the objects gets created.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

116

4.5 Pseudo-Encapsulation: Creating Read-only Fields
Just like read-only properties, we have a notion of read-only fields. Read-only fields offer data
preservation via the keyword readonly. The readonly field can be given a value through
assignment only at the time of declaration or as a part of constructor.

 class Student
 {
 public readonly int Sem=5; //assignment during declaration
 public readonly string USN;
 string name;

 public Student(string n, string usn)
 {
 name=n;
 USN=usn; //assignment through constructor
 }

public static void Main()
 {
 Student s1=new Student(“Abhishek”, “1RN07MCA01”);
 s1.Sem= 3; //error
 s1.USN=“1RN07MCA02”; //error
 ………
 }
 }

NOTE:

• The keyword readonly is different from const.
• The const fields can be assigned a value at the time of declaration only and assignment is

not possible there-after.
• So, const fields will have same value through out the program, as it is compile-time

constant.
• On the other hand, readonly fields can be assigned a value through constructor also.
• So, they can have different values based on constructor call.
• For example –

class Student
{
 public readonly int Sem=5; //make Sem as 5 for all objects
 public readonly string USN;
 string name;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

117

 public Student(string n, string usn)
 {
 name=n;
 USN=usn;
 }

 public Student(string n, string u, int s) //change sem for a particular student

{
 name=n;
 USN=u;
 Sem=s;

}

 public static void Main()
 {
 Student s1=new Student(“Ramu”, “MCA01”); //sem is 5 by default

Student s2=new Student(“Shyam”, “CS02”, 3); //sem is set to 3

 }
}

In the above example, if the field Sem would have been specified with const modifier, then trying
to change the value through constructor will generate error. But, readonly keyword will allow the
programmer to keep some fields as constant unless and otherwise specified through constructor.

4.6 The Second Pillar: C#’s Inheritance Supports
Inheritance facilitates code reuse. The inheritance can be either classical inheritance (is-a
relationship) or containment/delegation model (has-a relationship).

When we establish is-a relationship between classes, we are building a dependency between
types. The basic idea of classical inheritance is that new classes may influence and extend the
functionality of other classes. The hierarchy may look something like –

Now we can say that, Manager is-a Employee and SalesMan is-a Employee.

Employee

Manager

SalesMan

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

118

In classical inheritance, the base classes are used to define general characteristics that are
common to all derived classes. The derived classes extend this general functionality while adding
more specific behaviors to the class.

Consider an example –

 public class Emp
 {
 protected string Name;
 protected int EmpID;
 …………..
 }

public class SalesMan:Emp //SalesMan is inherited from Emp
 {
 int number_of_sales; // also includes members Name, EmpID
 ………..
 }

class Test
{

 public static void Main()
 {

 Emp e=new Emp();
 SalesMan s=new SalesMan();

 }
}

Controlling Base-Class Creation
Usually, the base class constructors are used to initialize the members of base class. When
derived class has few more members and if we need to initialize, then we will write constructor for
derived class. In such a situation, there is a repetition of code. For example –

public class Emp
{
 protected string Name;
 protected int EmpID;

 public Emp(string n, int eid, float s)
 {
 Name=n;
 EmpId=eid;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

119

 }
}

public class SalesMan:Emp
{
 int number_of_sales;

 public SalesMan(string n, int eid, int s)
 {

Name=n; //code repeated
 EmpId=eid; //code repeated
 number_of_sales=s;
 }
}

If there is more number of data fields in the base class, then in each of the derived class
constructors, we need to repeat such assignment statements. To avoid this, C# provides an
option to explicitly call base class constructors as shown below –

public class Emp
{
 protected string Name;
 protected int EmpID;

 public Emp(string n, int eid)
 {
 Name=n;
 EmpId=eid;
 }
}

public class SalesMan:Emp
{
 int bonus;
 public SalesMan(string n, int eid, int b): base(n, eid)
 {
 bonus=b; //other members are passed to base class to initialize
 }
}

class Test
{

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

120

public static void Main()
 {

Emp e1=new Emp(“Ram”, 25);
SalesMan s1= new SalesMan(“Sham”, 12, 10);

}

 }

Multiple Base Classes
Deriving a class from more than one base class is not possible in C#. That is, multiple inheritance
is not supported by C#. When we need to use the properties of more than one class in a derived
class, we need to write interfaces rather than classes. Then we can implement any number of
interfaces to achieve code-reusability.

4.7 Keeping Family Secrets: The protected Keyword
The private members of a class can not be available to derived classes. So, we will go for
protected keeping the privacy of the data. The protected members of a class can not be
accessed from outside, but still be available to derived classes.

Preventing Inheritance: Sealed Classes
In some of the situations, we may don’t want our class to be inherited by any other class. For
example –

Here, a class called Part-time SalesMan is derived from SalesMan class which in-turn is derived
from Employee class as shown in the diagram. Now, we don’t want any more classes to be
derived from Part-time SalesMan class. To prevent such inheritance, C# provides a keyword
sealed. The usage is depicted here-under:

public sealed class Part_TimeSalesMan: SalesMan
{
 //body of Part_TimeSalesMan class
}

Now any attempt made to derive a class from Part_TimeSalesMan class will generate an error:

Employee

SalesMan

Part-time SalesMan

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

121

 public class Test: Part_TimeSalesMan //compile-time error!!!
 {
 …………..

}

Many of the inbuilt classes of C# are sealed classes. One such example is System.String.

Programming for Containment/Delegation
Till now we have discussed is-a relationship. Now we will see, how to write program for has-a
relationship. Consider a class Radio –

 class Radio
 {
 public void TurnOn(bool on)
 {
 if(on)
 Console.WriteLine(“Radio is on”);
 else
 Console.WriteLine(“Radio is off”);
 }
 }

Now, consider a class Car –

 class Car
 {
 int CurrSpeed, MaxSpeed;
 string name;
 bool carIsDead=false;

 public Car() { MaxSpeed=100}
 public Car(string n, int m, int c)
 {
 name=n;
 MaxSpeed=m;
 CurrSpeed=c;
 }
 public void SpeedUp(int a)
 {
 if(carIsDead)
 Console.WriteLine(“Out of order”);
 else

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

122

 {
 CurrSpeed+=a;
 }
 }
 }

Now, we have two classes viz. Radio and Car. But, we can not say, “Car is a Radio” or “Radio is a
Car”. Rather, we can say, “Car has a Radio”. Now, the Car is called containing Class and Radio
is called contained class.

To make the contained class to work, we need to re-define Car class as –

 class Car
 { ………..
 private Radio rd=new Radio();
 }

To expose the functionality of the inner class to the outside world requires delegation. Delegation
is the act of adding members to the containing class that make use of the functionality of
contained class.

 class Car
 { ……….
 public void Tune(bool s)
 {
 rd.TurnOn(s); //delegate request to inner object
 }
 }

To make this function work, in the Main() function we can write –

Car c=new Car();
c.Tune(false);

Thus by making one class to be a member of other class, we can establish has-a relationship. But
it is always the job of outer class to define a member function which activates the inner class
objects.

4.8 Nested Type Definitions
In C#, it is possible to define a type (enum, class, interface, struct, delegate) directly within the
scope of a class. When a type is nested within a class, it is considered as a normal member of
that class. For example,

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

123

class C1
 {
 ……….. //members of outer class
 class C2
 {
 ………. //members of inner class
 }
 }

Nested type seems like has-a relationship, but it is not. In containment/delegation, the object of
contained class is created within containing class. But, it is possible to create the objects
wherever we wish. But in nested types, the inner class definition is within the body of out class
and hence, inner class objects can not be created outside the outer class.

4.9 The Third Pillar: C#’s Polymorphic Support
Polymorphism answers the question “how to make related objects respond differently to the same
request?” Consider the following example to illustrate the need of polymorphism.

Assume we have a base class Employee and two derived classes Manager and SalesMan.

 class Employee
 {
 …….
 public void Bonus(float b)
 {
 basicSal+=b;
 }
 }
 class Manager:Employee
 {

………..
 }
 class SalesMan: Employee
 {

…………
}

Now, the classes Manager and SalesMan both contains the method Bonus(float). Thus in the
Main() function, we can call Bonus() through the objects of Manger and SalesMan –

 Manager m=new Manager();
 m.Bonus(500);

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

124

 SalesMan s=new SalesMan()
 s.Bonus(300);

Obviously, the Bonus() method works same for both the objects. But in reality, the bonus for a
SalesMan should be calculated based on number of sales. Manager can be given bonus based
on his other performance like successful completion and delivery of a project etc. This means, we
need a Bonus() method which works differently in two derived classes.

The polymorphic technique of C# provides solution for this problem. With the help of virtual and
override keywords, we can make same function to behave differently in base-class and all the
derived classes. For example,

class Employee
 {

 public virtual void Bonus(float b)
 {
 basicSal+=b;
 }
 }

class SalesMan:Employee
 {

public override void Bonus(float b)
 {
 int salesBonus=0;

 if(numOfSales<=100)
 salesBonus=10;
 elseif (numOfSales<=200)
 salesBonus=20;

 base.Bonus(b*salesBonus); //making use of base class method
 }
 }

 class Test
 {
 public static void Main()
 {

Employee e=new Employee();
e.Bonus(100); //base class Bonus() is called

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

125

SalesMan s=new SalesMan()
 s.Bonus(300); //derived class Bonus() is called
 }
 }

We can see that when the Bonus() method is invoked through base class object, the
corresponding method will be called. Whereas, when Bonus() is invoked with the object s of
derived class, the overridden method Bonus() will be called.

NOTE that any overridden method is free to call its corresponding base class method using the
keyword base. Thus, the overridden method can have its own statements and also can make use
of the behaviors of base class virtual method also.

Defining Abstract Classes
Sometimes, the creation of base class objects will not be of any use. For example, an Employee
is always identified with a designation. Thus, an employee must be either a Manager or a
SalesMan or working at some such other designation. So, creation of the object of class
Employee is useless. In such situations, we can prevent base class instantiation by making it as
abstract.

 public abstract class Employee
 {
 ………

}

 Employee e=new Employee //error !!

Thus, abstract class is a class which just declares members (data and method) and no object can
be created for this class. The member methods of abstract class may be used by the objects of
derived class either directly or by overriding them in the derived class.

Enforcing Polymorphic Activity: Abstract Methods
An abstract class may contain the definition for methods it is defining. The derived classes are
free to use such methods directly or they can override and then use. But in some situations, the
definitions of abstract base-class methods may not be useful. The derived classes only should
define the required behavior. In this case, we need to force the derived classes to override the
base class methods. This is achieved using abstract methods.

An abstract class can define any number of abstract methods, which will not supply any default
implementation. Abstract method is equivalent to pure virtual functions of C++. The abstract
methods can be used whenever we wish to define a method that does not supply a default
implementation. To understand the need for abstract methods, consider the following situation:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

126

Here, each derived class like Hexagon and Circle of Shape has to override Draw() method to
indicate the methodology of drawing itself. If any derived class forgets to override Draw() method,
the code may look like –

abstract class Shape
{
 public virtual void Draw()
 {
 Console.WriteLine(“Shape.Draw()”);
 }
}
public class Circle:Shape()
{
 public Circle();

}

public class Hexagon:Shape()
{

…………..
 public override void Draw()
 {
 Console.WriteLine(“Hexagon.Draw()”);
 }
}

public class Test
{
 public static void Main()
 {

 Circle c= new Circle();
 c.Draw(); //Draw() method of Shape class is called

Object

Shape

Hexagon

Circle

virtual void Draw()

Draw()

Draw()

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

127

 Hexagon h=new Hexagon();
 h.Draw(); //Draw() method of Hexagon class is called
}

}

In this example, the Circle class is not overriding the Draw() method. So, when the Draw() method
is invoked through the object of Circle class, the Draw() method of Shape class itself will be
called. Obviously, the Draw() method of Shape class will not be having any information about how
to draw a circle and hence it will be meaningless. This shows that virtual methods of base class
need not be overridden by derived classes.

When programmer must be forced to override Draw() method, the method of base class must be
made abstract –

abstract class Shape
{

// completely abstract method. Note the semicolon at the end
 public abstract void Draw();

}

public class Circle:Shape()
{ -----------------
 public override void Draw() //has to override
 {
 Console.WriteLine(“Circle.Draw()”);
 }
}

public class Hexagon:Shape()
{ …………..
 public override void Draw() //has to override
 {
 Console.WriteLine(“Hexagon.Draw()”);
 }
}

public class Test
{
 public static void Main()
 {

 Circle c= new Circle();

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

128

 c.Draw(); //Draw() method of Circle class is called

 Hexagon h=new Hexagon();
 h.Draw(); //Draw() method of Hexagon class is called
}

}

Thus, by making a base class method as abstract, we are making use of run-time
polymorphism or late binding. That is, the binding between the object and the method to be
invoked is decided only at runtime. This concept is more clear when we re-design our Main()
function in the following format:

public static void Main()
{
 Shape[] s={new Circle(), new Hexagon()};

 for(int i=0;i<s.Length;i++)
 s[i].Draw();
}

This may seems to be quite interesting. Till now, we have heard that we can not create objects for
abstract classes. But in the above code snippet, we are creating array of objects of base-classes.
How? This is very obvious as array of objects stores references to variables but not the objects
directly. Thus, in the above example, s[0] stores reference to the object of type Circle and s[1]
stores reference to the object of type Hexagon.

In the for loop, when we use the statement –
 s[i].Draw();
the content (i.e. whether reference to Circle or reference to Hexagon) of s[i] is considered
to decide which Draw() method to be invoked and the type (i.e. here type is Shape) of s[i] is
ignored. This is nothing but run-time polymorphism or late binding.

NOTE (Very important):
After dealing with entire story about abstract classes and abstract methods, somebody may feel
what exactly is the difference between abstract classes and interfaces? Because just-like abstract
classes, interfaces also provide just a prototype of the methods and the implementing classes
have to define those methods. (more about interfaces in Chapter 6)

The major difference comes in case of multiple inheritance. We know that we can not derive a
class from more than one base-class in C#. That is multiple inheritance is not possible. But, we
may have a situation where there is more than one base class and we need to derive a class from
all those base classes and then override the virtual methods present in all the base classes. In
such a situation, instead of writing abstract base classes, we should write interfaces. Because, a
class can be derived from one base class and it can implement many number of interfaces.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

129

Versioning class members
C# provides facility of method hiding, which is logical opposite of method overriding. Assume the
following situation:

The class Circle is derived from Shape. The Shape class has an abstract method Draw() which is
overridden within Circle class to indicate how to draw a circle. The class Oval behaves similar to
Circle. But, methodology for drawing an oval is different from that of circle. So, we need to
prevent the Oval class from inheriting Draw() method. This technique is known as versioning
a class. This is achieved by using the key word new as shown below –

public class Oval: Circle
{
 public Oval()
 {

 }

 public new void Draw()
 {
 //Oval specific drawing algorithm
 }
}

Now, when we create an object of Oval class and invoke Draw() method, the most recently used
definition of Draw() is called. That is,
 Oval ob=new Oval();
 ob.Draw(); //calls the Draw() method of Oval class

Object

Shape

Hexagon

Circle

Oval

Abstract Draw() method defined

Draw() method implemented

Completely new Draw() method
 hiding Circle.Draw()

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

130

Thus, the keyword new breaks the relationship between the abstract Draw() method defined by
the base class and the Draw() method in the derived class.

On the other hand, if we wish, we can make use of the base class method itself by using explicit
casting:
 Oval obj=new Oval();
 ((Circle)obj).Draw(); //calls Draw() method of Circle class

NOTE:
The method hiding is useful when we are making use of the types defined in another .NET
assembly and we are not sure whether that type contains any method with the same name as we
are using. That is, in our application we may be using inbuilt classes (with the help of keyword
using). We are going to create a method Draw() in our application, but we are not sure whether
any of the inbuilt class contains a method with same name. In such a situation, we can just put a
keyword new while declaring our method. This will prevent the possible call to built-in class
method.

4.10 Casting Between
Till now, we have discussed number of class hierarchies. Now we should know the laws of casting
between class types. Consider the following situation, where we have is-a relationship –

Keeping the above class hierarchy in mind, the following declarations are purely valid.

object ob=new Manager();
Employee e=new Manager();
SalesMan s= new Part_timeSalesMan();

Object

Employee

Manager

SalesMan

Part_time
SalesMan

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

131

In all these situations, the implicit casting from derived class to base class is done by the C#
CLR. On the other hand, when we need to convert base class reference to be stored in derived
class object, we should make explicit casting as –

object ob;
Manager m=(Manager)ob;

Here, the explicit cast from base class to derived class is done.

Determining the Type-of Objects
C# provides three ways to determine if a base class reference is actually referring to derived
types:

• Explicit casting
• is keyword
• as keyword

We have seen explicit casting just now. The usage of other two methodology is depicted with the
help of examples:

 Object ob=new Manager();
 if(ob is Manager) //checking whether ob is Manager
 //do something

 Employee e;
 SalesMan s= e as SalesMan; //converting Employee type to SalesMan type
 //do something with s

Numerical Casts
In addition to casting between objects, the numerical conversions also follow similar rules. When
we are trying to cast larger (in size of type) type to smaller type, we need to make explicit casting:

 int x=25000;
 byte b=(byte)x; //loss of information

While converting from larger type to smaller type, there is a chance of data-loss.

When we need to cast smaller type to larger type, the implicit casting is done automatically:

 byte b=23;
 int x=b; //implicit casting
There will not be any loss of data during such casting.

Frequently Asked Questions:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

132

1. Explain “is-a” and “has-a” relationship with respect to inheritance. (5)
2. What is encapsulation? What are two ways of enforcing encapsulation? Give examples for

both the methods. (10)
3. How do you prevent inheritance using sealed classes? Explain with an example. (5)
4. With an example, explain the concept of abstract classes. (5)
5. What are the basic components of Object oriented programming and how they are

implemented? Give examples. (10)
6. Explain abstract methods with example. (5)
7. What do you mean by versioning members? Explain. (5)
8. How do you identify type of an object? Explain. (6)

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

133

UNIT 5. Exceptions and Object Lifetime
In this chapter, we are going to study how to handle runtime anomalies using exception handling.
Then we will explore how CLR manages object lifetime.

5.1 Meaning of Errors, Bugs and Exceptions
Mistakes are bound to happen during programming. Problems may occur due to bad code like
overflow of array index, invalid input etc. So, the programmer needs to handle all possible types of
problems. There are three terminologies to define mistakes that may occur.

• Bugs:
– Errors done by the programmer.
– Example: making use of NULL pointer, referring array index out of bound, not

deleting allocated memory etc.
• Errors:

– Caused by user of the application.
– For example: entering un-expected value in a textbox, say USN.

• Exceptions:
– Runtime anomalies those are difficult to prevent.
– Example: trying to open a corrupted file, trying to connect non-existing database etc.

5.2 The Role of .NET Exception Handling
The .NET platform provides a standard technique to send and trap runtime errors: structured
exception handling (SEH). The beauty of this approach is that developers now have a unified
approach to error handling, which is common to all languages targeting the .NET universe.
Another bonus of .NET exceptions is the fact that rather than receiving a cryptic numerical value
that identifies the problem at hand, exceptions are objects that contain a human-readable
description of the problem, as well as a detailed snapshot of the call stack that triggered the
exception in the first place. Furthermore, you are able to provide the end user with help link
information that points the user to a URL that provides detailed information regarding the error at
hand as well as custom user-defined data.

The Atoms of .NET Exception Handling
Programming with structured exception handling involves the use of four interrelated entities:

 A class type that represents the details of the exception that occurred
 A member that throws an instance of the exception class to the caller
 A block of code on the caller’s side that invokes the exception-prone member
 A block of code on the caller’s side that will process (or catch) the exception should it occur

The C# programming language offers four keywords (try, catch, throw, and finally) that allow you
to throw and handle exceptions. The type that represents the problem at hand is a class derived
from System.Exception.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

134

5.3 The System.Exception Base Class
All user- and system-defined exceptions ultimately derive from the System.Exception base class
(which in turn derives from System.Object). Core Members of the System.Exception Type are
shown below:
System.Exception

Property
Meaning

HelpLink This property returns a URL to a help file describing the error in full detail.

InnerException Used to obtain information about the previous exceptions that caused the
current exception to occur. The previous exceptions are recorded by
passing them into the constructor of the most current exception. This is a
read-only property.

Message Returns the textual description of a given error. The error message itself is
set as a constructor parameter. This is a read-only property.

Source Returns the name of the assembly that threw the exception.

StackTrace Contains a string that identifies the sequence of calls that triggered the
exception. This is a read-only property.

TargetSite Returns a Method-Base type, which describes numerous details about the
method that threw the exception (ToString() will identify the method by
name). This is a read-only property.

5.4 Throwing a Generic Exception
During the program, if any exception occurs, we can throw it to either a specific exception like
FileNotFoundException, ArrayIndexOutOfBoundException, DivideByZeroException etc. or we can
through a generic exception directly using Exception class. The object of Exception class can
handle any type of exception, as it is a base class for all type of exceptions. Here is an example
to show how to throw an exception:

using System;

class Test
{
 int Max=100;

public void Fun(int d)
{

if(d>Max)
 throw new Exception("crossed limit!!!");
else

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

135

 Console.WriteLine("d={0}", d);
 }

public static void Main()
{

 Test ob=new Test();
 Console.WriteLine("Enter a number:");

int d=int.Parse(Console.ReadLine());

ob.Fun(d);

 }
}

Output:

Enter a number: 12
d=12

Enter a number: 567
Unhandled Exception: System.Exception: crossed limit!!!
 at Test.Fun(Int32 d)
 at Test.Main()

In the above example, if the entered value d is greater than 100, then we are throwing an
exception. We are passing message “crossed limit” to a Message property of Exception class.

Deciding exactly what constitutes throwing an exception and when to throw an exception is up to
the programmer.

5.5 Catching Exceptions
When a block of code is bound to throw an exception, it needs to be caught using catch
statement. Once we catch an exception, we can invoke the members of System.Exception class.
Using these members in the catch block, we may display a message about the exception, store
the information about the error in a file, send a mail to administrator etc. For example,

using System;
class Test
{

int Max=100;
public void Fun(int d)
{
 try

 {
 if(d>Max)

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

136

 throw new Exception("crossed limit!!!");
 }

 catch(Exception e)
 {
 Console.WriteLine("{0}", e.Message);
 }

 Console.WriteLine("d={0}", d);
 }

public static void Main()
{

Test ob=new Test();
 Console.WriteLine("Enter a number:");

 int d=int.Parse(Console.ReadLine());
ob.Fun(d);

}
}

Output:
Enter a number: 12
d=12

Enter a number: 123
crossed limit!!!
d=123

In the above example, we are throwing an exception if d>100 and is caught. Throwing an
exception using the statement –
 throw new Exception (“Crossed Limit”);

means, creating an object of Exception class and passing that object to catch block. While
passing an object, we are passing the message also, which will be an input for the Message
property of Exception class.

A try block is a section of code used to check for any exception that may be encountered during
its scope. If an exception is detected, the program control is sent to the appropriate catch block. If
the code within try block does not trigger any exception, then the catch block is skipped fully and
program will continue to execute further.

Once an exception has been handled, the application will continue its execution from very next
point after catch block. In some situations, a given exception may be critical and it may warrant
the termination of the application. However, in most of the cases, the logic within the exception
handler will ensure the application to be continued in very normal way.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

137

The TargetSite Property

 The System.Exception.TargetSite property allows to determine various details about the
method that threw a given exception.

 Printing the value of TargetSite will display the return type, name, and parameters of the
method that threw the exception.

 However, TargetSite does not simply return a string, but a strongly typed
System.Reflection.MethodBase object.

 This type can be used to gather numerous details regarding the offending method as well
as the class that defines the offending method.

The StackTrace Property

• The System.Exception.StackTrace property allows you to identify the series of calls that
resulted in the exception.

• Be aware that you never set the value of StackTrace as it is established automatically at
the time the exception is created.

• The string returned from StackTrace documents the sequence of calls that resulted in the
throwing of this exception.

using System;
class Test
{

int Max=100;
public void Fun(int d)
{

try
 {

if(d>Max)
 throw new Exception(string.Format("crossed limit!!!"));
 }

 catch(Exception e)
 {

 Console.WriteLine("{0}",e.Message); // crossed limit!!!
 Console.WriteLine("{0}", e.TargetSite); //Void Fun(Int32)
 Console.WriteLine("{0}", e.TargetSite.DeclaringType); //Test
 Console.WriteLine("{0}", e.TargetSite.MemberType); //Method
 Console.WriteLine("Stack:{0}", e.StackTrace); //at

Test.Fun(Int32 d)
 }

 Console.WriteLine("d={0}", d);
 }
 public static void Main()
 {

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

138

 Test ob=new Test();
Console.WriteLine("Enter a number:");
 int d=int.Parse(Console.ReadLine()); //assume d is entered as 123
ob.Fun(d);

 }
}

The Helplink Property

• The HelpLink property can be set to point the user to a specific URL or standard Windows
help file that contains more detailed information.

• By default, the value managed by the HelpLink property is an empty string.
• If you wish to fill this property with an interesting value, you will need to do so before

throwing the System.Exception type.

using System;
class Test
{
 int Max=100;

public void Fun(int d)
{

try
 {

 if(d>Max)
 {

Exception ex= new Exception("crossed limit!!!");
 ex.HelpLink="g:\\Help.doc";
 throw ex;
 }
 }
 catch(Exception e)
 {

Console.WriteLine("{0}", e.HelpLink); // G:\Help.doc
}

 Console.WriteLine("d={0}", d);
 }
 public static void Main()

{
 Test ob=new Test();

Console.WriteLine("Enter a number:");
 int d=int.Parse(Console.ReadLine()); //say d=345
 ob.Fun(d);

}
}

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

139

5.6 CLR System Level Exceptions
The .NET base class libraries define many classes derived from System.Exception. For example,
the System namespace defines core error objects such as ArgumentOutOfRangeException,
IndexOutOfRange-Exception, StackOverflowException etc. Other namespaces define exceptions
that reflect the behavior of that namespace. For ex. System.Drawing.Printing defines printing
exceptions, System.IO defines IO-based exceptions, System.Data defines database-centric
exceptions, and so on.

Exceptions that are thrown by the methods in the BCL are called system exceptions. These
exceptions are regarded as non-recoverable, fatal errors. System exceptions derive directly from
a base class named System.SystemException, which in turn derives from System.Exception
(which derives from System.Object):
 public class SystemException : Exception
 {
 // Various constructors.
 }
The System.SystemException type does not add any additional functionality beyond a set of
constructors.

5.7 Custom Application Level Exceptions
All .NET exceptions are class types and hence we can create our own application-specific
exceptions. Since the System.SystemException base class represents exceptions thrown from
the CLR, we may naturally assume that we should derive your custom exceptions from the
System.Exception type. But, the best practice is to derive from the System.ApplicationException
type:

 public class ApplicationException : Exception
 {
 // Various constructors.
 }

The purpose of System.ApplicationException is to identify the source of the (nonfatal) error. When
we handle an exception deriving from System.ApplicationException, we can assume that
exception was raised by the code-base of the executing application rather than by the .NET BCL.
The relationship between exception-centric base classes are shown –

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

140

Truly speaking, it is not necessary to derive a custom exception from
System.ApplicationException class, rather it can directly be derived from more generic
System.Exception class. To understand various possibilities, now we will build custom exceptions.

Building Custom Exceptions: Take One
We can always throw instances of System.Exception to indicate runtime error. But, it is better to
build a strongly typed exception that represents the unique details of our current problem. The
first approach is defining a new class derived directly from System.Exception. Like any class, the
exception class also may include fields, methods and properties that can be used within the catch
block. We can also override any virtual member in the parent class. For example, assume we
wish to build a custom exception (named CarIsDeadException) to represent that the car has
crossed the maximum speed limit.

public class CarIsDeadException : System.Exception
{

private string messageDetails;
public CarIsDeadException(){ }

public CarIsDeadException(string message)
{

 messageDetails = message;
}

System.ApplicationException

System.Object

System.Exception

Your Application’s
Custom Exceptions

System.SystemException

Exceptions from
.NET BCL

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

141

 // Override the Exception.Message property.
public override string Message
{

get
{

 return string.Format("Car Error Message: {0}", messageDetails);
}

}
}

public class Car
{

……………………
public void SpeedUp(int delta)
{

 try
 {
 speed=current_speed + delta;
 if(speed>max_speed)
 throw new CarIsDeadException(“Ford Ikon”);
 }
 catch(CarIsDeadException e)
 {
 Console.WriteLine(“Method:{0}”, e.TargetSite);
 Console.WriteLine(“Message:{0}”, e. Message);
 }

}
……………………..

 }
Note that, the custom exceptions are needed only when the error is tightly bound to the user-
defined class issuing the error. For example, a File class may throw number of file-related errors;
Student class may throw errors related to student information and so on. By writing the custom
exception, we provide the facility of handling numerous exceptions on a name-by-name basis.

Building Custom Exceptions:Take Two
We can write the constructors, methods and overridden properties as we wish in our exception
class. But it is always recommended approach to build a relatively simple type that supplied three
named constructors matching the following signature –

public class CarIsDeadException : System.Exception
{

public CarIsDeadException(){ }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

142

public CarIsDeadException(string message):base(message)
{
}

 public CarIsDeadException(string message, Exception innerEx):base(message, innerEx)
{
}

}
Most of the user defined exceptions follow this pattern. Because, many times, the role of a custom
exception is not to provide additional functionality beyond what is provided by its base class.
Rather, to provide a strongly named type that clearly identifies the nature of the error.

Building Custom Exceptions:Take Three
We have discussed that; exceptions can be system-level or application-level. If we want to clearly
mark our exception to be thrown by the application itself and not by any chance by BCL, we can
redefine as –

 public class CarIsDeadException: ApplicationException
 {
 //body
 }

5.8 Handling Multiple Exceptions
We have seen a situation where a try block will have corresponding catch block. But in reality, we
may face a situation where the code within try block may trigger multiple possible exceptions. For
example,

public void SpeedUp(int delta)
{
 try
 {
 if(delta<0)
 throw new ArgumentOutOfRangeException(“Ford Ikon”);

 speed=current_speed + delta;
 if(speed>max_speed)
 throw new CarIsDeadException(“Ford Ikon”);
 }
 catch(CarIsDeadException e)
 {
 Console.WriteLine(“Method:{0}”, e.TargetSite);
 Console.WriteLine(“Message:{0}”, e. Message);
 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

143

 catch(ArgumentOutOfRangeException e)
 {
 Console.WriteLine(“Method:{0}”, e.TargetSite);
 Console.WriteLine(“Message:{0}”, e. Message);
 }
}

In the above example, if delta is less than zero, then ArgumentOutOfRangeException is triggered.
If the speed exceeds MaxSpeed, then CarIsDeadException is thrown. While constructing multiple
catch blocks for a single try block, we must be aware that it will be processed by the nearest
available catch block. For example, the following code snippet generates compile-time error!!

 try
 {

 }
 catch(Exception e)
 {

}

 catch(CarIsDeadException e)
 {

}

 catch(ArgumentOutOfRangeException e)
 {

}

Here, the class Exception is a base class for all user-defined and built-in exceptions. Hence, it can
handle any type of exceptions. Thus, if Exception is the first catch-block, the control will jump to
that block itself and the other two exceptions are unreachable. Thus, during multiple exceptions,
we have to design very structured format. The very first catch block should contain very specific
exception or the most derived type in inheritance hierarchy. Whereas the last catch block should
be the most general or the top most base class in inheritance hierarchy.

Generic Catch Statements
C# supports a generic catch block that does not explicitly define the type of exception. That is, we
can write –
 catch
 {
 Console.WriteLine(“Some error has occurred”);
 }

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

144

But, using this type of catch blocks indicates that the programmer is un-aware of the type of
exception that is going to occur, which is not acceptable. Hence it is always advised to use
specific type of exceptions.

Re-throwing Exceptions
It is possible to re-throw an error to the previous caller. For example–

 try
 {

 }
 catch(CarIsDeadException e)
 {
 //handle CarIsDeadException partially or do something
 throw e;
 }

In the above code, the statement throw e will throw the exception again to CarIsDeadException.

5.9 The Finally Block
The try/catch block may be added with an optional Finally block. The finally block contains a code
that always executes irrespective of any number of exceptions that may interfere with the normal
flow of execution. For example, we may want to turn-off radio within a car before stopping the car
due to any reason. Programmatically speaking, before exiting from Main() function, we may need
to turn-off radio of a car. Then we can write –

 public static void Main()
 {
 try
 {

//increase speed
}

 catch(CarIsDeadException e)
 {

}

 catch(ArgumentOutOfRangeException e)
 {

 }
 finally
 {

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

145

 CarName.TurnOffRadio();
 }
 }

NOTE:

 The finally block is useful in following situations –
 When we want to

– clean-up any allocated memory
– Close a file which is in use
– Close a database connection to a data source

 The finally block will be executed even if our try block does not trigger any exception.
 This is especially helpful if a given exception requires the termination of the current

application.

5.10 Dynamically Identifying Application and System Level Exceptions
In the previous examples, we have handled each exception by its specific class name. lternatively,
if we want to generalize our catch blocks in a such a way that all application level exceptions are
handled apart from possible system-level exceptions:

 try
 {

//do something
 }
 catch(ApplicationException e)
 {

}

 catch(SystemException e)
 {

}

Though C# has the ability to discover at runtime the underlying source of an exception, we are
gaining nothing by doing so. Because some BCL methods that should ideally throw a type derived
from System.SystemException are actually derived from System.ApplicationException or even
more generic System.Exception.

5.11 Understanding Object Lifetime
By the example programs we have seen in previous four chapters, we can note that we have
never directly de-allocated an object from memory. That is there is no delete keyword in C#.
Rather, .NET objects are allocated onto a region of memory termed as managed heap, where
they will be automatically de-allocated by the CLR at some time later.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

146

Thus, the golden rule of .NET memory management is –
Allocate an object onto the managed heap using the new keyword and forget about it.

Once an object is created using new, the CLR removes it when it is no longer needed. That is, the
CLR removes an object from the heap when it is unreachable by the current application. For
example,
 public static void Main()
 {
 Car c=new Car(“Ford Ikon”);
 ………………
 }

Here, c is created within the scope of Main(). Thus, once the application shuts down, this
reference is no longer valid and therefore it is a candidate for garbage collection. But, we can not
surely say that the object c is destroyed immediately after Main() function. All we can say is when
CLR performs the next garbage collection, c is ready to be destroyed.

5.12 The CIL of new
Here we will discuss what actually happens when new keyword is used.

• When C# encounters the new keyword, it will produce a CIL newobj instruction to the code
module.

• Note that, the managed heap is not just a raw portion of memory accessed by the CLR.
• The .NET garbage collector will compact empty blocks of memory, when needed, for the

purpose of optimization.

• To help this process, the managed heap maintains a pointer, referred as new object
pointer, that identifies exactly where the next object will be placed on the heap.

• After these tasks, the newobj instruction informs the CLR to perform the following
sequence of events:

o Calculate the total amount of memory required for the object to be allocated. If this
object contains other internal objects (i.e. has-a relationship and/or nested type
member), they are also added-up. And the memory required for each base class is
also considered (i.e is-a relationship).

o The CLR then examines the managed heap to ensure that there is enough space for
the object to be allocated. If so, the object’s constructor is called and a reference to
the object in the memory is returned.

o Finally, before returning the reference, the CLR will move the new object pointer to
point to the next available slot on the managed heap.

The entire process is depicted here-under:

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

147

5.13 The Basics of Garbage Collection

• After creating so many objects, the managed heap may become full.
• When the newobj instruction is being processed, if the CLR determins that the managed

heap does not have sufficient memory to allocate the requested type, it will perform a
garbage collection in an attempt to free-up the memory.

• Thus, the next rule of garbage collection is:

If the managed heap does not have sufficient memory to allocate a new
object, a garbage collection will occur.

• Now the question arise: how CLR is able to determine an object on the heap that it is no

longer needed and destroy it?
• To answer this question, we should know application roots.
• A root is a storage location containing a reference to an object on the heap.
• In other words, a root is a variable in our application that points to some area of memory

on the managed heap.
• The root can fall into any of the following categories:

– Reference to global objects (Though global objects are not allowed in C#, raw CIL
does permit allocation of global objects)

– Reference to static objects
– References to local objects within a given method
– References to object parameters passed into a method
– Any CPU register that references a local object

• When a garbage collection occurs, the runtime (CLR) will check all objects on the managed

heap to determine if it is still in use (or rooted) in the application.
• To do so, the CLR will build an object graph, which represents each object on the heap

that is still reachable.
• The object graph documents all co-dependencies for the current object.
• The CLR will ensure that all related objects are considered before a possible garbage

collection through the construction of an object graph.

 c1 c2 c3 Unused Heap
Space

Car c1=new Car(“Ford”);

Car c2=new Car(“Swift”);

Car c3=new Car(“Zen”);

New object pointer

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

148

• The CLR will never graph the same object twice, and thus avoids the circular reference
count.

To illustrate this concept, assume that the managed heap contains a set of objects named A, B,
C, D, E, F, and G. During a garbage collection, these objects (as well as any internal object
references they may contain) are examined for active roots. Once the graph has been
constructed, unreachable objects, say, the objects C and F are marked as garbage as shown in
the following diagram:

Now, a possible object graph may look like –

Here, the arrows indicate depends on or requires. For example, E depends on G, B depends on E
and also G, A is not depending on anything etc. Once an object has been marked for collection
(here, C and F), they are not considered for object graph creation and are swept from the
memory. At this point, the remaining space on the heap is compacted, which in turn will cause the
CLR to modify the set of active application roots to refer to the correct memory location (this is
done automatically and transparently). Then, the new object pointer is readjusted to point to the
next available slot. Following diagram depicts it –

A B C D E F G

A B D E G

Managed Heap

New Object pointer

A

G
E D

B

Managed Heap

New Object pointer

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

149

5.14 Finalizing a Type
From the previous discussion, we can easily make out that the .NET garbage collection scheme is
non-deterministic in nature. In other words, we can not determine exactly when an object will be
de-allocated from the memory. This approach seems to be quite good because, we, the
programmers need not worry once the object has been created. But, there is a possibility that the
objects are holding unmanaged resources (Win32 files etc) longer than necessary.

When we build .Net types that interact with unmanaged resources, we like to ensure that this
resource is released in-time rather than waiting for .NET garbage collector. To facilitate this, the
C# provides an option for overriding the virtual System.Object.Finalize() method. The default
implementation of Finalize() method does nothing!! Note that we need to override it only if we are
making use of unmanaged resources. Otherwise, the C# garbage collector will do the job.

C# will not allow the programmer to directly override the Finalize() method.

 public class Test
 {
 protected override void Finalize() //error!!!
 { ………. }
 }

Rather, we need to use a C++ -type destructor syntax:
 public class Test
 {
 ~Test()
 {

………
}

 }

Indirectly Invoking System.Object.Finalize()
We have discussed till now that the .NET runtime will trigger garbage collector when it requires
more memory that what is available at heap. But also note that, the finalization will automatically
take place when an application domain or AppDomain is unloaded by CLR. Application domain
can be assumed to be Application itself. Thus, once our application is about to shut down, the
finalize logic is triggered.

Thus, the next rule of garbage collection is:

When an AppDomain is unloaded, the Finalize() method is invoked for all
finalizable objects.

For illustration, consider the following example –

using System;

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

150

class Test
{
 public Test()
 { }

 ~Test()
 {
 Console.WriteLine("Finalizing!!!");
 }

 public static void Main()
 {
 Console.WriteLine(“Within Main()");
 Test t=new Test();
 Console.WriteLine(“Exiting Main()");
 }
}

Output:
 Within Main()

Exiting Main()
 Finalizing!!!

We can see that, once the program control goes out the scope of Main() function, the destructor is
called for the object t. In the destructor or the finalizer, we need to write the code to release the
resources that may be held by the object t.

5.15 The Finalization Process
Though finalizer seems to be good to use, it is not advised unless the objects in our application
are using unmanaged resources. The good programming practice is to avoid Finalize() method,
as finalization takes time.

• When an object is placed on a heap using new, the CLR automatically determines whether
this object supports a user-defined Finalize() method.

• If yes, the object is marked as finalizable and a pointer to this object is stored on an
internal queue names as the finalization queue.

• The finalization queue is a table maintained by the CLR that points to every object that
must be finalized before it is removed from the heap.

• When the garbage collector starts its action, it checks every entry on the finalization queue
and copies the object from the heap to another CLR-managed structure termed as
finalization reachable table (f-reachable).

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

151

• At this moment, a separate thread is produced to invoke the Finalize() method for each
object on the f-reachable table at the next garbage collection.

• Thus, when we build a custom-type (user-defined type) that overrides the
System.Object.Finalize() method, the .NET runtime will ensure that this member is called
when our object is removed from the managed heap.

• But this will consume time and hence affects the performance of our application.

5.16 Building an Ad Hoc Destruction Method
We have seen that the objects holding unmanaged resources can be destroyed using Finalize()
method. But the process of finalization is time consuming. C# provides an alternative way to avoid
this problem of time consumption.

The programmer can write a custom ad hoc method that can be invoked manually before the
object goes out of the scope. This will avoid the object being placed at finalization queue and
avoid waiting for garbage collector to clean-up. The user-defined method will take care of cleaning
up the unmanaged resources.

 public class Car
 { …………..
 public void Kill() //name of method can be anything
 {

 //clean up unmanaged resources
 }
 }

The IDisposable Interface
In order to provide symmetry among all objects that support an explicit destruction, the .NET class
libraries define an interface named IDisposable. This interface contains a single member
Dispose():
 public interface IDisposable
 {
 public void Dispose();
 }

Now, our application can implement this interface and define Dispose() method. Then, this
method can be called manually to release unmanaged resources. Thus, we can avoid the
problems with finalization.

public class Car: IDisposable
{ ………
 public void Dispose()
 {
 //code to clean up unmanaged resources

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

152

 }
}

class Test
{ ………….
 public static void Main()
 {
 Car c=new Car(“Ford”);
 ……….
 c.Dispose();
 ………

 } //c still remains on the heap and may be collected by GC now
}

Thus, another rule for working with garbage collection is:

Always call Dispose() for any object in the heap. The assumption is : if there is a
Dispose() method, the object has some clean up to perform.

Note that, for a single class, it is possible to have C# - style destructor and also to implement
IDisposable interface for defining Dispose() method.

Reusing the C# using Keyword
When we are using an object that implements IDisposable, it is quite common to use structured
exceptions just to ensure the Dispose() method is called when exception occurs:

 public void Test()
 {
 Car c=new Car();
 try

{
……..

}
 catch{ …….. }
 finally
 { ……..
 c.Dispose();
 }
 }

C# provides another way of doing this with the help of using keyword:

public void Test()

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

153

{
 using(Car c=new Car())
 {
 //Do something
 //Dispose() method is called automatically when this block exits
 }
}

One good thing here is, the Dispose() method is called automatically when the program control
comes out of using block. But there is a disadvantage: If at all the object specified at using does
not implement IDisposable, then we will get compile-time error.

5.17 Garbage Collection Optimizations
Till now we have seen two methodologies for cleaning user-defined types. Now, we will discuss
little deeply about the functionality of .NET garbage collector.

• When CLR is attempting to locate unreachable objects, it does not literally search through
every object placed on the managed heap looking for orphaned roots.

• Because, doing so will consume more time for larger applications.
• To optimize the collection process, each object on the heap is assigned to a given

generation.
• The idea behind generation is as follows:

– If an object is on the heap since long time, it means, the object will continue to exist
for more time. For example, application-level objects.

– Conversely, if an object has been recently placed on the heap, it may be
dereferenced by the application quickly. For example, objects within a scope of a
method.

• Based on these assumptions, each object belongs to one of the following generations:
– Generation 0: Identifies a newly allocated object that has never been marked for

collection.
– Generation 1: Identifies an object that has survived a garbage collection sweep (i.e.

it was marked for collection, but was not removed due to the fact that the heap had
enough free space)

– Generation 2: Identifies an object that has survived more than on sweep of the
garbage collector.

• Now, when a collection occurs, the GC marks and sweeps all generation 0 objects first.
• If required amount of memory is gained, the remaining objects are promoted to the next

available generation.

To illustrate how an object’s generation affects the collection process, consider the following
diagram –

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

154

• If all generation 0 objects have been removed from heap and still more memory is

necessary, generation 1 objects are checked for their reachability and collected
accordingly.

• Surviving generation 1 objects are then promoted to generation 2.
• If the garbage collector still requires additional memory, generation 2 objects are checked

for their reachability.
• At this point, if generation 2 objects survive a garbage collection, they remain at that

generation only.
• Thus, the newer objects (local variables) are removed quickly and older objects (application

level variables) are assumed to be still in use.
• This is how, the GC is able to quickly free heap space using the generation as a baseline.

5.18 The System.GC Type
The programmer can interact with the garbage collector using a base class System.GC. This
class provides following members:

System.GC Member Meaning
Collect() Forces the GC to perform a garbage collection.
GetGeneration() Returns the generation to which an object currently belongs.
GetTotalMemory() Returns the estimated amount of memory (in bytes) currently allocated

on the managed heap. The Boolean parameter specifies whether the call
should wait for garbage collection to occur before returning.

MaxGeneration Returns the maximum of generations supported on the target
system. Under Microsoft’s .NET 2.0, there are three possible
generations (0, 1, and 2).

SuppressFinalize() Sets a flag indicating that the specified object should not have its
Finalize() method called.

WaitForPendingFinalizers() Suspends the current thread until all finalizable objects have been
finalized. This method is typically called directly after invoking
GC.Collect().

A B C D E F G

A B E

 Gen 0

 Gen 1

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

155

Building Finalization and Disposable Types
Consider an example to illustrate how to interact with .NET garbage collector.

using System;

class Car:IDisposable
{
 string name;

 public Car(string n)
 {
 name=n;
 }

 ~Car()
 {
 Console.WriteLine("Within destructor of {0}", name);
 }

 public void Dispose()
 {
 Console.WriteLine("Within Dispose() of {0}", name);
 GC.SuppressFinalize(this);
 }
}

class Test
{
 public static void Main()
 {
 Car c1=new Car("One");
 Car c2=new Car("Two");
 Car c3=new Car("Three");
 Car c4=new Car("Four");

 c1.Dispose();
 c3.Dispose();
 }
}

Output:

Within Dispose() of One
Within Dispose() of Three

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

156

Within destructor of Four
Within destructor of Two

We have discussed earlier that both Dispose() and Finalize() (or destructor) methods are used to
release the unmanaged resources. As we can see in the above example, when Dispose() method
is invoked through an object, we can prevent the CLR from calling the corresponding destructor
with the help of SuppressFinalize() method of GC class. By manually calling Dispose() method,
we are releasing the resources and hence there is no need to call finalizer.

Calling the Dispose() function manually is termed as explicit object de-allocation and making
use of finalizer is known as implicit object de-allocation.

Forcing Garbage Collection
We know that, CLR will automatically trigger a garbage collection when a managed heap is full.
We, the programmers, will not be knowing, when this process will happen. However, if we wish,
we can force the garbage collection to occur using the following statements:

 GC.Collect();
 GC.WaitForPendingFinalizers();

The method WaitForPendingFinalizers() will allow all finalizable objects to perform any necessary
cleanup before getting destroyed. Though, we can force garbage collection to occur, it is not a
good programming practice.

Interacting with Generations
It is possible to find generation of every object at any moment of time in the program.

class Car:IDisposable
{
 string name;

 public Car(string n)
 {
 name=n;
 }

 ~Car()
 {
 Console.WriteLine("Within destructor of {0}", name);
 }

 public void Dispose()
 {

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

157

 Console.WriteLine("Within Dispose() of {0}", name);
 GC.SuppressFinalize(this);
 }
}

class Test
{
 public static void Main()
 {
 Car c1=new Car("One");
 Car c2=new Car("Two");
 Car c3=new Car("Three");
 Car c4=new Car("Four");

 Console.WriteLine("c1 is Gen {0}", GC.GetGeneration(c1)); //C1 is Gen 0
 Console.WriteLine("c2 is Gen {0}", GC.GetGeneration(c2)); //C2 is Gen 0
 Console.WriteLine("c3 is Gen {0}", GC.GetGeneration(c3)); //C3 is Gen 0
 Console.WriteLine("c4 is Gen {0}", GC.GetGeneration(c4)); //C4 is Gen 0

 c1.Dispose(); //Within Dispose() of One
 c3.Dispose(); //Within Dispose() of Three

 GC.Collect(0);

 Console.WriteLine("c1 is Gen {0}", GC.GetGeneration(c1)); //C1 is Gen 1
 Console.WriteLine("c2 is Gen {0}", GC.GetGeneration(c2)); //C2 is Gen 1
 Console.WriteLine("c3 is Gen {0}", GC.GetGeneration(c3)); //C3 is Gen 1
 Console.WriteLine("c4 is Gen {0}", GC.GetGeneration(c4)); //C4 is Gen 1
 }
} //Within Destructor of Four
 //Within Destructor of Two

The output of above program may be a bit surprising. Using statement GC.Collect(0), we are
forcing the garbage collection to occur for generation 0 objects. After looking at next output lines,
we can see that, all the four objects have been moved to generation 1 instead of getting
destroyed. This is because, when we force garbage collection to start, it will realize that enough
memory is there in the heap and is not necessary to sweep the objects. Hence, the generation 0
objects are survived from collection and they are moved to generation 1.

Since Dispose() method is called for the objects c1 and c3, the finalization will happen only for c2
and c4 after coming out of Main() method.

This document can be downloaded from www.chetanahegde.in with most recent updates.

Notes for C#.NET

© Dr. Chetana Hegde, Assoc Prof, RNS Institute of Technology, Bangalore – 98
Email: chetanahegde@ieee.org

158

Frequently Asked Questions:
1. What do you understand by exception in C#? Illustrate the use of System.Exception base

class in throwing generic exceptions. (10)
2. How does .NET framework manage garbage collection? Explace using IDisposable interface.

 (10)
3. Differentiate between bugs, errors and exceptions. Explain the concepts of .NET exception

handling with valid example code. (8)
4. Explain the following properties: TargetSite, StackTrace, HelpLink. (6)
5. What do you mean by custom exception? Write a program to build a custom exception which

raises an exception when the argument passed is a negative number. (10)
6. Explain how garbage collection is optimized in .NET? (5)
7. When do you override the virtual System.Object.Finalize() method? How to implement it using

destructors? (6)

